
Precomputed Radiance Transfer:
Theory and Practice

1

Precomputed Radiance Transfer:
Theory and Practice

2

Precomputed Radiance Transfer:
Theory and Practice

Precomputed Radiance Transfer:
Theory and Practice

Peter-Pike Sloan

Microsoft

Jaakko Lehtinen

Helsinki Univ. of Techn.
&

Remedy Entertainment

Jan Kautz

MIT

Precomputed Radiance Transfer:
Theory and Practice

3

Practical PRT IPractical PRT I

Compression and Sampling Issues
Peter-Pike Sloan

Microsoft Corporation

Precomputed Radiance Transfer:
Theory and Practice

4

Rendering DemosRendering Demos

[show basic PRT demos – don’t visualize any techniques, just show
rendering in general]

Precomputed Radiance Transfer:
Theory and Practice

5

RenderingRendering

• Basic equation being solved

• Outgoing Radiance
• Outgoing basis in view direction
• Composite Transfer Matrix
• Distant lighting environment

out out out(,) ()T pL p ω ω= u M l

We will first revisit the basic equation that is used to generate outgoing radiance at
a surface point (p) in direction (omega out).

You evaluate the outgoing basis functions in the direction omega out (this is a row
vector of coefficients)

You then multiply that times the transfer matrix at the point (p).

And final dot the result with the coefficients of the environment lighting vector l_env

Precomputed Radiance Transfer:
Theory and Practice

6

RenderingRendering

• Basic equation being solved

• Outgoing radiance coefficients

out out out(,) ()T
pL p ω ω= u e

Another way to look at the above equation is that we evaluate the outgoing radiance
function at the point p (e_p) in the direction omega_out.

Precomputed Radiance Transfer:
Theory and Practice

7

RenderingRendering

• Lighting needs to be transformed into global frame
of rigid object
– Evaluate/project/rotate

• Where should transfer matrices be stored?
– Vertices or textures

• How should the outgoing basis be evaluated?
– Tabulated in textures

– Analytically in the pixel shader

The light on the right hand side has to be represented in the global frame of the
object. This can be achieved in several ways, for example if the light basis
functions have efficient rotation formula you can just apply them, in general you can
project the lighting into the basis, or you can evaluate simple analytic models as Jan
talked about earlier.

The transfer matrices can be stored either at every vertex or at every texel.

The outgoing basis is generally evaluated per-pixel (based on interpolated or
computed omega out.) This is generally done in a pixel shader, and can either be
tabulated (for example in cube maps) or evaluated analytically.

Precomputed Radiance Transfer:
Theory and Practice

8

Problems With PRTProblems With PRT

• Big matrices at each surface point
– 25-vectors for diffuse, x3 for spectral
– 25x25-matrices for glossy
– at ~50,000 vertices

• Slows glossy rendering (4hz)
– Frozen View/Light can increase performance
– Not as GPU friendly

• Limits diffuse lighting order
– Only very soft shadows

There are a couple of limitations of PRT that makes it difficult to use it as discussed
so far from a practical stand point.

The matrices can be very large, even in the diffuse case 25d vectors are required, 3
time as many if you want to model color bleeding.
The glossy case requires 25^2 matrices, at roughly 50k vertices like most of our
examples this requires over 100mb.

Glossy rendering is also slow – you can freeze the view/light to gain some
performance, but this is a serious constraint.

Also glossy rendering is not as GPU friendly as the diffuse case – with much of the
work being done on the CPU.

Finally, the light order for the diffuse case is limited because of the number of
coefficients that can be stored per vertex on current hardware.

Precomputed Radiance Transfer:
Theory and Practice

9

Compression GoalsCompression Goals

• Decode efficiently
– As much on the GPU as possible

– Render compressed representation directly

• Increase rendering performance
– Make non-diffuse case practical

• Reduce memory consumption
– Not just on disk

Our chief goal for compression is efficient decoding.
As much of this work has to be done on the GPU as possible and ideally we would
render directly from the compressed representation.

This could lead to increased rendering performance making the glossy case
practical.
Also it’s important to reduce the run time memory requirements, not just the size of
the datasets on disk.

Precomputed Radiance Transfer:
Theory and Practice

10

Compression ExampleCompression Example
Surface is curve, signal is normal

These high dimensional signals are difficult to visualize, so I will use a much simpler
problem to describe the compression techniques.

Our surface here is a curve, and the signal we are compressing is the normal at
each point – a 2D signal.

Precomputed Radiance Transfer:
Theory and Practice

11

Compression ExampleCompression Example
Signal Space

On the right, we visualize the signal space. Each normal maps onto a point on the
unit circle; this is the gauss map of the curve.

Precomputed Radiance Transfer:
Theory and Practice

12

VQVQ
Cluster normals

Vector quantization is a simple but common compression technique. It groups the
signal into a small number of clusters of similar samples, 3 in this example.

Precomputed Radiance Transfer:
Theory and Practice

13

VQVQ
Replace samples with cluster mean

pp p C≈ =M M M%

VQ approximates each sample as the mean of the cluster it’s a member of.
Note that the clustering is done completely in signal space; the spatial relationships
of the samples is ignored.

Precomputed Radiance Transfer:
Theory and Practice

14

PCAPCA
Replace samples with mean + linear combination

0

1

N
i i

p p p
i

w
=

≈ = +∑M M M M%

Principle component analysis is another common compression technique.
Given a signal in some high dimensional space, PCA computes an optimal lower
dimensional linear approximation to the signal, in a least squares sense.

This is done by computing the mean of the signal, and a set of basis vectors.
In this case we are projecting the signal from 2D down to a single line. Each
sample is then replaced by its projection coefficients in this new basis.

The chief limitation is evident from this example.
While the signal is a 1D manifold, it is clearly not globally linear.

But a linear approximation *is* appropriate locally – on the circle the tangent is a
good local approximation to the signal.
Our signal is a high dimensional vector mapped to a surface in 2D.
If the signal is smooth, locally there should be a 2D tangent plane in 625D signal
space at each point, so a local linear approximation should be appropriate.

Precomputed Radiance Transfer:
Theory and Practice

15

0

1
p p

N
i i

p p C p C
i

w
=

≈ = +∑M M M M%

CPCACPCA
Compute a linear subspace in each cluster

Our technique, called CPCA for “clustered principal analysis”, exploits this by
computing a linear subspace in each cluster.
Each surface point needs to store an index into a cluster, and a set of projection
weights for the PCA basis in the corresponding cluster.

Precomputed Radiance Transfer:
Theory and Practice

16

CPCACPCA

• Clusters with low dimensional affine models

• How should clustering be done?

• Static PCA
– VQ, followed by one-time per-cluster PCA

– optimizes for piecewise-constant reconstruction

• Iterative PCA
– PCA in the inner loop, slower to compute

– optimizes for piecewise-affine reconstruction

So CPCA approximates samples in each cluster using a low dimensional affine
model.

There are a couple of ways to do the clustering.

The most straightforward approach is just to cluster using VQ and then compute a
PCA basis in each cluster, which we call “static PCA”.

VQ optimizes for piecewise constant reconstruction, while we use piecewise-affine
reconstruction, so this is clearly suboptimal.

“Iterative PCA” clusters using distance to affine sub-space instead of distance to
mean.
It computes PCA in the inner loop and so is slower than static PCA.
But it optimizes for the reconstruction we use during rendering.

Precomputed Radiance Transfer:
Theory and Practice

17

Static vs. IterativeStatic vs. Iterative

Here we see two images clustered with the different techniques using a single PCA
vector.

When shading, using a single PCA vector means each cluster will have a linear
gradient.

Static PCA creates clusters that are relatively isotropic, while iterative PCA shapes
the clusters based on probable shadow gradient directions.

Precomputed Radiance Transfer:
Theory and Practice

18

Related WorkRelated Work

• VQ+PCA [Kambhatla94] (static)

• VQPCA [Khambhatla97] (iterative)

• Mixture PC [Dony95] (iterative)

• Independently used with BTF’s [Mueller03]

• More sophisticated models exist
– [Brand03], [Roweis02]

– Mapping to GPUs is challenging
• Variable storage per vertex

• Partitioning is more difficult (or requires more passes)

• Worth investigating again on current GPU’s

While this is new to CG, it’s been done in machine learning.

Kambhatla used the term VQ+PCA to define the static case, and VQPCA to define
the iterative case.

Dony settled on the term Mixture of PC to define the iterative case.

Mueller and collegues used similar techniques in a paper at VMV in 2003.

There are more sophisticated techniques for non-linear dimensionality reduction.
Matt Brand’s work is used in a paper presented at siggraph in 2003 for example.

Mapping these techniques to the previous generation of GPU’s is challenging.
Since samples are classified in a variable number of clusters, variable storage is
required.
Partitioning the mesh into independent sets of data is also more difficult.

As features like dependent textures become more performant, it will be worth
investigating these other algorithms as well.

Precomputed Radiance Transfer:
Theory and Practice

19

Equal Rendering
Cost
Equal Rendering
Cost

VQVQ PCAPCA CPCACPCA

Here we see quality obtained when a bird model is rendered at equal frame rates
using 3 compression techniques.

With VQ, piecewise-constant reconstruction artifacts are apparent.

This signal is clearly not represented well with global PCA – there is substantial
energy loss.

CPCA does a good job of approximating the signal, with fairly low error.

Precomputed Radiance Transfer:
Theory and Practice

20

() ()0

1

() ()
p p

N
T i i

p p p C p C
i

e v v w
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑y M l M l()p

i
Ce()0

pCe

Rendering with CPCARendering with CPCA

() ()T
p p p pe v v= y M l

0

1
p p

N
i i

p C p C
i

w
=

≈ +∑M M M

0

1
() ()

p p

N
T i i

p p p C p C
i

e v v w
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑y M M l

Rendering with CPCA is straight forward.

First, approximate each transfer matrix with the mean from its cluster and a linear
combination of the cluster’s basis vectors.
In this equation the Cp subscript represents the cluster for the corresponding point.

We can plug this directly into the rendering equation.
While this expression looks more complex then the original equation, we can
distribute the dot produce with the light vector “l” and arrive at the following
equation.

The highlighted expression are just exit radiance column vectors.
So scalar exit radiance is computed by taking a linear combination of exit radiance
vectors and dotting it with the exit basis function evaluated in the view direction.

Precomputed Radiance Transfer:
Theory and Practice

21

() ()0

1
() ()

p p

N
T i i

p p p C p C
i

e v v w
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑y e e

Rendering with CPCARendering with CPCA

Constant per cluster – precompute on the CPU
Rendering is a dot product
Compute linear combination of vectors

Only depends on # rows of M

The important thing to note about this equation is that highlighted terms are
constant per cluster, so they can be computed on the CPU at each frame.

The dimensionality of these vectors only depends on the number of exit radiance
basis functions, so the math on the GPU is independent of the light’s dimension.
For our glossy transfer matrices, this represents a computational savings if N is
lower than 25.

Precomputed Radiance Transfer:
Theory and Practice

22

Non-Local ViewerNon-Local Viewer

Assume:
• vp constant across object (distant viewer)

Rendering independent of view & light orders
- linear combination of colors

() ()0

1
() ()

p p

N
T i i

p p p C p C
i

e v v w
=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑y M l M l

() ()0

1
() ()

p p

N
T i T i

p g C p g C
i

e v w v
=

= +∑y M l y M l

Using a non-local viewer model is a common technique in computer graphics.

The assumption is that the view does not change much across the object, so a
common view direction can be used for all surface locations.

This allows us to distribute the constant view direction into the precomputed
expressions, making the shader independent of both view and light orders.
All we need to render is a simple linear combination of N colors.

Precomputed Radiance Transfer:
Theory and Practice

23

Pixel
Shader

Texture
Constants

Eye Point
XformMatrix

GPU DataflowGPU Dataflow

Vertices

1

Normal
Tangent

p

N

p

C
w

w
M

Vertex Shader

()
0

p

N
i i

C
i

w
=

=∑e e

local view vecv =

1

1

1

0

1
C

C

N
C

e
e

e
M

()T vy e�

()T vy

Exit
Rad.

Here’s the GPU dataflow diagram. A static vertex buffer is computed which
contains the position, local frame, and cluster index.
Each vertex’s data also includes a binary value, called “incluster”, which is 1 if the
vertex is in the current cluster/supercluster and zero if it is a support vertex outside
the cluster.
The projection coefficients are also stored at each vertex.

At every frame, constants in the vertex shader are loaded.
These constants include the eye point in object space and the transformation
matrix. Also the per-cluster exit radiance vectors are computed on the CPU and
loaded as well.

The vertex shader then computes the view vector in the local frame, and the exit
radiance vector “e” passing them to the pixel shader.

The pixel shader evaluates the exit basis functions, which we store as a texture, in
the interpolated view direction.
It dots that with the interpolated exit radiance vector “e” to compute scalar exit
radiance. This is done once each for R/G/B.

Precomputed Radiance Transfer:
Theory and Practice

24

Compression DemoCompression Demo

[walk through various numbers of PCA vectors, show difference between
local/non-local viewer, etc.]

Precomputed Radiance Transfer:
Theory and Practice

25

CPCA HLSL ShaderCPCA HLSL Shader
float4 vAccumR = 0, vAccumG = 0, vAccumB = 0;

for (int i=0; i < (NUM_PCA/4); i++)

{

vAccumR += vPCAWeights[i] * aConsts[nOffset+1+(NUM_PCA/4)*0+i];

vAccumG += vPCAWeights[i] * aConsts[nOffset+1+(NUM_PCA/4)*1+i];

vAccumB += vPCAWeights[i] * aConsts[nOffset+1+(NUM_PCA/4)*2+i];

}

float4 vDiffuse = aConsts[nOffset];

vDiffuse.r += dot(vAccumR,1);

vDiffuse.g += dot(vAccumG,1);

vDiffuse.b += dot(vAccumB,1);

• Very lossy (4 PCA)

– 11 instructions
– NUM_CLUSTERS * 4 consts
– 1 short4 + 1 byte per vertex

• Less lossy (12 PCA)

– 17 instructions
– NUM_CLUSTERS * 10 consts
– 3 short4 + 1 byte per vertex

Here is the HLSL shader for diffuse rendering, the exact details aren’t that
important, but depending on the number of clusters/PCA vectors you use, the
shader is quite manegable.

Precomputed Radiance Transfer:
Theory and Practice

26

Practical IssuesPractical Issues

• Leverage SIMD nature of GPU’s
– Multiple of 4 PCA vectors, pack into register
– Mul/MADD sequences scale better vs. dot

products

• Leverage SIMD CPU’s
• Quantize PCA coefficients

– Shorts are fine, 8 bits almost no difference
– Less precision for higher frequencies

When writing shaders for CPCA, you want to leverage the SIMD nature of GPU’s,
always use a multiple of 4 PCA vectors, and split 4 coefficients for the same color in
a register, instead of treating them as RGB colors to maximize the 4-way SIMD
nature. When accumulating coefficients, it is more efficient to use a mul, and a
string of mad’s instead of a bunch of 4D dot products – because it generalizes to
higher dimensions much better.

It’s also worth leveraging the SIMD nature of CPU’s, the dot products that compute
shader constants can be mapped into SIMD CPU instructions quite easily.

When quantizing PCA coefficients, full 32 bit values are not needed. It is easy to
normalize the data into [-1,1], just scale the corresponding basis vector by the
inverse – this pushes precision into the constant registers, which are always higher
precision. Even signed 8 bit values look fine, but it is possible to use higher
precision for the first couple of PCA values, since they contribute the most to the
final result.

Precomputed Radiance Transfer:
Theory and Practice

27

CPCA With TexturesCPCA With Textures

• Problem
– PCA coeffs in the same cluster can be interpolated
– Cluster ID’s, PCA coeffs in different clusters can’t

• Simple Solutions
– Just use pure PCA (1 cluster)

• Doesn’t compress as well

– Interpolate in shader
• expensive

If you want to use CPCA with textures, care must be taken.

PCA coefficients in the same cluster can be interpolated, mip-mapped, etc.

However cluster ID’s, are coefficients from different clusters should not be, so naïve
bi-linear filtering will not work.

There are two simple solutions.

Just use pure PCA (ie: a single cluster), this filters fine, but it won’t compress well.

You can do the interpolation in the shader – ie: evaluate the 4 taps and blend the
shaded result. This is extremely expensive though.

Precomputed Radiance Transfer:
Theory and Practice

28

CPCA With TexturesCPCA With Textures

• Light in texture space
– +No interpolation required

– +Often at much lower sampling rates

– -Need more resources
• cached lightmap for diffuse

• surface lightfield for glossy

• Cluster based charts in texture atlas
– +Can filter if gutters created

– +No extra resources required

A better solution is to evaluate the shading directly in texture space.

No interpolation is required, because evaluation will only occur at texel centers.
PRT textures are often stored at much lower spatial sampling rates, so it can significantly save
computation.

However more resourses are needed, in the diffuse case this effectively builds a dynamic light map,
and in the glossy case a dynamic surface light field.

These can be updated at a lower frequency though – for example for a day/night cycle in a game.

Another approach is to cluster based on charts in a texture atlas

This guarantees that all pixels that will be reconstructed are in the same cluster (but charts can be in
different clusters), and no temporary surfaces are required.

The compressed results might be sub-optimal however, and it might be interesting incorporating
clustering for compression into the parameterization process.

Precomputed Radiance Transfer:
Theory and Practice

29

Mueller et alMueller et al

• Using CPCA at two scales [Mueller04]
– Don’t blow the coarse scale out

– Create dot products between clusters/PCA
matrices at coarse scale and PCA basis vectors at
fine scale

There was another nice paper by Mueller and collegues where they used datasets
that had information at two scales (coarse transfer matrices and fine scale BTF’s)
and encoded both using local PCA. The naïve approach to doing this would be to
blow out the SH signal in between the scales, and reprojet this spatially varying
function at the finer scale – however this would be extremely slow.

