Scene Graphs

©Anthony Steed 1999-2005, Jan Kautz 2006-2009

Scene Graph Overview

* Building Scene Structures
* Traversal

* Examples

* Instancing and Re-Use

* More Transformations

Concept of Scene Graph

* Objects placed relative to one

another

* Objects made of similar Root
components

* Directed acyclic graph @)

* Links are transformations

* Nodes are empty or contain
geometry

* The root of the graph corresponds
to “world coordinates”

Use for Animation/Modelling

Elbow

Upper|

Shoulder

Base

@) ©

Robot as a Graph

* Each node other than root

contain a piece of geometry

. . . Base
* Each link is a transformation

matrix, M, M; etc.

* Main concept is that robot
can be posed by changing
rotation in Shoulder and
Elbow

=
IS

Local Coordinates

* Each part of the robot is
modelled in its own local Base Pe=(2,1)
coordinate (LC) system
* Local coordinates are
defined by the person
modelling the system

* Choice is determined by Shoulder Ps=(2,0)
convenience .

* Common choices: Pe=(2.0.5)
— The centre of the object
— The centre of the object Hand

— A corner of the object

World Coordinates

* Everything is eventually positioned relative to the

world coordinates (WC) or room coordinates

* We know how to convert WC to viewing

coordinates (VC) —it’s the general camera model

* Eventually we need to convert points in an object’s

LC into WC

Local Transform

* An object’s local transformation maps LC to the parent’s

LC

— shoulder is translation (0 1 0) from base (MS)

— upper arm is translation (0 3 0) from shoulder (MU)

— elbow is translation (0 3 0) from upper arm (ME)

— fore arm is rotation Z by 90 then translation (0 2 0) (MF)

— Etc.

Note that directions such as “up” depend on what
transformations have been defined by ancestors in the
tree

Rendering Traverse

Must get object definitions in WC before passing
to camera

For a vertex in the base object
—p.Mgisin WC

Matrices are inherited down stack
So for object under shoulder
—p.MMgis in WC

— (Note that p.Mis in the local coordinates of the base!)

Implementation

Generally implemented
by a straightforward
recursive descent

— “push” on graph descend
— “pop” on graph ascend

The concatenation of all
LT matrices above a
node is called the
current transformation
matrix (CTM)

Sharing Nodes

A common “pattern” found
in a scene graph is a multiply
instanced geometry

One table, many places
Node Tablel has CTM T,T,
Node Table2 has CTM T,T,
T,=T,=1

So TableGeom appears in Table1
two different positions

[}
. PairTables

Table2

TableGeom

Rotations

Spherical Coordinates

* Represent a point using two angles ¢ and 6, and
with r = length(x,y,z)

z Q is projection of P onto XY
plane

@is angle between X axis
and 0Q

Bis angle between OP and
Z axis

P (x.y.2)

Spherical Coordinates

* Length OQ =rsin(0) ,
* So
—x = rsin(0)cos(p)
—y =rsin(0)sin(gp)
—z=rcos(0)

* The other way:
— r = sqrt(x2+y?+z2)
—tan(gp) = y/x
—cos(0) = z/r

Rotation About an Arbitrary Axis

=

g

o v AW

. Translate p1 so it is at the origin:

0 =pl" =pl.T, where T is translation by —p1)
Let p2* = p2.T (new position of p2)

find spherical co-ordinate of p2* (r,6,¢)

Rotate about Z by - ¢ to bring p2” into ZX plane
Rotate about Y by - 0 to bring p2” onto Z axis

Now rotate about Z by A
Invert steps 4-1

Start

p2’

z

L
K
“
)

[0}

Translate

Rotatel

Rotate2

pz*, * Now we apply the
32 transformation
'A\ (rotation by A
Y degrees) we are after

* Invert steps 4-1

After Steps 1-4

Rotation Matrices

Reminder: rotation around X, Y, Z axis

[1 0 o o] cos® —sm® 0 0
R(0) = 0 cos® —sin® 0 R(8) = | $n® cos® 00
0 sin® cos® 0 0 0 1 0
Lo o o 1] 0o 0 0 1
[cos6 0 sin® 0 | " -
ice exercise:
Ry(8) = 0) 0 0 derive a rotation matrix!
—sin@ 0 cos® 0 i
0o 0 0 1

Scene Graph Recap

Use of scene graph to model environments

Notion of render traversal and the current
transformation matrix

Instancing and sharing of nodes
Rotation of objects around an arbitrary axis

