Rasterising Polygons

©Anthony Steed 19992003, Jan Kautz 2006-2009

Rasterization Pipeline Reminder

Visible Surface Determination

Overview

* What’s Inside a Polygon

* Coherence

» Active Edge Tables

¢ Illumination Across Polygons

2D Scan Conversion

* Primitives are continuous; screen is discrete

— Well, triangles are described by a discrete set of
vertices

— But they describe a continuous area on screen

NN
L D>
;A

2D Scan Conversion

 Solution: compute discrete approximation

* Scan Conversion (Rasterization):
algorithms for efficient generation of the samples
comprising this approximation

Naive Filling Algorithm

* Find a point inside the polygon
* Do a flood fill:

— Keep a stack of points to be tested
— When the stack none empty

* Pop the top point (Q)

« Test if Q is inside or outside

— If Inside, colour Q, push neighbours of Q if not already tested
— It outside discard

* Mark Q as tested

Critique
¢ Horribly slow

— Explicit in/out test at every point
— But still very common in paint packages!
* Stack might be very deep

Need to exploit TWO types of coherency
— Point coherency

— Scan-line coherency

Recall Infinite Ray Test

* Shoot infinite ray from point

¢ Count the number of intersections with the
boundary

Counting Boundaries

* If the shape is convex

— Just count total number of intersections:
« 0 or 2 (outside)
* 1 (inside)

* Concave: Non-Zero Rule

— Any number of intersections is possible, but if you just

count the total you can not tell if you are inside or
outside

 Count +/-1 and use either the odd-even or non-zero rule

Infinite Ray Test - Rules

* Draw a line from the test point to
the outside: Non-zero
—+1 if you cross anti-clockwise
—-1if you cross clockwise

Odd-Even

Point Coherency

* Ray shooting is fast, but
note that for every point
on one scan line the
intersection points are the
same

Why not find the actual
span for each line from
the intersection points?

Scan-Line Coherency

* Intersection points of polygon edges with scan
lines change little on a line by line basis

y;=ax,+b

Yig=ax_ +b

X, =X_ +—

Overview of Active Edge Table

For each scan-line in a polygon only certain edges
need considering
Keep an ACTIVE edge table

— Update this edge table based upon the vertical extent
of the edges

From the AET extract the required spans

.

Setting Up

* “fix” edges
— make sure y1<y2 for each (x1,y1) (x2,y2)
¢ FormanET
— Bucket sort all edges on minimum y value
— 1 bucket might contain several edges
— Each edge element contains

* (max Y, start X, X increment)
« Xincrement = (x2-x1)/(y2-y1)

Example
8
7
6
5 / 1\
. N\
s QN
> d c
1
0

Setup

* Edges are
Edge Label ~ Coordinates yl Structure
a (L) to(&,7) 1 (7.,1,0.5)
b (7,2)t0 (4,7) 2 (7,7,-0.6)
c (7,2)to (4,4) 2 (4,7,-1.5)
d (IL,L)to(44) 1 4,1, 1)

* Edge Table Contains

yl Sequence of Edges
1 (7,1,0.5), (4,1, 1)
2 (7,7,-0.6), (4, 7,-1.5)

Reminder: ET element =
(max Y, start X, X increment)

Maintaining the AET

* For each scan line
— Remove all edges whose y2 is equal to current line
— Update the x value for each remaining edge
— Add all edges whose y1 is equal to current line

Drawing the AET

Sort the active edges on x intersection
Pairs of edges are the spans we require

Caveats
— Don’t consider horizontal lines
— Maximum vertices are not drawn

— Plenty of special cases when polygons share edges

On Each Line

Line Active Edge Table Spans

0 empty

1 (7,1,0.5), (4,1,1) Itol

2 (7,15,0.5), (4,2,1), (4,7,-1.5), (7,7,-0.6) 1.5t02,7t07

3 (7,2.0,0.5), (4,3,1), (4,5.5,-1.5), (7,6.4,-0.6) 2.0t03,5.5t0 6.4
4 (7,25,0.5),(7,5.8,-0.6) 25t05.8

5 (7,3.0,0.5),(7,5.2,-0.6) 3.0t05.2

6 (7,3.5,0.5),(7,4.6,-0.6) 3.5t04.6

7 empty

8 empty

Rasterization Pipeline Reminder

Visible Surface Determination

+ T

Gouraud Shading
* Recall simple model for local diffuse reflection
N
Ik, +k, 3 1, (1)

¢ Gouraud interpolates this colour down edges and
across scan-lines (using barycentric combination)

Gouraud Shading Problems

Gouraud Correct (Phong)

Gouraud Details

* ET now contains
—(y2, x1,dx, z1,dz, r1,dr, g1,dg, b1,db)

* (we are running out of registers!)

=
dr=-—2—L dr=
Xy =X Ya=N

nh-h

* Problems
— not constant colour on rotation of points
— misses specular highlights

Phong Shading

Phong lighting model:
N
F=kd,+ S 1oLk, + (6 on)'k,)

— Include specular component

* Phong shading:
— Interpolate normals across the scan-line instead of
colours
— Recaptures highlights in the centre of polygons

Is this really done in practise?

* Modern rasterisation works quite differently
* Reason:
— GPU implementation of AET is very tricky

— Triangles are a special case
« Do not need generality of AET

 Start with a brute-force method and improve it...

Brute Force Solution for Triangles

* For each pixel

— Compute line equations (half-space test) at pixel center
— “clip” against the triangle

Half-Space Test Reminder

For each edge compute line equation (analogue to
plane equation):
L(x,y)=ax+by+c
IfLxy) >0
— point in positive half-space
IfLixy) <0
— point in negative half-space

If all L“ﬁ(x,y) >=()
— Point (x,y) is inside triangle!

Brute Force Solution for Triangles

* For each pixel
— Compute line equations at pixel center

— “clip” against the triangle

Problem?

Brute Force Solution for Triangles

* For each pixel
— Compute line equations at pixel center
— “clip” against the triangle
Problem?
If the triangle is small,
a lot of useless
computation

Brute Force Solution for Triangles

* Improvement: Compute only for the screen
bounding box of the triangle

* How do we get such a bounding box?
— Xmin, Xmax, Ymin, Ymax of the triangle vertices

Rasterisation on Graphics Cards

* Triangles are usually very small
— Setup cost are becoming more troublesome

* Clipping is annoying
* Brute force is tractable

=
7 N\

Rasterisation on Graphics Cards

For every triangle
ComputeProjection
Compute bbox, clip bbox to screen limits
For all pixels in bbox
Compute line equations
If all line equations>0 //pixel [xy] in triangle
Framebuffer([x,y]=triangleColor

Rasterisation on Graphics Cards

For every triangle
ComputeProjection

Compute bbox, clip bbox to screen limits

Framebuffer [x, yl=triangleColor

* Note that Bbox clipping is trivial, unlike triangle clipping

A\
FEAN

N\

/">
/

Rasterisation on Graphics Cards

* Further tricks:
— Compute result of line equation incrementally
« Similar to AET
— Subdivide BBox into smaller tiles
* Early rejection of tiles
. Memory access coherence

Recap

Active Edge Table Method
— Implements a scan-line based fill method
— Exploits point and scan-line coherency

AET easily extended to support Gouraud and
Phong shading

— (Also visibility, shadows and texture mapping)
* Modern Rasterisation
— More brute-force, easier to implement in hardware

Exercise

« Given the following triangle, use the half-space-based
triangle rasterization to compute whether pixel (2,2),
(2,3), (3,2), and (3,3) are inside our outside of the triangle.

=

R S
™

0123456738