They obvserved that you can directly project from coefficients on one CPCA space
to coefficients in another by simply projecting all of the basis vectors for relighting
the BTF’s through the basis matrices used for coarse scale transfer. These
coefficients would then be updated when the lighting change and everything would
remain performant.

Precomputed Radiance Transfer:
Theory and Practice

30

Why not cluster spatially?Why not cluster spatially?

• Any feature that varies finer than the spatial
cluster size will be problematic

• Correlations exist that are not adjacent and
should be exploited

Instead of learning the clusters, you could just try and partition them spatially (this
has been done in image re-lighting work.)

If the geometry varies quickly relative to the cluster size, it will require a higher
dimensional linear space to approximate the data.

By clustering regions that are not spatially adjacent, for example the un-occluded
region with a vertical normal highlighted here, you can get away with fewer clusters
and lower dimensional linear spaces.

Precomputed Radiance Transfer:
Theory and Practice

31

Spatial Sampling IssuesSpatial Sampling Issues

• Relationship between spatial sampling
densities over objects and light frequencies

Penumbra

Umbra

When looking at PRT in general, it is worth thinking about the relationship between
light frequency and spatial sampling rates.

PRT generally deals with “steerable” lighting models, but it is worth thinking about
the “finest” light that can be modeled when determining a bounds on spatial
sampling densities.

Given a simple scene, with a large area light, a simple blocker and a simple
receiver, the intensity on the receiver is broken into 3 categores.

Regions that are completely lit, regions that are completely in shadow (the umbra)
and a transition region (the penumbra.) Large area lights have slow transitions, this
means they induce lower spatial sampling rates.

Precomputed Radiance Transfer:
Theory and Practice

32

Spatial Sampling IssuesSpatial Sampling Issues

• Light shrinks -> penumbra tightens

• Higher sampling density to “move” light over
object/scene

Penumbra

Umbra

However for smaller light sources, the penumbras tighten, which means the
transitions are more rapid, so the sampling rates have to be higher.

Precomputed Radiance Transfer:
Theory and Practice

33

Angular Sampling IssuesAngular Sampling Issues

• Large lights need to be sampled a lot

It is also worth thinking about angular, or directional sampling issues. Large/smooth
lights subtend large solid angles, so to get an accurate estimate of the illumination
arriving at a point, many directional samples have to be taken.

This means that traditional interactive techniques for shadowing (for example),
would require many passes to generate an accurate model of the illumination.

Precomputed Radiance Transfer:
Theory and Practice

34

Angular Sampling IssuesAngular Sampling Issues

• Small lights clearly less

Small light sources clearly require fewer samples, which means they are more
feasible to work with at run time (assuming a small number of small light sources.)

Precomputed Radiance Transfer:
Theory and Practice

35

Sampling IssuesSampling Issues

• Large (low frequency) lights
– Coarse spatial sampling

• Not a lot of storage

– Large solid angles
• Run time integration would be expensive

• Small (high frequency) lights
– Fine spatial sampling

• High storage

– Small solid angles
• Run time integration isn’t that bad

So for direct lighting, large low frequency lights induce coarse spatial sampling rates
– which means less storage is required and precomputing makes more sense.

They are difficult to handle using run time integration due to the large solid angles.

Small lights induce high spatial sampling densities, and are more amenable to run
time integration.

Precomputed Radiance Transfer:
Theory and Practice

36

Sampling Issues: TransportSampling Issues: Transport

• Bounced light is pretty much always low
frequency
– An illuminated wall is an area light

• Do you need to use high frequency basis to
model high frequency inter-reflections???

When looking at more complex transport effects (beyond direct lighting) it is worth
noting that they pretty much always behave as low frequency light sources – a wall
illuminated by a tight light source generally acts as a large emitter.

So precomputing indirect lighting from high frequency lighting seems like a
reasonable idea in general.

But that than begs the question, is it feasible to simulate the indirect lighting from
high frequency lighting using a low frequency projection of that lighting? This could
be similar to the duality discussed by ravi in his siggraph 2001 paper between light
and material frequency.

Precomputed Radiance Transfer:
Theory and Practice

37

Practical PRT IIPractical PRT II

Albedo/Normal Mapping

GPU Simulator

DX

Precomputed Radiance Transfer:
Theory and Practice

38

AlbedoAlbedo

• Factoring out albedo makes sense
– Often varies at a much finer scaled

compared to incident radiance

– Makes compression more efficient

– Commonly done with lightmaps in
games

The albedo should be factored out of the transfer vectors/matrices.

The incident lighting is almost always much smoother than reflectivity, so it makes
sense to not conflate the two.

