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Introduction to Curves 

Modelling 

•  Points 
–  Defined by 2D or 3D coordinates 

•  Lines 
–  Defined by a set of 2 points 

•  Polygons 
–  Defined by a sequence of lines 
–  Defined by a list of ordered points 

3D Models 

Triangular mesh 
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Limitations of Polygonal Meshes 

•  Planar facets (& silhouettes) 
•  Fixed resolution 
•  Deformation is difficult  
•  No natural parameterization (for texture mapping) 

Need to Disguise the Facets 

•  C0 continuous 
–  curve/surface has no breaks/gaps/holes 

•  G1 continuous 
–  tangent at joint has same direction 

•  C1 continuous 
–  curve/surface derivative is continuous 
–  tangent at join has same direction and magnitude 

•  Cn continuous 
–  curve/surface through nth derivative  

is continuous 
–  important for shading 

Continuity Definitions 
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Let’s start with curves 

What if you want to have curves? 

•  Curves are often described with an analytic 
equation 

•  It’s different from the discrete description of 
polygons 

•  How do you deal with it in Computer Graphics? 

First Solution 

•  Refine the number of points 
–  Can become extremely complex! 
–  How do we interpolate? 

•  Draw freehand ---  
–  Too much data! 
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And for more complex curves? 

Can I approximate this with line segments? 

Interpolation 

•  How to interpolate between points? 

•  Which one corresponds to what we want? 

Using curves for 3D modelling 

•  Modelled with curved surfaces, displayed with 
polygons 
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Interpolation vs. Approximation Curves 

Interpolation 
curve must pass through 

control points 

Approximation 
curve is influenced by 

control points 

Interpolation vs. Approximation Curves 

•  Interpolation curve – over constrained  
 → lots of (undesirable?) oscillations 

•  Approximation curve – more reasonable? 

Math background 

•  Polynomials 
–  n-th degree polynomial: 
   p(t) = a0 + a1 t + a2 t2 + a3 t3 + … + an tn 

•  Affine map 
–  In one variable, defined as: 
   f(t) = a + b t 
–  A mapping is affine: 
   f(α0*t0 + α1*t1) = α0*f(t0) + α1*f(t1)     if   α0 + α1

 = 1 
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Interpolation 

•  On affine maps 
–  For t in [t1,t2] 

–  Hence, for any affine f(): 

    since  

t1  +  t2 – t1 

t2 – t t – t1 t =  
t2 – t1 

t2  

f(t1) +  t2 – t1 

t2 - t t - t1 f(t) =  
t2 – t1 

f(t2)  

t2 – t1 

t2 - t t - t1 
t2 – t1 

+ = 1 

Example of Affine Mapping 

•  Given                     and 

•  We can show: 

Parameterised line segment 

t between [0,1] 
P(t) = P0 (1-t) + t P1 

P0 

P1 

P(t) 

We can generalise to t in the range t1 to t2  (prev. slide) 

How to generalize to non-linear interpolation? 



7 

Symmetric Multi-Affine Maps 

•  2-parameter version defined as: 
–  f(t1,t2) = c0 + c1 t1 +c2 t2 + c3 t1t2        (symmetry: c1=c2) 

•  Properties 
–  Affine separately on each of its arguments 
     f(αa*t1a + αb*t1b, t2) = αa*f(t1a,t2) + αb*f(t1b,t2) 
     f(t1,αa*t2a + αb*t2b) = αa*f(t1,t2a) + αb*f(t1,t2b) 
–  Symmetry: Any permutation of the arguments results in 

the same value 
     f(t1,t2) = f(t2,t1) 

•  Can be extended to more parameters! 

Example 

•  Given 

•  Symmetry: 

•  Affine: 

provided  

Diagonalization of Symmetric Multi-Affine 
Maps 
•  Multi-Affine Map defined 

–  on hyper-cube [0,1]n, for n-variables 

•  In 2-parameter case: 
–  on square-domain [0,1]2 

•  Diagonalization: all arguments take same value 
–  F(t) := f(t,t) = c0 + (c1+c2) t + c3 t2 

•  New function F(t) 
–  Defined on diagonal of original domain 
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Blossoming theorem 

•  Strong connection between multi-affine maps and 
polynomials 

•  Every n-argument multi-affine map has a  
unique n-th degree polynomial as its diagonal 

•  Every n-th degree polynomial corresponds to a 
unique symmetric n-argument multi-affine map, 
that has this polynomial as its diagonal 

•  The multi-affine map is called blossom (or polar 
form) 

Interpolation (through Diagonal) 

•  Recall interpolation on affine maps 

•  Consider t ∈ [r,s] in the 2-parameter case  

f(r,s) +  s – r 

s - t t - r 
f(t,s) =  

s – r 
f(s,s)  

f(t1) +  t2 – t1 

t2 - t t - t1 f(t) =  
t2 – t1 

f(t2)  

f(r,r) +  s – r 

s - t t - r 
f(r,t) =  

s – r 
f(r,s)  

f(r,t) +  s – r 

s - t t - r 
f(t,t) =  

s – r 
f(s,t)  

De Casteljau triangles 

•  Solution for f(t,t) 

f(r,r) f(s,s) f(r,s) 

f(r,t) f(t,s) 

f(t,t) 
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 Can be extend to degree n 

•  Solution for f(t,t,t) 

f(r,r,r) f(r,s,s) f(r,r,s) 

f(r,r,t) f(r,t,s) 

f(r,t,t) 

f(s,s,s) 

f(t,s,s) 

f(t,t,t) 

f(s,t,t) 

Bézier curves 

•  Use it to define Bézier curves: 
           f(t1,t2) = (x(t1,t2), y(t1,t2))          [= two f, one for each dim.] 

•  Given 3 points: 
    p0 = f(r,r)         p1 = f(r,s)        p2 = f(s,s) 

•  Interpolation by f(t,t) for any value of t.  
•  All points given by f(t,t) will lie on a curve  

(2nd degree Bézier curve) 

Three control points  (quadratic Bézier) 

•  p0, p1, p2 

p0 

p1 p2 

f(t,t) f(r,t) 

f(s,t) f(r,s) 

f(s,s) 

f(r,r) 

t 

t 

t 
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Three control points  (quadratic Bézier) 

With four control points  (cubic Bézier) 

•  p0, p1, p2, p3 

p0 

p1 p2 

p3 

f(t,t,t) 

f(r,t,s) 

f(t,s,s) 

f(r,s,s) 

f(s,s,s) f(r,r,r) 

f(r,r,s) 

f(r,r,t) 

f(r,t,t) f(s,t,t) 

t 

With four control points  (cubic Bézier) 
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Demo… 

Properties for 3rd- degree Bézier curves 

•  End-points p0 = P(r) and p3 = P(s)  
•  Invariance of shape when change on the 

parametric interval (affine transformation) 
•  The curve is bounded by the Convex hull given by 

the control points 
•  An affine transformation of the control points is the 

same as an affine transformation of any points of 
the curve 

Properties for 3rd- degree Bézier curves 

•  If the control points are on a straight line, the 
Bézier curve is a straight line 

•  The tangent vector of the curve at end points are 
(for t=0 and t=1) 
–  P’(r) = 3(p1-p0) 
–  P’(s) = 3(p3-p2) 
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Polynomial form of a Bézier curve 

•  Restriction to interval [0,1] 
•  2nd degree 

–  f(0,t) = (1-t) f(0,0) + t f(0,1) = (1-t) P0 + t P1 

–  f(t,1) = (t-1) f(0,1) + t f(1,1) = (1-t) P1 + t P2  

–  F(t) = f(t,t) = (1-t) f(0,t) + t f(t,1)  
      = (1-t)2 P0 + 2t(1-t) P1 + t2 P2 

–  Using the equation for interpolation 

Polynomial form of a Bézier curve 

•  3rd degree 
–  f(t,t,t) = (1-t)3 f(0,0,0) + 3t(1-t)2f(0,0,1)  

            + 3(1-t)t2 f(0,1,1) + t3 f(1,1,1)  

         = (1-t)3 P0 + 3t(1-t)2 P1 + 3(1-t)t2 P2 + t3 P3  

Basis Functions 
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Other way of seeing a Bézier curve 

•  We drive the position on a curve using a 
parameter u (for 2D or 3D): 

Q(u) = ( x(u), y(u) ) 
y 

x 

u=0 u=1 

Four control points and [0,1] 

•  If we restrict t between [0,1], polynomial form: 
–  f(t,t,t) = (1-t)3 f(0,0,0) + 3t(1-t)2f(0,0,1) +  

             3(1-t)t2 f(0,1,1) + t3 f(1,1,1)  
         = (1-t)3 P0 + 3t(1-t)2 P1 + 3(1-t)t2 P2 + t3 P3  

•  Which can be re-written in a more general case: 
–  Q(u) = ( x(u), y(u) ) = Σ Pi Bi(u) , where 

Bi(u) = 
n 
i 

ui (1-u)n-i 
n 
i 

= 
n! 

i!(n-i)! 

Bernstein basis 

•  B0(u) = (1-u)3 

•  B1(u) = 3 u (1-u)2 

•  B2(u) = 3 u2  (1-u) 

•  B3(u) = u3  

Q(u) = U MB P = [u3 u2 u 1] 

-1  3  -3  1
 3  -6  3  0
-3  3   0  0
 1  0   0  0

p0  
p1  
p2 
p3  
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Bernstein basis 

•  Bi(u) are called Bernstein basis functions 

•  For 3rd degree:  

•  Property 
–  Any polynomial can be expressed uniquely as a linear 

combination of these basis functions 

Bi(u) = 
n 
i 

ui (1-u)n-i 

Higher-Order Bézier Curves 

•  > 4 control points 
•  Bernstein Polynomials as the basis functions 

•  Every control point affects the entire curve  
–  Not simply a local effect  
–  More difficult to control for modeling 

Tangent vectors 

•  For t in [0,1], consider 
–  F(t) = f(t,t,t) = (1-t)3 P0 + 3t(1-t)2 P1 + 3(1-t)t2 P2 + t3 P3  
–  F’(0) = 3 (P1-P0) 
–  F’(1) = 3 (P3-P2) 

•  In general, for a Bézier curve of degree n: 
–  F’(0) = n (P1-P0) 
–  F’(1) = n (Pn-Pn-1) 
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From polynomials, to blossoms, to 
control points 

Problem 

•  F(t) = (X(t), Y(t)) = (1+3t2-t3, 1+3t-t3) 
•  Degree? 
•  Control points? 
•  F(t) = (x(t,t,t), y(t,t,t)) 

–  x(t1,t2,t3) = ? 
–  y(t1,t2,t3) = ? 
–  P0 = (    ,    )   P1 = (    ,    ) 

P2 = (    ,    )   P3 = (    ,    ) 

Blossoming 

•  Easy, when paying attention to symmetry 
•  For our example: 

–  x(t,t,t) = 1+3t2-t3 
→ x(t1,t2,t3) = 1 + 3*(t0t1 + t1t2 + t0t2)/3 – t0*t1*t2  

–  y(t,t,t) = 1+3t-t3 

→ y(t1,t2,t3) = 1 + 3*(t0 + t1 + t2)/3 - t0*t1*t2  
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Deriving control points 

•  In general 
–  P0 = ( x(0,0,0), y(0,0,0) )  
–  P1 = ( x(0,0,1), y(0,0,1) )    
–  P2 = ( x(0,1,1), y(0,1,1) )   
–  P3 = ( x(1,1,1), y(1,1,1) )  

•  For our example 
–  P0  = (1,1) 
–  P1  = (1,2) 
–  P2  = (2,3) 
–  P3

  = (3,3) 

Example 

•  How to derive 2nd-degree Bézier control points for 
parabola: y=x2  ? 

•  Let’s try it! 

Joining Bézier curves 

•  Better to join curves than raise the number of 
controls points 
–  Avoid numerical instability 
–  Local control of the overall shape 

C0 C1 
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Joining Bézier curves 

•  P0P1 defines a tangent to the curve at P0 

•  Tangent is common requirement to join two Bézier 
curves together (with control points P0-3, Q0-3) 

•  This requires: 
–  The points P3 equals Q0 

–  Tangents to be equal 
•  I.e., P3 (=Q0), P2, Q1 are collinear 

–  Called C1 continuity  (1st derivative is continuous) 
–  C0: only positions are continuous (i.e. P3 = Q0) 

Joining Bézier curves 

P0 

P1 
P2 

P3 Q0 

Q1 
Q2 

Q3 

Asymmetric:  Curve goes 
through some control points 

but misses others 

Conclusions 

•  It is possible to define and draw a curve with a 
discrete representation 

•  All is needed are control points and interpolation 
strategy 

•  We have scene Bézier curves 
–  From the DeCasteljau representation 
–  From the Bernstein basis 
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Rational Bézier Curves 

•  Bézier curves cannot represent 
many shapes  
–  E.g., no matter how high the degree 

a Bézier curve cannot represent a 
quadrant of a circle. 

•  Rational Bézier curves provide a 
more powerful tool 

•  The example shows how a circle 
can be exactly represented by 
the ratio of polynomials 

•  (Ex – find the corresponding 
Bézier control points for 
numerator and denominator!) 

Rational Bézier Curves 

•  To define a rational BC we 
attach a ‘weight’ wi>0 to 
each control point. 

•  Note if all the weights are 
equal then this is the same 
as a normal Bézier curve. 

•  The weights act as 
‘atractors’ – the greater the 
weight the more the curve 
is pulled towards the 
corresponding point. 

Conclusions 

•  Rational Bézier Curves more powerful! 


