Rasterising Polygons

©Anthony Steed 1999-2003. Jan Kautz 2006-200

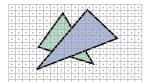
Rasterization Pipeline Reminder Projection Clipping Visible Surface Determination Rasterization Lighting Shadows

Overview

- What's Inside a Polygon
- Coherence
- Active Edge Tables
- Illumination Across Polygons

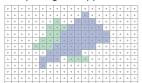
2D Scan Conversion

- Primitives are continuous; screen is discrete
 - Well, triangles are described by a discrete set of vertices
 - But they describe a continuous area on screen



2D Scan Conversion

- Solution: compute discrete approximation
- Scan Conversion (Rasterization): algorithms for efficient generation of the samples comprising this approximation



Naïve Filling Algorithm

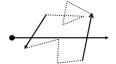
- Find a point inside the polygon
- Do a flood fill:
 - Keep a stack of points to be tested
 - When the stack none empty
 - Pop the top point (Q)
 - Test if Q is inside or outside
 - If Inside, colour Q, push neighbours of Q if not already tested
 - It outside discard
 - Mark Q as tested

Critique

- Horribly slow
 - Explicit in/out test at every point
 - But still very common in paint packages!
- Stack might be very deep
- Need to exploit **TWO** types of coherency
 - Point coherency
 - Scan-line coherency

Recall Infinite Ray Test

- Shoot infinite ray from point
- Count the number of intersections with the boundary



Counting Boundaries

- If the shape is convex
 - Just count total number of intersections:
 - 0 or 2 (outside)
 - 1 (inside)
- Concave: Non-Zero Rule
 - Any number of intersections is possible, but if you just count the total you can not tell if you are inside or outside
 - Count +/-1 and use either the odd-even or non-zero rule

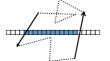
Infinite Ray Test - Rules

- Draw a line from the test point to the outside:
 - +1 if you cross anti-clockwise
 - -1 if you cross clockwise

Non-zero

Point Coherency

- Ray shooting is fast, but note that for every point on one scan line the intersection points are the same
- Why not find the actual span for each line from the intersection points?



Scan-Line Coherency

• Intersection points of polygon edges with scan lines change little on a line by line basis

$$y_i = ax_i + b$$

$$x_i = x_{i-1} + \frac{1}{\alpha}$$

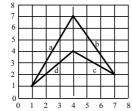
Overview of Active Edge Table

- For each scan-line in a polygon only certain edges need considering
- Keep an **ACTIVE** edge table
 - Update this edge table based upon the vertical extent of the edges
- From the AET extract the required spans

Setting Up

- "fix" edges
 - make sure y1<y2 for each (x1,y1) (x2,y2)
- Form an ET
 - Bucket sort all edges on minimum y value
 - 1 bucket might contain several edges
 - Each edge element contains
 - (max Y, start X, X increment)
 - X increment = (x2-x1)/(y2-y1)

Example



Setup · Edges are Coordinates y1 (1,1) to (4,7) 1 (7,2) to (4,7) 2 Edge Label Structure (7,1, 0.5) (7,7, -0.6) (4,7, -1.5) (7,2) to (4,4) 2 (1,1) to (4,4) 1 d (4,1,1)• Edge Table Contains Reminder: ET element = (max Y, start X, X increment) Sequence of Edges (7,1,0.5), (4, 1, 1) (7,7,-0.6), (4, 7,-1.5) Maintaining the AET • For each scan line - Remove all edges whose y2 is equal to current line - Update the x value for each remaining edge - Add all edges whose y1 is equal to current line Drawing the AET • Sort the active edges on x intersection • Pairs of edges are the spans we require

Caveats

Don't consider horizontal linesMaximum vertices are not drawn

- Plenty of special cases when polygons share edges

On Each Line

Line	Active Edge Table	Spans
0	empty	
1	(7,1,0.5), (4,1,1)	1 to 1
2	(7,1.5,0.5), (4,2,1), (4,7,-1.5), (7,7,-0.6)	1.5 to 2, 7 to 7
3	(7,2.0,0.5), (4,3,1), (4,5.5,-1.5), (7,6.4,-0.6)	2.0 to 3, 5.5 to 6.4
4	(7,2.5,0.5), (7,5.8,-0.6)	2.5 to 5.8
5	(7,3.0,0.5), (7,5.2,-0.6)	3.0 to 5.2
6	(7,3.5,0.5), (7,4.6,-0.6)	3.5 to 4.6
7	empty	
8	empty	

Rasterization Pipeline Reminder

Gouraud Shading

• Recall simple model for local diffuse reflection

$$I = k_a I_a + k_d \sum_{i=1}^{N} I_{pi} \cdot (n \cdot l_i)$$

 $I=k_aI_a+k_d\sum\nolimits_{i=1}^{N}I_{pi}\cdot\left(n\cdot l_i\right)$ • Gouraud interpolates this colour down edges and across scan-lines (using barycentric combination)

Gouraud Shading Problems

Gouraud

Correct (Phong)

Gouraud Details

- ET now contains
 - (y2, x1,dx, z1,dz, r1,dr, g1,dg, b1,db)
 - (we are running out of registers!)

$$dr = \frac{r_2 - r_1}{x_2 - x_1}$$
 $dr = \frac{r_2 - r_1}{y_2 - y_1}$

- Problems
 - not constant colour on rotation of points
 - misses specular highlights

Phong Shading

• Phong lighting model:
$$I = k_a I_a + \sum_{i=1}^N I_{pi} \cdot \left((n \cdot l_i) k_d + (h_i \cdot n)^n k_s \right) - \text{Include specular component}$$

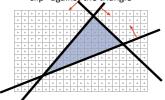
- Phong shading:
 - Interpolate normals across the scan-line instead of colours
 - Recaptures highlights in the centre of polygons

Is this really done in practise?

- Modern rasterisation works quite differently
- Reason:
 - GPU implementation of AET is very tricky
 - Triangles are a special case
 - Do not need generality of AET
- Start with a brute-force method and improve it...

Brute Force Solution for Triangles

- For each pixel
 - Compute line equations (half-space test) at pixel center
 - "clip" against the triangle



Half-Space Test Reminder

• For each edge compute line equation (analogue to plane equation):

$$L_i(x, y) = a_i x + b_i y + c_i$$

- If $L_i(x,y) > 0$
 - point in **positive** half-space
- If $L_i(x,y) < 0$
 - point in <u>negative</u> half-space
- If all $L_{1,2,3}(x,y) >= 0$ Point (x,y) is inside triangle!

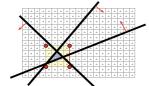
Brute Force Solution for Triangles • For each pixel - Compute line equations at pixel center - "clip" against the triangle Problem?

Brute Force Solution for Triangles

- For each pixel
 - Compute line equations at pixel center

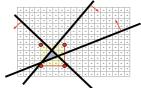
Brute Force Solution for Triangles

- Improvement: Compute only for the *screen* bounding box of the triangle
- How do we get such a bounding box?
 Xmin, Xmax, Ymin, Ymax of the triangle vertices



Rasterisation on Graphics Cards

- Triangles are usually very small
 - Setup cost are becoming more troublesome
- Clipping is annoying
- Brute force is tractable

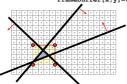


Rasterisation on Graphics Cards

For every triangle

ComputeProjection
Compute bbox, clip bbox to screen limits
For all pixels in bbox
Compute line equations
If all line equations>0 //pixel [x,y] in triangle

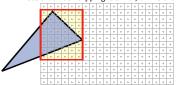
Framebuffer[x,y]=triangleColor



Rasterisation on Graphics Cards

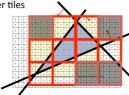
Compute bbox, clip bbox to screen limits
For all pixels in bbox
Compute line equations
If all line equations //pixelf.wj/mrinople
Framebuffer[xx,y]=triangleColor

Note that Bbox clipping is trivial, unlike triangle clipping



Rasterisation on Graphics Cards

- Further tricks:
 - Compute result of line equation incrementally
 - Similar to AET
 - Subdivide BBox into smaller tiles
 - Early rejection of tiles
 - Memory access coherence



Recap

- Active Edge Table Method
 - Implements a scan-line based fill method
 - Exploits point and scan-line coherency
- AET easily extended to support Gouraud and Phong shading
 - (Also visibility, shadows and texture mapping)
- Modern Rasterisation
 - More brute-force, easier to implement in hardware

Exercise

 Given the following triangle, use the half-space-based triangle rasterization to compute whether pixel (2,2), (2,3), (3,2), and (3,3) are inside our outside of the triangle.

