Ray Tracing Polyhedra ©Anthony Steed 1999-2005, © Jan Kautz 2006-2009 Overview • Barycentric Coordinates • Ray-Polygon Intersection Test • Affine Transformations Line Equation • Recall that given p_1 and p_2 in 3D space, the straight line that passes between is: $p(t) = (1-t)p_1 + tp_2$ for any real number t• This is a simple example of a **barycentric** combination

Barycentric Combinations

- A barycentric combination is: a weighted sum of points, where the weights sum to 1.
 - Let $p_1, p_2, ..., p_n$ be points
 - Let $a_1, a_2, ..., a_n$ be weights

$$p = \sum_{i=1}^{n} a_i p$$

$$\sum_{i=1}^{n} a_{i} = 1$$

Implications

• If $p_1,p_2,...,p_n$ are co-planar points then p as defined will be inside the polygon (convex hull) defined by the points, iff

$$0 \le a_i \quad \forall i$$

• Proof of this is out of scope, but a few diagrams should convince you of the outline of a proof ...

Ray-Tracing Polygons

Ray Tracing a Polygon

- Three steps
 - Does the ray intersect the plane of the polygon?
 - i.e. is the ray not orthogonal to the plane normal
 - Intersect ray with plane
 - Test whether intersection point lies within polygon on the plane

Does the ray intersect the plane?

- Ray equation is: $r(t) = p_0 + t*d$
- Plane equation is: n.(x,y,z) = k
- Then test is n.d! = 0
 - → ray does intersect plane (ray direction and plane are not parallel)

Where does it intersect?

• Substitute line equation into plane equation

$$n \cdot (x_0 + td_x \quad y_0 + td_y \quad z_0 + td_z) = k$$

Solve for t

$$t = \frac{k - (n \cdot p_0)}{n \cdot d}$$

• Intersection: $p_{\text{int}} = p_0 + t * d$

Is this point inside the polygon?

- If it is then it can be represented in barycentric coordinates with $0 \le a_i \quad \forall i$
- There are potentially several barycentric combinations (polygon with > 3 vertices)
- Many tests are possible
 - Winding number (can be done in 3D)
 - Infinite ray test (done in 2D)
 - Half-space test (done in 2D for convex poylgons)
 - Barycentric coordinates (in 3D, good for triangles)

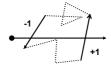
Winding number test

- Sum the angles subtended by the vertices. If sum is zero, then outside. If sum is $+/-2\Pi$, inside.
- With non-convex shapes, can get +/-4 Π , +/-6 Π , etc...



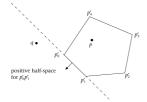
Infinite Ray Test

- Draw a line from the test point to the outside
 - Count +1 if you cross an edge in an anti-clockwise sense
 - Count -1 if you cross and edge in a clockwise sense
- For convex polygons you can just count the number of crossings, ignoring the sign
- If total is even then point is outside, otherwise inside



Half-Space Test (Convex Polygons)

• A point p is inside a polygon if it is in the negative half-space of all the line segments



Triangle inside/outside

- Compute barycentric coordinates, and check if all $0 \le a_i \quad \forall i$
- Compute barycentric coords with:
 - $-\lambda_1 = \Delta(BPC) / \Delta(ABC)$
 - $-\lambda_2 = \Delta(APC) / \Delta(ABC)$
 - $-\lambda_3 = \Delta(APB) / \Delta(ABC)$
 - Note: Δ is signed area, computed with determinant:

$$\Delta(\mathbf{ABC}) = \frac{1}{2} \begin{vmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \\ 1 & 1 & 1 \end{vmatrix}$$

Derivation of BC Computation

• Point P is defined as a barycentric combination:

$$\mathbf{P} = \lambda_1 \mathbf{A} + \lambda_2 \mathbf{B} + \lambda_3 \mathbf{C}$$

• We can write this as a system of linear equations:

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_n \end{bmatrix} = \begin{bmatrix} \mathbf{P} \\ 1 \end{bmatrix}$$

- Solve with Cramer's rule:
 - $-\lambda_1 = \Delta(BPC) / \Delta(ABC)$

– ...

