Binary Space Partition Trees

©Anthony Steed, Yiorgos Chrysanthou 1999-2003,
Celine Loscos 2003, Jan Kautz 2007-2009

Overview

» Previous list priority algorithms fail in a number of
cases, non of them is completely general

» BSP tree is a general solution, but with its own
problems
— Tree size
— Tree accuracy

Binary Space Partitioning Trees
(Fuchs, Kedem and Naylor "80)
More general, can deal with inseparable objects
Automatic, uses partition planes defined by the
scene polygons
Method has two steps:
building of the tree independently of viewpoint

traversing the tree from a given viewpoint to get visibility
ordering

Binary Space Partitioning Trees

» BSP tree: organize all of space (hence partition)
into a binary tree

— Preprocess: overlay a binary tree on objects in the
scene

— Runtime: correctly traversing this tree enumerates
objects from back to front

— ldea: divide space recursively into half-spaces by
choosing splitting planes

« Splitting planes can be arbitrarily oriented

Building a BSP Tree (Recursive)

o~ 7
N A s

The tree is empty at first

A set of polygons {1, 2, 3, 4, 5, 6}

Building a BSP Tree (Recursive)

~,

N 4

4~ co-planar with root
36 P

front set back set

2/,
-

: e £ i
u}\ 3% y {29,{ }Jb,ﬂ

Select one polygon and partition the space and the polygons

Building a BSP Tree (Recursive)

A\’/‘)7 5/23 2h/4\

1

Recursively partition each sub-tree until all polygons are used up

Building a BSP Tree (Recursive)

« Start with a set of polygons and an empty tree
» Select one of them and make it the root of the tree
» Use its plane to divide the rest of the polygons in 3
sets:
— Front, back, coplanar
— Any polygon crossing the plane is split
* Repeat the process recursively
— with the front and back sets
— creating the front and back subtrees respectively

Building a BSP Tree (Incremental)

« Start with a set of polygons and an empty tree

* Insert the polygons into the tree one at a time

— Insertion is done by comparing it against the plane at
each node, and

— propagating it to the correct side, splitting if necessary

When the polygon reaches an empty cell, make a
node with its supporting plane

Results depends on insertion order

Building a BSP Tree (Incremental)

* Randomly start with a
polygon, e.g., #3

Building a BSP Tree (Incremental)

* Randomly, select next
polygon, e.g., #2, insert
into tree

b\ }()5/ Za/ \Zb

(left: front, right: back)

Building a BSP Tree (Incremental)

* Nextone: #4

b\ }(| 23/3\2[)
Fox E

&7 J

(left: front, right: back)

Building a BSP Tree (Incremental)
* Next one: #5

1

b\ }()5/ Za/ \Zb

Ty J u

(left: front, right: back)

Building a BSP Tree (Incremental)

« Last one: #1

(left: front, right: back)

BSP Tree Traversal

* Why is a BSP tree useful at all?

— Enumerate all polygons back-to-front for given
viewpoint
— (Use to accelerate ray-tracing)

» Java demo at:
— http://www.symbolcraft.com/graphics/bsp/

BSP Tree Traversal

* How do we traverse the tree back to front for a
given viewpoint?
— Viewpoint given as position
* Recursive traversal:
— If viewpoint is in front of plane (node)
« Traverse its back first, then front
— Otherwise
« Traverse its front first, then back

Back-to-Front Traversal

void traverse_btf (Tree *t, Point vp)
{

if (t == NULL) return;

endif

if (vp in-front of plane at root of t)
traverse btf (t->back, vp);
draw polygon of node t;
traverse btf; (t->front, vp);

else
traverse btf (t->front, vp);
draw polygon of node t;
traverse btf (t->back, vp);
endif -

Back-To-Front Traversal for Given Direction

» Camera point as dynamic classification point
+ Traversal order:

— parts behind the plane (w.r.t. direction) mﬂ‘/@\gm
— polygon of the plane m/’é\m O
— parts in front of the plane (w.r.t. direction) GO @
3 o, =
e }5
NeEs
, |
f R

White numbers indicate drawing order. *

BSP as a Hierarchy of Spaces

Each node corresponds to a region of space
the root is the whole of R"
the leaves are homogeneous regions

Representation of Polygons

Representation of Polyhedra

out in (occluded)

BSP Trees for Dynamic Scenes

» When an object moves the planes that represent it
must be removed and re-inserted

» Some systems only insert static geometry into the
BSP tree

» Otherwise must deal with merging and fixing the
BSP cells (see the book!)

Recap

» A BSP is a sequence of binary partitions of space
» Can be built recursively or incrementally
» Choice of plane used to split is critical

» BSP trees are hard to maintain for dynamic
scenes