Precomputed Radiance Transfer:
Theory and Practice

39

Factoring Out AlbedoFactoring Out Albedo

• Simplest way is to only multiply by albedo
when gathering/shooting data to model inter-
reflections
– Always generates a result that is correct after

multiplied by local albedo

– Works for any type of light transport

– albedo is only factored out on the bounce before
light reaches the eye

The easiest way to do this is to only multiply by albedo when “gathering” (or before
shooting) during transport simulation.

So all transfer vectors (for any transport path) model everythign except the multiply
by the albedo at a point on the surface.

Precomputed Radiance Transfer:
Theory and Practice

40

Factoring Out AlbedoFactoring Out Albedo

Precomputed Radiance Transfer:
Theory and Practice

41

Normal Mapping for PRTNormal Mapping for PRT

• Why use normal mapping?
– Two scales – tangent frames/lighting at vertices,

fine scale (albedo/normal maps) per texel

– Don’t blow out transfer vectors to fine scale

• Just looking at diffuse surfaces
– Bi-Scale Radiance Transfer does this in the

general case but is much heavier weight

One of the most beneficial properties of normal mapping is that it enables modeling
things at multiple scales. Coarse information, either per vertex or in a lower
resolution texture (like incident lighting) should be stored at the appropriate
sampling rates. Normal maps model fine scale perturbations of the surface normal
– but ideally you wouldn’t blow out transfer vectors/matrices to that fine scale.

The technique we are about to describe is only for diffuse materials, the bi-scale
radiance transfer paper covers the more general case, but is a much “heavier”
technique (both in terms of computation and data…)

Precomputed Radiance Transfer:
Theory and Practice

42

Irradiance Environment
Maps
Irradiance Environment
Maps

• [Ramamoorthi2001], application of the SH
convolution formula

• h is circularly symmetric function h(z)

• f is any function over the sphere

• Evaluate convolved SH in a direction computes
integral of h oriented in that direction against f

() 0 0 04*
2 1

m m m
l l l l ll

h f h f h f
l
π α= =
+

The normal mapping technique is based on the irradiance environment map paper from siggraph
2001.

This paper is essentially an application of the spherical harmonic convolution formula.

Which is simple the convolution of a circularly symmetric kernel h (can be thought of as a function of
Z only when oriented with the Z axis) with an arbitrary function f represented in spherical harmonics
can be represented by scaling each of the coefficients in a given band of f (l) by a constant and the
coefficient of m=0 in h at that band.

Circular symmetric functions of z only have one non-zero projection coefficient (corresponding to
m=0)

Evaluating a convolved function in a given direction gives you the integral of the original function
against the kernel oriented in that direction.

The reason the kernel has to be circularly symmetric is because functions with circular symmetry are
parameterized by 2 DOF, so the result of the convolution can be represented on the unit sphere – a
general kernel would generate a function on SO3.

In ravi’s paper he observes that the clamped cosine kernel can be represented in closed form and
that most of the energy is in the coefficients through the quadratics. This is the same motivation
used in image processing – large kernels are more efficiently convolved in frequency space.

Precomputed Radiance Transfer:
Theory and Practice

43

Normal MappingNormal Mapping

• Account for GI of coarse scale (geometry)
but not fine scale (normal map)
– Could use DC of visibility to “poke hole” in lighting

environment, with triple products this amounts to
scaling light coeffs by DC

• Mathematical justification for ambient occlusion

• Lxfer just needs to be quadratic
[Ramamoorthi2001]

The technique presented will also only account for global illumination at the scale of
the geometry, how bumps cast shadows/reflect light on themselves will not be
modeled.

If you scaled the lighting environment by the DC term of the SH projection of
visibility, that’s mathematically equivalent to taking the product of the lighting and
the visibility projected into SH – which is a mathematical justification for ambient
occlusion.

A result of the irradiance environment map paper is that transferred radiance only
need to be quadratic if the shadowing of the bumps is not being taken into account.

Precomputed Radiance Transfer:
Theory and Practice

44

Normal Mapping for PRTNormal Mapping for PRT

• Intuitive description

• Irradiance environment maps where the
environment map varies over the surface

• Evaluate with normal from normal map
[Ramamoorthi2001]

The easiest way to think about the technique that will be described is you have a
smoothly varying irradiance environment map, that you want to evaluate using a
normal looked up from the normal map.

Precomputed Radiance Transfer:
Theory and Practice

45

Normal Mapping DemoNormal Mapping Demo

[load simple scene]
[go into normal map mode]
[turn off light probe, turn on directional light]

Here is a fairly coarsely tesselated mesh with a normal map, the
precomputation knows nothing about the actual normal map being used. We
can change the scale of the normal map, or switch in a different normal map,
and use the same simulation results.

