Speeding Up Ray Tracing

©Anthony Steed 1999, Celine Loscos 2005,
Jan Kautz 2007-2009

Optimisations

* Limit the number of rays
» Make the ray test faster
— for shadow rays
« the main drain on resources if there are several lights
— for primary rays
— for all rays

Over 90% of the cost of ray tracing is in ray-object
intersection tests

Ray Tracing Acceleration

.

Intersect ray with all objects

— Way too expensive

Faster intersection algorithms
— Little effect

« Less intersection computations

— Space partitioning (often hierarchical)
« Grid, octree, BSP or kd-tree, bounding volume hierarchy (BVH)

Optimisation for Shadow Rays

* Problem with shadow rays is that for every intersection
we trace an additional N rays for each light

Optimisation for Shadow Rays: Light Buffer

» Enclose light in a box.
+ Cells of box faces store objects

Construction (2D Analogue)

C1-<NULL> C2-A,B,C
C3-A C4 - <NULL>

Using the Light Buffer

» Check intersection of ray with polygons stored in cell
» Case with object itself...

L4

[1

C6 — Objects O,, O,, O5

Optimisation for Primary Rays

Eye

Screen

Optimisation for Primary Rays

» Use a z-buffer!

* Instead of writing colour write an object identifier

— Easy to support in OpenGL - turn off lighting, do flat shading
and encode object id within 24bit colour

Difficult technique to use elsewhere because rays are

no longer spatially coherent and evenly spaced

Optimisation for Primary Rays

Screen

ID ‘stored in buffer

Optimisation for General Rays

» Techniques to use
— bounding volumes
— hierarchical bounding volumes
— space subdivision
« regular
+ adaptive
— ray coherence

Bounding Volume

» Find a tight bounding ‘ Axis Aligned
volume and use it for Bounding Box
a first reject test = (AABB)

« If hit volume then test
full object

Bounding Box

Bounding
Sphere

Fast BV Tests (AABB)

» Box-Ray test (when box planes parallel to axes)
— a box is three sets of parallel planes, each set orthogonal to
the other two,
— ray defined by q(t) = q, + t.dq
« Calculate t,q,, for each of the three plane pairs
« find max of the 3 t,.
« Calculate t;,, for each of the three plane pairs
« find min of the 3t
— If max t,.,, is greater that min t,, then the box is not
intersected

Fast BV Tests (AABB, 2D case)

e = e
D 5

)
*

tary

A

Choosing a Volume

» Choice depends on the cost of the test and the fit of
the shape
— The “void” area can be very large

+ More efficient fitting shapes are possible (this is still a
research area e.g. k-dops)

Bounding Volume Hierarchy

+ Organise a hierarchy of bounding volumes
— Bounding volumes of bounding volumes

r2
1

Bounding Volume Hierarchy

+ Organise a hierarchy of bounding volumes
— Bounding volumes of bounding volumes
r2

r1 m
| \@

r, tests with A+B, then Aand B

r, tests with C and D+E, then D and E

Choosing a BVH

» Scene graph might not map to a decent space
partitioning
— Group BVs based on actual proximity rather than scene
graph position

* You could e.g., sort the BVH using a BSP tree ...

Bounding Volume Hierarchy

» Advantages:
— Very good adaptivity
— Efficient traversal O(log N)

* Problems
— How to arrange BVs?

Regular Spatial Subdivision (Grid)

* Regular 3D grid of “voxels”
+ In each voxel, store the list of objects that intersects

with the voxel
H—I\ [
A

—L A

=1

Regular Spatial Subdivision

» Ray traverses the regular grid
» For each traversed voxel, intersection test with stored

objects
HES NN
A

4

RSS: Issues

* Grid traversal

— Requires enumeration of voxel along ray - 3D-DDA
— Simple and hardware-friendly

 Grid resolution

— Strongly scene dependent

— Cannot adapt to local density of objects
« Problem: ,Teapot in a stadium*

— Possible solution: hierarchical grids

RSS: Issues

+ Objects in multiple voxels
— Store only references
— Use mailboxing to avoid multiple intersection computations

« Store (ray, object)-tuple in small cache (e.g. with hashing)
« Do not intersect if found in cache

— Original mailbox uses ray-id stored with each triangle
« Simple, but likely to destroy CPU caches

Adaptive Spatial Subdivision

» The octree idea (illustrated with a quadtree!)

1.

Quadtree Definition

Root quad

NW NE
NW sSwW NE SE

sSw SE

Building a Quadtree

Root quad

NW sSwW NE SE

AR
= o~
PN

« Split recursively each quad into 4

Building the Octree: 3D representation

» Recursively split the cells
into eight, until each cell

meets some criteria .
— e.g. “only one object

intersects each cell”)

Octree Representation

Advantage is clear - cells are not wasted on void areas
Disadvantage:
— Doesn’t build on object shape
« Object can belong to different branches of the tree
« Split to isolate the object can be too fine
— Cost to traverse can be high

Octree Drawbacks: Example

Root quad

@5 | N AN

Tracing an Octree

» Find octree voxel containing
start point (q,) or find 1

intersection (1) of ray with cube .

that surround the octree

R: Find (I) in the octree

— itis moved a little along the ray to /‘
fall inside a cube

Intersect ray with faces of the

cube it is in,

» Find the intersecting point when
the ray exit the voxel

* Repeat at R until ray out of the
whole volume \

.

KD-Tree

« Similar to octree, but orthogonal splitting planes are
chosen to provide a good search tree

O Q Split based on
O balancing object
numbers and
Q minimising volume
disparity

BSP Tree

» Generalisation of the kd-tree (which is a generalisation
of an octree)

» Choosing your BSP tree is hard!

» Can be done by finding a plane that separates the
objects in two equal sets, and applying the subdivision
recursively

Traversing a BSP tree

» BSP-Raylintersect(Ray, Node)
— Test if ray interval empty or no more node
— If node is a leaf, intersect ray with objects
— Else
« Clip ray to near side of the plane (RayNear)
« BSP-Raylntersect(RayNear, Node->near)
« If (no intersection)
— Clip ray to far side of the plane (RayFar)
— BSPIntersect (RayFar, Node->far)

Conclusion

» Several can be applied for accelerating the ray
intersection tests with the scene

» Some are specific to rays from light source or
viewpoints

* Some are more general

» Choosing a good scene partitioning is crucial, but
depends on the scene structure

» Need a good trade off between scene partitioning and
traversal efficiency (and memory cost)

