Introduction to Curves

Modelling
 Points . ¢ e
— Defined by 2D or 3D coordinates o o ©
e Lines o
— Defined by a set of 2 points \
y P AN
* Polygons
— Defined by a sequence of lines W
— Defined by a list of ordered points A.

3D Models

Triangular mesh




Limitations of Polygonal Meshes

« Planar facets (& silhouettes)

« Fixed resolution

» Deformation is difficult

* No natural parameterization (for texture mapping)

Need to Disguise the Facets

Continuity Definitions

» CO continuous
— curve/surface has no breaks/gaps/holes
« G'continuous
— tangent at joint has same direction
« C' continuous
— curve/surface derivative is continuous
— tangent at join has same direction and magnitude
« C" continuous

— curve/surface through nt" derivative
is continuous

— important for shading




Let’s start with curves

What if you want to have curves?

» Curves are often described with an analytic
equation

« It's different from the discrete description of
polygons

* How do you deal with it in Computer Graphics?

First Solution

» Refine the number of points
— Can become extremely complex!
— How do we interpolate?

* Draw freehand ---
— Too much data! N,




And for more complex curves?

Can | approximate this with line segments?

Interpolation

* How to interpolate between points?

MRS

* Which one corresponds to what we want?

Using curves for 3D modelling

* Modelled with curved surfaces, displayed with
polygons

© Elixir Studios




Interpolation vs. Approximation Curves

)]

Interpolation Approximation
curve must pass through curve is influenced by
control points control points
&

Interpolation vs. Approximation Curves

* Interpolation curve — over constrained
— lots of (undesirable?) oscillations

* Approximation curve — more reasonable?

A

Math background

» Polynomials
— n-th degree polynomial:
p()=ay+a;t+aP+a;ti+ .. +a,tn

+ Affine map
— In one variable, defined as:
ft)=a+bt
— A mapping is affine:
flag™ty + ay™ty) = ag™f(t) + a*f(t,) if ag+a,=1




Interpolation

* On affine maps
— For tin [ty,t,]
bot oot

t= t
HL-t | by E
— Hence, for any affine f():
0= 2 1)+~ £
t) = t)+ t
t27t1 : t27t1 :
) ty -t =ity
since + —1— -
t27t1 t27t1

Example of Affine Mapping

e Given g(z) =3z+2 and X +\ =1

* We can show:
g(Aozo + Mz1) = 3(Aozo + Aizy) + 2
= 3XoTo + 3N zy + 2(Ag + Ay)
= Ao(3z0 + 2) + Ay (32, + 2)

= Xog(zo) + Aig(z1),

Parameterised line segment
t between [0,1]
P(t) =Py (1-t) +t P,
P(t)

—
Py

P,

We can generalise to t in the range t, to t, (prev. slide)

How to generalize to non-linear interpolation?




Symmetric Multi-Affine Maps

» 2-parameter version defined as:
—f(t,t) =co + cq ty +Cy by + Ca oty (symmetry: c,=c,)
» Properties
— Affine separately on each of its arguments
f(o ", + 0,7, t) = At t) + 0™ty t)
f(ty, 001, + 0, 10) = ag™(ty,ta) + ap*f(t,t)

— Symmetry: Any permutation of the arguments results in
the same value

f(ty.ty) = f(to,ty)
» Can be extended to more parameters!

Example

« Given f(z,y) =zy+3
+ Symmetry: f(z,y) =zy+3=yz+3 = f(y,2)

o Affine: f(azo+bz1,y) = (azo + bz )y +3
= azoy +bry + (a+b)3
= af(z0,y) + bf(z1,9),

provided a+b=1.

Diagonalization of Symmetric Multi-Affine
Maps
* Multi-Affine Map defined
— on hyper-cube [0,1]", for n-variables
* In 2-parameter case:
— on square-domain [0,1]2
+ Diagonalization: all arguments take same value
— F(t) := f(t,t) = c0 + (c;+C,) t + ¢5 12
» New function F(t)
— Defined on diagonal of original domain




Blossoming theorem

+ Strong connection between multi-affine maps and
polynomials

+ Every n-argument multi-affine map has a
unique n-th degree polynomial as its diagonal

» Every n-th degree polynomial corresponds to a
unique symmetric n-argument multi-affine map,
that has this polynomial as its diagonal

* The multi-affine map is called blossom (or polar
form)

Interpolation (through Diagonal)

* Recall interpolation on affine maps

t-t ft) t-t )
t)+ t
t27tl : t27tl :

fit) =

» Consider t € [r,s] in the 2-parameter case

S

-t t-1

f(r,t) = f(r,r)+ —f(1,9)
s—1 s—r
s-t t-r

ft,s) = f(r,s) + f(s,s)
s—r s—r
s-t t-r

f(t,t) = fr,t) + f(s,t)
s—r s—r

De Casteljau triangles

+ Solution for f(t,t)

f(r,r) f(r,s) f(s,s)

VAV

f(r,t) f(t,s)

fit,t)




Can be extend to degree n

+ Solution for f(t,t,t)

f(r,r,r) f(r,r,s)  f(r,s,s) 1(s,s,8)

VAV

f(r,r,t) f(r,t,8) f(t,8,)

f(r,t,t) f(s,t,t)

N/

fit,tt)

Bézier curves

» Use it to define Bézier curves:
f(t1,t2) = (X(t1,t2), y(t1,t2)) [= two f, one for each dim.]

» Given 3 points:
Py = f(r.r) pi=f(rs)  py=f(s;s)

* Interpolation by f(t,t) for any value of t.
« All points given by f(t,t) will lie on a curve
(2nd degree Bézier curve)

Three control points (quadratic Bézier)

* Po» P1: P2
Py f{r,s) o (s o
) f(t,t) £(s,s)

Po f(r,r)




Three control points (quadratic Bézier)

PP,

." on

With four control points (cubic Bézier)
* Pos P1, P2, P3
f(r,r,s) f(r,t,s) f(r,s,5)
Pt ———— P2
fr,tt \ f(s,t,) \\
f(r,r,t) fitt.0) \ f(t,s,s)
t
Po P3
f{r,r,r) f(s,s,s)

With four control points (cubic Bézier)

0P3
PO t=0

10



Demo...

Properties for 3rd- degree Bézier curves

+ End-points p, = P(r) and p; = P(s)

+ Invariance of shape when change on the
parametric interval (affine transformation)

» The curve is bounded by the Convex hull given by
the control points

+ An affine transformation of the control points is the
same as an affine transformation of any points of
the curve

Properties for 3rd- degree Bézier curves

« If the control points are on a straight line, the
Bézier curve is a straight line

» The tangent vector of the curve at end points are
(for t=0 and t=1)
= P'(r) = 3(p1-po)
= P'(s) = 3(ps-p2)

11



Polynomial form of a Bézier curve

* Restriction to interval [0,1]

 2nd degree
— f(0,t) = (1-t) f(0,0) + t f(0,1) = (1-t) Py + t P,
— f(t,1) = (t-1) f(0,1) + t f(1,1) = (1-t) P, + t P,

— F(t) = f(t,t) = (1-4) f(0,1) + t f(t,1)
= (142 P, + 2t(1) P, + 2P,

— Using the equation for interpolation

Polynomial form of a Bézier curve

3 degree

— f(t,t,t) = (1-0)3£(0,0,0) + 3t(1-t)2f(0,0,1)
+3(1-)22f(0,1,1) + £3f(1,1,1)
= (1-4)3 Py + 3t(1-t)2 P, + 3(1-t)2P, + 13 P,

Basis Functions

12



Other way of seeing a Bézier curve

» We drive the position on a curve using a
parameter u (for 2D or 3D):

Q(u) = (x(u), y(u))

u=0

Four control points and [0,1]

* If we restrict t between [0,1], polynomial form:
— f(t,t,t) = (1-t)3 f(0,0,0) + 3t(1-t)2f(0,0,1) +
3(1-1)t21(0,1,1) + 3(1,1,1)
= (1-4)3 Py + 3t(1-t)2 P, + 3(1-t)2P, + 3P,
» Which can be re-written in a more general case:
— Q(u) = (x(u), y(u) ) = Z P, B(u) , where

n!

u(1-u)m H il(n-i)!

Bi(w) = !

i

Bernstein basis

u) =3 u? (1-u)

13



Bernstein basis

+ By(u) are called Bernstein basis functions

n

Bw= | | u (-

* For 3 degree:
Bi(8) = (1 — 6% By(t) = 3¢(1 — ©)%; Ba(t) = 3¢%(1 — £); By() = £
* Property

— Any polynomial can be expressed uniquely as a linear
combination of these basis functions

Higher-Order Bézier Curves

* >4 control points
» Bernstein Polynomials as the basis functions

o Al — .
Bt) = ———#i(1 — )", 0<i<n

(n —3)!

+ Every control point affects the entire curve
— Not simply a local effect
— More difficult to control for modeling

Tangent vectors

» Fortin [0,1], consider
— F(t) = f(t,tt) = (143 Py + 3t(1-42 P, + 3(1-)2 P, + 3P,
- F(0)=3 (P,-Py)
= F'(1) =3 (P3-Py)

+ In general, for a Bézier curve of degree n:
= F'(0) = n (P4-Py)
= F(1)=n(P-P,4)

14



From polynomials, to blossoms, to
control points

Problem

o F(t) = (X(1), Y(t)) = (1+3t2-t3, 1+3t-t3)
» Degree?
+ Control points?
« F(t) = (x(t,t,t), y(t,t.t)
— X(ttoty) = 2
=¥ttty =72
=Pe=( . ) Pi=( )
P=( . ) Pa=( , )

Blossoming
» Easy, when paying attention to symmetry
» For our example:

— x(tt,t) = 1+3t2-3

= X(tytuts) = 1+ 3%(toty + ity + tob)/3 — tg"t"t,

~ (Lt = 14368
= Y(tutoty) = 1+ 3%t + 4 + 1)3 - t*t*t,




Deriving control points

* In general
- Py =(x(0,0,0), y(0,0,0) )
- P, =(x(0,0,1), y(0,0,1) )
- P,=(x(0,1,1), y(0,1,1) )
- Py=(x(1,1,1), y(1,1,1) )
» For our example
-Py=(1,1)
-P,=(1,2)
- P, =(2,3)
- P;=(3,3)

Example

 How to derive 2"-degree Bézier control points for
parabola: y=x2 ?

* Let's tryit!

Joining Bézier curves

* Better to join curves than raise the number of
controls points

— Avoid numerical instability
— Local control of the overall shape

16



Joining Bézier curves

* P,P, defines a tangent to the curve at P,

» Tangent is common requirement to join two Bézier
curves together (with control points Py 5, Qq._3)
» This requires:
— The points P; equals Q,
— Tangents to be equal
* le., P53 (=Qy), P,, Q, are collinear
— Called C, continuity (1st derivative is continuous)
— C,: only positions are continuous (i.e. P; = Q;)

Joining Bézier curves

Py P2 Q,

Q, &

Asymmetric: Curve goes
through some control points
but misses others

Conclusions

* ltis possible to define and draw a curve with a
discrete representation

» All is needed are control points and interpolation
strategy

* We have scene Bézier curves
— From the DeCasteljau representation
— From the Bernstein basis




Rational Bézier Curves

« Bézier curves cannot represent

many shapes xif = = "'\
— E.g., no matter how high the degree 1+¢
a Bézier curve cannot represent a S
quadrant of a circle. Wi = P13
« Rational Bézier curves provide a ’ 137
more powerful tool te[0.1]

* The example shows how a circle
can be exactly represented by
the ratio of polynomials

* (Ex —find the corresponding
Bézier control points for
numerator and denominator!)

Rational Bézier Curves

» To define a rational BC we
attach a ‘weight’ w;>0 to
each control point. n

Note if all the weights are 2 pwB, (1)
p(1) ==

equal then this is the same
as a normal Bézier curve.
« The weights act as 2 w,B, (1)
‘atractors’ — the greater the =
weight the more the curve
is pulled towards the
corresponding point.

Conclusions

» Rational Bézier Curves more powerful!