Good explanation: http://www.farinhansford.com/dianne/teaching/cse470/materials/BarycentricCoords.p

Note • That the winding angle and half-space tests only tell you if the point is inside the polygon, they do not get you a barycentric combination • With some minor extensions, its easy to show that the infinite ray test finds a barycentric combination. • Baryc. coord test obviously finds a barycentric combination **Affine Transformations Transforming Polygons** Although its sort of "obvious" that transformations of objects preserve flatness and shape, we need to convince ourselves of something specific: barycentric coordinates are preserved under affine transformations • If they weren't it would be extremely hard to shade and texture polygons later on in the course • **To be shown**: If a transformation is affine (e.g., rotation, scale, translation) then barycentricity is preserved

If barycentricity is preserved then polygons are still "flat"

after transformation

Transformations Revisited

- Homogenous transform f() as described is <u>affine</u> (by definition, see later)
- Preserves barycentric coordinates iff:

$$f(p) = \sum_{i=1}^{n} \alpha_i f(p_i)$$
$$p = \sum_{i=1}^{n} \alpha_i p_i$$
$$\sum_{i=1}^{n} \alpha_i = 1$$

Show barycentricity is preserved

• Affine Transformation:

$$f(p) = \mathbf{A}p + d$$

- where A is a (3x3) matrix
- d is vector
- Or written with a homog. matrix:

$$f(p) = \mathbf{A}p$$

- where A is a (4x3) matrix as defined earlier

Plug in equations

• Plug in definition of p

$$f(p) = \mathbf{A} \left(\sum_{i=1}^{n} \alpha_{i} p_{i} \right) + d$$
$$= \sum_{i=1}^{n} \alpha_{i} (\mathbf{A} p_{i}) + d$$

• Remember, want to show:

$$f(p) = \sum_{i=1}^{n} \alpha_{i} f(p_{i})$$

Plug in equations

• Now plug in eq. from other side:

gin eq. from other side.

$$\sum_{i=1}^{n} \alpha_{i} f(p_{i}) = \sum_{i=1}^{n} \alpha_{i} (\mathbf{A} p_{i} + d)$$

$$= \sum_{i=1}^{n} \alpha_{i} (\mathbf{A} p_{i}) + \sum_{i=1}^{n} \alpha_{i} d$$

$$= \sum_{i=1}^{n} \alpha_{i} (\mathbf{A} p_{i}) + d$$

$$\Rightarrow f(p) = \sum_{i=1}^{n} \alpha_{i} f(p_{i}) \quad q.e.d.$$

$$\Rightarrow f(p) = \sum_{i=1}^{n} \alpha_{i} f(p_{i})$$
 q.e.d.

More proofs

- Now, we show that homogenous transformations are actually affine (and as such: preserve barycentricity)
- - The transformation f() is exactly the homogenous transformation as defined earlier on.
 - And we already know that f() preserves barycentricity

Recap

- Lines and polygons (and volumes) can be determined in terms of barycentric coordinates
- We have shown that affine transforms preserve barycentricity
- This polygons remain "flat"
- Thus we now can use arbitrary transformations on polyhedra

•			
•			
•			

To Show Transformation is Affine

- Unit vectors $\mathbf{e_1} \text{=} (1~0~0),~\mathbf{e_2} \text{=} (0~1~0),~\mathbf{e_3} \text{=} (0~0~1)$ and $\mathbf{e_4} \text{=} (0~0~0)$
- $p=(x_1 x_2 x_3)$
- Let $x_4 = 1 x_1 x_2 x_3$
- Thus

$$p = x_1 e_1 + x_2 e_2 + x_3 e_3 + x_4 e_4$$
$$p = \sum_{i=1}^{4} x_i e_i$$

...

But for unit vectors, mapping is easy to derive

$$f(e_i) = (\lambda_{i1} \lambda_{i2} \lambda_{i3})$$
$$= \sum_{j=1}^{3} \lambda_{ij} e_j$$

...

• So combine those two

$$f(p) = \sum_{i=1}^{3} x_i \sum_{j=1}^{4} \lambda_{ij} e_j$$
$$= \sum_{j=1}^{3} e_j \sum_{i=1}^{4} \lambda_{ij} x_i$$

...

• But we know x₄=1-x₁-x₂-x₃

$$f(p) = \sum_{j=1}^{3} e_{j} \left(\sum_{i=1}^{4} \lambda_{ij} x_{i} \right)$$

$$\upsilon_{ij} = \lambda_{ij} - \lambda_{4j}$$

$$f(p) = \sum_{j=1}^{3} e_{j} \left(\sum_{i=1}^{3} \upsilon_{ij} x_{i} + \lambda_{4j} \right)$$

...

ullet Expand that, remembering what e_i is

$$f(p) = \left(\sum_{i=1}^{3} v_{i1} x_{i} + \lambda_{41} \sum_{i=1}^{3} v_{i2} x_{i} + \lambda_{42} \sum_{i=1}^{3} v_{i3} x_{i} + \lambda_{43}\right)$$

• But this is the matrix transformation

$$x' = a_{11}x + a_{21}y + a_{31}z + a_{41}$$

•••

Recap

- Lines and polygons (and volumes) can be determined in terms of barycentric coordinates
- We have shown that homog. transforms are affine (and preserve barycentricity)
- This polygons remain "flat"
- Thus we now can use arbitrary transformations on polyhedra

_			
-			
_			
_			
_			
_			
-			
_			
_	 		