Scene Graphs

©Anthony Steed 1999-2005, Jan Kautz 2006-2009

Scene Graph Overview

- Building Scene Structures
- Traversal
- Examples
- Instancing and Re-Use
- More Transformations

Concept of Scene Graph

- Objects placed relative to one another
- Objects made of similar components
- Directed acyclic graph
- Links are transformations
- Nodes are empty or contain geometry
- The root of the graph corresponds to "world coordinates"

Robot as a Graph

- Each node other than root contain a piece of geometry
- Each link is a transformation matrix, \mathbf{M}_{B} , \mathbf{M}_{S} , etc.
- Main concept is that robot can be posed by changing rotation in Shoulder and Elbow

Local Coordinates

- Each part of the robot is modelled in its own local coordinate (LC) system
- Local coordinates are defined by the person modelling the system
- · Choice is determined by convenience
- · Common choices:
 - The centre of the objectThe centre of the objectA corner of the object

Base	p _B =(2,1)
	+
Shoulder	p _S =(2,0)
Hand	p _H =(2,0.5)

World Coordinates

- Everything is eventually positioned relative to the world coordinates (WC) or room coordinates
- We know how to convert WC to viewing coordinates (VC) it's the general camera model
- Eventually we need to convert points in an object's LC into WC

Local Transform

- An object's local transformation maps LC to the parent's

 LC
 - shoulder is translation (0 1 0) from base (MS)
 - upper arm is translation (0 3 0) from shoulder (MU)
 - elbow is translation (0 3 0) from upper arm (ME)
 - fore arm is rotation Z by 90 then translation (0 2 0) (MF)
 - Etc.
- Note that directions such as "up" depend on what transformations have been defined by ancestors in the tree

Rendering Traverse

- Must get object definitions in WC before passing to camera
- For a vertex in the base object
 - p.**M**_B is in WC
- Matrices are inherited down stack
- So for object under shoulder
 - $p.\mathbf{M}_{\mathrm{S}}\mathbf{M}_{\mathrm{B}}$ is in WC
 - (Note that $p.\mathbf{M}_{S}$ is in the local coordinates of the base!)

_			
-			

Implementation

- Generally implemented by a straightforward recursive descent
 - "push" on graph descend
 - "pop" on graph ascend
- The concatenation of all LT matrices above a node is called the current transformation matrix (CTM)

Sharing Nodes

- A common "pattern" found in a scene graph is a multiply instanced geometry
- One table, many places
- Node Table1 has CTM $\mathbf{T}_1\mathbf{T}_0$
- Node Table2 has CTM $\mathbf{T}_2\mathbf{T}_0$
- $T_3 = T_4 = I$
- So TableGeom appears in two different positions

$D \sim$	+~	+÷	$\overline{}$	-	_
Ro	lα	u	υ	П	১

Spherical Coordinates

• Represent a point using two angles ϕ and $\theta,$ and with r = length(x,y,z)

Q is projection of P onto XY plane φ is angle between X axis and OQ θ is angle between OP and Z axis

Spherical Coordinates

- Length OQ = $r \sin(\theta)$
- So
 - $-x = r \sin(\theta)\cos(\varphi)$
 - $\mathsf{y} = \mathsf{r} \, \mathsf{sin}(\theta) \mathsf{sin}(\phi)$
 - $-z = r \cos(\theta)$
- The other way:
 - $r = \operatorname{sqrt}(x^2 + y^2 + z^2)$
 - $-\tan(\phi) = y/x$
 - $-\cos(\theta) = z/r$

Rotation About an Arbitrary Axis

- 1. Translate p1 so it is at the origin: O = p1* = p1.T, where T is translation by -p1) 2. Let p2* = p2.T (new position of p2)
- find spherical co-ordinate of p2* (r, θ , ϕ)
- 3. Rotate about Z by ϕ to bring p2^{*} into ZX plane
- 4. Rotate about Y by θ to bring p2* onto Z axis
- 5. Now rotate about Z by **\Delta**
- 6. Invert steps 4-1

• Now we apply the transformation (rotation by Δ degrees) we are after

• Invert steps 4-1

...

After Steps 1-4

Rotation Matrices

• Reminder: rotation around X, Y, Z axis

$$R_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_z(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0\\ \sin\theta & \cos\theta & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{y}(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Nice exercise: derive a rotation matrix!

Scene Graph Recap

- Use of scene graph to model environments
- Notion of render traversal and the current transformation matrix
- Instancing and sharing of nodes
- Rotation of objects around an arbitrary axis