This achieves the desired effect – a coars PRT simulation is combined with a
high frequency normal map.

Here I will toggle between the “ideal” case and an approximation that I will
describe in a bit. This approximation is quite good, but there is clearly some
error near the silhoutte – which might be a result of compression.

Precomputed Radiance Transfer:
Theory and Practice

46

Normal Mapping for PRTNormal Mapping for PRT

• Related to technique presented last year by
ValveTM for Half-Life® 2
– But for parameterized model of light

• Mathematical formulation

() ()Te n y n= CRM l

Valve showed a similar technique at GDC04, but just for static lighting. The idea
presented here is for a parameterized model of lighting.

Precomputed Radiance Transfer:
Theory and Practice

47

() ()Te n y n= CRM l

Normal Mapping for PRTNormal Mapping for PRT

• Related to technique presented last year by
ValveTM for Half-Life® 2
– But for parameterized model of light

• Mathematical formulation

SH Lighting Vector

The first term is the distant environment map lighting.

Precomputed Radiance Transfer:
Theory and Practice

48

() ()Te n y n= CRM l

Normal Mapping for PRTNormal Mapping for PRT

• Related to technique presented last year by
ValveTM for Half-Life® 2
– But for parameterized model of light

• Mathematical formulation

Distant lighting to quadratic SH local lighting

The next term is a transfer matrix that maps distant lighting to quadratic transferred
incident lighting

Precomputed Radiance Transfer:
Theory and Practice

49

() ()Te n y n= CRM l

Normal Mapping for PRTNormal Mapping for PRT

• Related to technique presented last year by
ValveTM for Half-Life® 2
– But for parameterized model of light

• Mathematical formulation

Rotation from global to local frame (tangent space)

Then there is a rotation from the global to the local frame

Precomputed Radiance Transfer:
Theory and Practice

50

() ()Te n y n= CRM l

Normal Mapping for PRTNormal Mapping for PRT

• Related to technique presented last year by
ValveTM for Half-Life® 2
– But for parameterized model of light

• Mathematical formulation

Convolution with normalized cosine kernel

And finaly a diagonal matrix that convolves the signal with the coefficients for the
normalized cosine kernel

Precomputed Radiance Transfer:
Theory and Practice

51

() ()Te n y n= CRM l

Normal Mapping for PRTNormal Mapping for PRT

• Related to technique presented last year by
ValveTM for Half-Life® 2
– But for parameterized model of light

• Mathematical formulation

SH basis functions evaluated in normal direction

You then have the SH basis functions (quadratic) evaluated in the normal direction.

Precomputed Radiance Transfer:
Theory and Practice

52

() ()Te n y n= CRM l

Normal Mapping for PRTNormal Mapping for PRT

• Related to technique presented last year by
ValveTM for Half-Life® 2
– But for parameterized model of light

• Mathematical formulation

Outgoing radiance as a function of normal

Finally this generates outgoing radiance for the given normal

Precomputed Radiance Transfer:
Theory and Practice

53

() ()Te n y n= CRM l

Normal Mapping for PRTNormal Mapping for PRT

• Related to technique presented last year by
ValveTM for Half-Life® 2
– But for parameterized model of light

• Mathematical formulation

Convolved local lighting environment
(Transferred Incident Radiance)

Precomputed Radiance Transfer:
Theory and Practice

54

Normal Mapping for PRTNormal Mapping for PRT

• Related to technique presented last year by
ValveTM for Half-Life® 2
– But for parameterized model of light

• Mathematical formulation

() ()Te n y n ′= l
Convolved local lighting environment

(Transferred Incident Radiance)

Precomputed Radiance Transfer:
Theory and Practice

55

Normal Mapping for PRTNormal Mapping for PRT

• Fairly heavy weight
– 9xO2 (16-36) matrix vertex/LR texture

• Can be compressed just like diffuse transfer

– Generates 3*9 coefficients (irradiance emap)

• What are cheaper approximations?

Evaluating the technique as outlined in the previous slides is still fairly heavy weight.

You require 9xorder^2 matrices per vertex or in a low res texture (which can be
compressed.)

More importantly that generates 27 coefficients that are the irradiance environment
map that have to then be evaluated.

So we are going to go over some “cheaper” approximations.

Precomputed Radiance Transfer:
Theory and Practice

56

Normal Mapping for PRTNormal Mapping for PRT

• Hemispherical function that for a given
normal vector computes outgoing radiance

• Project convolved radiance into an analytic
basis besides SH
– HL2 basis (3 rows for the matrix)

– Shifted Associated Legendre Polynomials
[Gautron2004]

• Looks decent in maple – will have to experiment

The basic problem is that you have a hemispherical function (outgoing radiance)
that is a function of the normal (not view direction as we have done before.)

One simple approach would be to project this hemispherical function into some
other basis.

HalfLife2 uses 3 quadratic polynomials on portions of the hemisphere.

You could also use the basis functions from last years EGSR paper, these look like
than can do a reasonable job approximating convolved SH functions in maple, but
more experimentation needs to be done.

Precomputed Radiance Transfer:
Theory and Practice

57

Normal Mapping for PRTNormal Mapping for PRT

• Use same ideas as BRDF factorization

() ()e n b n l′= A

()b n Bi-linear basis functions over hemisphere (4 non-zero)

A Matrix, rows “normal directions” columns quadratic
SH light Aij equals evaluating convolved light basis
function “j” in normal direction “i”

Another approach, that we will discuss here is to use the same ideas that are used
for BRDF factorization, which Jaakko talked about earlier.

That is build a matrix “A” sampling the convolved lighting environment over a
hemisphere of normals. The rows represent the normal directions, the columns the
lighting environment.

Precomputed Radiance Transfer:
Theory and Practice

58

Normal Mapping for PRTNormal Mapping for PRT

00 08

0 8

0 8

i i

N N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A A

A A

A A

L

M M

L

M M

L

This is just trying to give more intuition to the matrix A.

You have some sampling of the hemisphere, each row corresponds to a sample.

The columns correspond to illumination from the 9 quadratic SH basis functions.

A coefficient in the matrix represents the integral of a cosine kernel in the given
direction against the lighting environment. Not that the lighting environment should
be clamped to the hemisphere before this integral happens.

Bi-linear basis functions are used on the unit disk, and then mapped to the
hemisphere to generate a value at any point on the hemisphere (so there are at
most 4 non-zero entries for a given normal.)

Precomputed Radiance Transfer:
Theory and Practice

59

Normal Mapping for PRTNormal Mapping for PRT

t=A USV

tV
S
U Nx9 matrix (each column is a “normal basis” texture)

9x9 diagonal matrix (singular values)

9x9 matrix

• Compute SVD of A

Then you compute the singular value decomposition of this matrix and you get 3
terms.

A matrix U, where each column represents a “normal basis” texture.

A diagonal matrix S (the singular values)

And a matrix Vt,which is 9x9 (for quadratic SH.)

Precomputed Radiance Transfer:
Theory and Practice

60

Normal Mapping for PRTNormal Mapping for PRT

• Old equation

• New equation

() ()Te n y n= CRM l

() () Te n n= U SV CRM l

This generates a new equation that simply replaces the evaluation of the quadratic
SH in the normal direction.

Precomputed Radiance Transfer:
Theory and Practice

61

Normal Mapping for PRTNormal Mapping for PRT

• Use first M singular values

• MxO2 matrix

• M channel “normal direction” texture

() () Te n n= U SV CRM l

Then instead of using the full matrix, just use the first M singular values.

Precomputed Radiance Transfer:
Theory and Practice

62

Normal Mapping for PRTNormal Mapping for PRT

• Use first M singular values
– M = 4, SE 93.9/96.4

– M = 6, SE 98.7/99.3

• Then you only need a MxO2 matrix

• Shader is simple – dot interpolated scalars
with normal dependent texture

Here you see the accuracy with uniform sampling over the hemisphere, and cosine
weighted sampling (normals alligned with Z in tangent space are prefered.) 4 terms
is fairly accurate.

Precomputed Radiance Transfer:
Theory and Practice

63

Normal Mapping ShadersNormal Mapping Shaders

• Vertex Shader – conventional PRT, but
output 3 4 channel values (instead of 1 RGB
color)

• Pixel shader…

This is not much more complex than a conventional PRT shader.

Precomputed Radiance Transfer:
Theory and Practice

64

Pixel ShaderPixel Shader

StandardSVDPS(VS_OUT In, out float3 rgb : COLOR)
{

float2 Normal = tex2D(NormalSampler, In.TexCoord);
float2 vTex = Normal*0.5 + float2(0.5,0.5);
float4 vU = tex2D(USampler,vTex);

rgb.r = dot(In.cR,vU);
rgb.g = dot(In.cG,vU);
rgb.b = dot(In.cB,vU);

rgb *= tex2D(AlbedoSampler, In.TexCoord);
}

Precomputed Radiance Transfer:
Theory and Practice

65

Normal Mapping for PRTNormal Mapping for PRT

• