
Speeding Up Ray Tracing

©Anthony Steed 1999, Celine Loscos 2005,
Jan Kautz 2007-2009

Optimisations

•  Limit the number of rays
•  Make the ray test faster

–  for shadow rays
•  the main drain on resources if there are several lights

–  for primary rays
–  for all rays

Over 90% of the cost of ray tracing is in ray-object
intersection tests

Ray Tracing Acceleration

•  Intersect ray with all objects
–  Way too expensive

•  Faster intersection algorithms
–  Little effect

•  Less intersection computations
–  Space partitioning (often hierarchical)

•  Grid, octree, BSP or kd-tree, bounding volume hierarchy (BVH)

Optimisation for Shadow Rays

•  Problem with shadow rays is that for every intersection
we trace an additional N rays for each light

r

l0

l1

Optimisation for Shadow Rays: Light Buffer

•  Enclose light in a box.
•  Cells of box faces store objects

Construction (2D Analogue)

A

B

C1 - <NULL> C2 - A, B, C

C3 - A C4 - <NULL>

C1

C2

C3

C4

C

Using the Light Buffer

•  Check intersection of ray with polygons stored in cell
•  Case with object itself…

C6 – Objects O1, O2, O3

Optimisation for Primary Rays

A

B C

Eye

Screen

Optimisation for Primary Rays

•  Use a z-buffer!
•  Instead of writing colour write an object identifier

–  Easy to support in OpenGL - turn off lighting, do flat shading
and encode object id within 24bit colour

•  Difficult technique to use elsewhere because rays are
no longer spatially coherent and evenly spaced

Optimisation for Primary Rays

A

B C

Eye

Screen

ID stored in buffer

ID A

ID B

ID C

Optimisation for General Rays

•  Techniques to use
–  bounding volumes
–  hierarchical bounding volumes
–  space subdivision

•  regular
•  adaptive

–  ray coherence

Bounding Volume

•  Find a tight bounding
volume and use it for
a first reject test

•  If hit volume then test
full object

Axis Aligned
Bounding Box

(AABB)

Bounding Box

Bounding
Sphere

Fast BV Tests (AABB)

•  Box-Ray test (when box planes parallel to axes)
–  a box is three sets of parallel planes, each set orthogonal to

the other two,
–  ray defined by q(t) = q0 + t.dq

•  Calculate tnear for each of the three plane pairs
•  find max of the 3 tnear
•  Calculate tfar for each of the three plane pairs
•  find min of the 3 tfar

–  If max tnear is greater that min tfar, then the box is not
intersected

Fast BV Tests (AABB, 2D case)

tnearx

tfary

tfarx

tnearx

tneary

tfarx

Choosing a Volume

•  Choice depends on the cost of the test and the fit of
the shape
–  The “void” area can be very large

•  More efficient fitting shapes are possible (this is still a
research area e.g. k-dops)

Bounding Volume Hierarchy

•  Organise a hierarchy of bounding volumes
–  Bounding volumes of bounding volumes

r1
r2

A

B

C

D E

F

Root

A+B

A B

C D+E

D E

F

Bounding Volume Hierarchy

•  Organise a hierarchy of bounding volumes
–  Bounding volumes of bounding volumes

r1 tests with A+B, then A and B

r2 tests with C and D+E, then D and E

r1
r2

A

B

C

D E

F

Root

A+B

A B

C D+E

D E

F

Choosing a BVH

•  Scene graph might not map to a decent space
partitioning
–  Group BVs based on actual proximity rather than scene

graph position

•  You could e.g., sort the BVH using a BSP tree ...

Bounding Volume Hierarchy

•  Advantages:
–  Very good adaptivity
–  Efficient traversal O(log N)

•  Problems
–  How to arrange BVs?

Regular Spatial Subdivision (Grid)

•  Regular 3D grid of “voxels”
•  In each voxel, store the list of objects that intersects

with the voxel

Regular Spatial Subdivision

•  Ray traverses the regular grid
•  For each traversed voxel, intersection test with stored

objects

RSS: Issues

•  Grid traversal
–  Requires enumeration of voxel along ray 3D-DDA
–  Simple and hardware-friendly

•  Grid resolution
–  Strongly scene dependent
–  Cannot adapt to local density of objects

•  Problem: „Teapot in a stadium“

–  Possible solution: hierarchical grids

RSS: Issues

•  Objects in multiple voxels
–  Store only references
–  Use mailboxing to avoid multiple intersection computations

•  Store (ray, object)-tuple in small cache (e.g. with hashing)
•  Do not intersect if found in cache

–  Original mailbox uses ray-id stored with each triangle
•  Simple, but likely to destroy CPU caches

Adaptive Spatial Subdivision

•  The octree idea (illustrated with a quadtree!)

Quadtree Definition

Root quad

NW
NW NE

NE

SE SW

SW SE

Building a Quadtree

•  Split recursively each quad into 4

Root quad

NW NE SW SE

Building the Octree: 3D representation

•  Recursively split the cells
into eight, until each cell
meets some criteria
–  e.g. “only one object

intersects each cell”

Octree Representation

•  Advantage is clear - cells are not wasted on void areas
•  Disadvantage:

–  Doesn’t build on object shape
•  Object can belong to different branches of the tree
•  Split to isolate the object can be too fine

–  Cost to traverse can be high

Octree Drawbacks: Example

Root quad

NW NE SW SE

Tracing an Octree

•  Find octree voxel containing
start point (q0) or find
intersection (I) of ray with cube
that surround the octree

•  R: Find (I) in the octree
–  it is moved a little along the ray to

fall inside a cube
•  Intersect ray with faces of the

cube it is in,
•  Find the intersecting point when

the ray exit the voxel
•  Repeat at R until ray out of the

whole volume

I

q0

KD-Tree

•  Similar to octree, but orthogonal splitting planes are
chosen to provide a good search tree

Split based on
balancing object
numbers and
minimising volume
disparity

BSP Tree

•  Generalisation of the kd-tree (which is a generalisation
of an octree)

•  Choosing your BSP tree is hard!
•  Can be done by finding a plane that separates the

objects in two equal sets, and applying the subdivision
recursively

Traversing a BSP tree

•  BSP-RayIntersect(Ray, Node)
–  Test if ray interval empty or no more node
–  If node is a leaf, intersect ray with objects
–  Else

•  Clip ray to near side of the plane (RayNear)
•  BSP-RayIntersect(RayNear, Node->near)
•  If (no intersection)

– Clip ray to far side of the plane (RayFar)
–  BSPIntersect (RayFar, Node->far)

Conclusion

•  Several can be applied for accelerating the ray
intersection tests with the scene

•  Some are specific to rays from light source or
viewpoints

•  Some are more general
•  Choosing a good scene partitioning is crucial, but

depends on the scene structure
•  Need a good trade off between scene partitioning and

traversal efficiency (and memory cost)

