Coping with Depth

Jan Kautz

©Anthony Steed 1999, Celine Loscos 20002005, Jan Kautz 2006-2009

Rasterization Pipeline Reminder

Visible Surface Determination

l Uishting

Introduction

* One way is with ray tracing:

— Trace a ray from each pixel, and intersect it with
the polygons of the scene

— Problem: This is expensive
* We are looking for methods
— that project the polygons on the window

— then decisions on the pixel colour are
made in the image space

Overview

* AET and depth
» Z-Buffering
» Z-Correct Depth Interpolation

TODO:

* Add painter’s algorithm!

Coping with depth

* When all polygons are projected on the screen, they
may overlap
* Need to know which one is in front of the others
¢ There are several methods to treat this
— Scan-line depth buffering
— Z-buffer
— Trade-offs
* Zstands for the depth

Scan-line depth buffering:
Extending the AET

* Easy enough if polygons do NOT intersect

* Put all polygon edges into ET with extra depth
information and proceed as before except ...

* ... now consider overlapping ranges of edges

Representation of the edges

* Each edge is represented by four elements
now:

dx
s X, t
(, ldyp)

* ptis a pointer to information about the
polygon (plane equation, shading, ...)

AET Example

Polygons A B,C are such that A is in front of
B which is in front of C.

AET Example Notes

* QOur edge table must contain data which
enables us to look up z at an intersection point

* From x1 to x2 only A is considered.

* At x2, A and B are considered
— plane equations are solved to get depth at (x2, i)
— Ais closest so x2 to x3 is filled as A

* At x3 A finishes so we draw B from x3 to x4

* At x4 B and C are considered, B in front etc...

Method analysis

* Drawbacks
— Sorting is required and added to the AET
— If the number of polygons is high, the z-
computation will be costly
* Acceleration
— Would usually store the scanning in a 1D BSP tree
for large numbers of polygons!
— Exploit coherence (assume similar overlapping at y
+1)
— Pre-order the polygons (no need to compute the
depth calculations)

Z-Buffer

* Don’t bother with per span tests - just test
every pixel

* In addition to frame buffer (R, G, B)
* Store distance to camera (z-buffer)

Z-Buffer

* Most common usage is a full window sized
array ZBUF (M*N) of 16, 24 or 32 bit “depth”
values

* Basicidea:

— Initialise Z-Buffer to Z_MAX
— For each polygon
* Point (x,y,z) of the polygon projects on pixel (xs,ys) and
has colour col associated

* If z< ZBUF[x,y] then set CBUF[x,y] = col, ZBUF[x,y] = z
else do nothing

Z-Buffer

* Works for hard cases

Polygon scan-line renderer

* We can do this in several ways
* 1D z-buffer re-used on each scan line
— Process each polygon with separate AET

— Or use as adjunct to extended AET for multiple
polygons

* Problems with z-buffer...
— Aliasing on depth (z-buffer tearing)

Scanning Depth into the Z-Buffer

* Now we have to write a z-value for each point
— directly from plane equation (re-calculate for each
point)
— incremental across the scan-line (store z_start and
dz)
— Interpolate
* We will look at this in more detail!

Interpolating Depth

2~ 2y

* Interpolate z along edges dz, = —=-
Y=V
* AND interpolate between 7 _z
edges on each scan-line dz, = !
(bi-linear interpolation) Y

(X2 Y,,2,)
(x,¥1,2) (x,,,,2,)
(X4, V5525)

Z-Buffer Fill Example

. N ¢ General form of ET

6 — (y2,x1,dx/dy, z1,dz/dy)
5 | .« ET[1]=

4 | — ac(7,3,1/6, 1,3/6)

3 | /,‘ — ab (4,3,4/3,1,1/3)

: . ET[4] =

0 a — ¢b (7,7,-3/3, 2,2/3)

012345678

a=(3,1,1) b=(7,4,2) c=(4,7,4)

...Contents of AET

* Scanline y=1
C. — ac(7,3,1/6, 1,3/6)
— ab (4,3,4/3,1,1/3)
— zspans1tol
. y:Z
— ac(7,3.166,1/6, 1.5,3/6)

[t—

— zspans 1.5to01.333
. y=3
0123450678 — ac(7,3.333,1/6, 2.0,3/6)

C o w e =

a

— ab (4,4.333,4/3,1.333,1/3)

— ab (4,5.666,4/3, 1.666,1/3)

— zspans 2 to 1.666

Interpolating Depth

* Interpolating z linearly along scan-line is
incorrect!

* Why is that?
— Projection of a point onto screen is done with

non-linear projection matrix (remember: 1/(z+1)

factor)
— Must take that into account

Perspective Correct Depth Interpolation

«— 5 A (X). Zy). attribute = [,

C (X,. Z,). attribute = I,

«——Ilinc AB

sirtus - 1=t

virtual bl d)| T

camera Tl IN

0.0) . B (X,, Z»). attribute = I,
image

plane 0<s<1, 0<r<1

¢ Given this scenario, can write down

equations and see that we need to linearly

interpolate 1/z (and not z)

Perspective Correct Depth Interpolation

* By similar triangles we have:

X, _u w7,

e D g el By

7, d ' M
X, _u, yZ,

Z' = d— = X1 :T 2)
X, u dX

Lr-Ds Z, =—r 3
Z d " @

Perspective Correct Depth Interpolation

By linearly interpolating in the image plane (or screen space), we
have

ug=up+s(uy —up). 4)
By linearly interpolating across the primitive in the camera
coordinate system, we have

X, =X, +1(X,- X)), (5)

Z,=7Z+1(Z,-Z)), (6)
Substituting (4) and (5) into (3),

:[’(XI+I(X1_XI))A

ZV
g+ 5(uy —1ty)

(M

Perspective Correct Depth Interpolation

Substituting (1) and (2) into (7),

d wZ, +r 2, wZ,
d d d

g +s(uy —uy)

Z =

'
gz +tuyZy, —uZ))) ®)
iy +s(uy —uy)
Substituting (6) into (8),
wZy +1uy 2, —uZ)) |

Z,+1(Z,=27,)=
-)+ s(uy —uy)

)

Perspective Correct Depth Interpolation

which can be simplified into

sZ,

f=—
sZy+(1=5)Z, ao

Substituting (10) into (6), we have

sZ,

Z, =2\ +—————(2,-2Z))"
o .&Z,+(1—,S)Zz(274) an
which can be simplified to
47 ll I
N (12)
z, |z, z

Perspective Correct Depth Interpolation

* Thus we only need to linearly interpolate
between 1/z values:

IR a
7z, 'z, z

Trade-Offs

* Z-Buffer can be inaccurate with few bits
— really simple to implement though!

* Scan-line AET good for large polygons
— good coherency across lines
— requires non-intersecting polygons

» Z-Buffer good for small, sparse polygons
— AET more time consuming to maintain

* Rasterization

Recap

— Z-Buffer for visibility

— Need to do perspective correct rasterization

10

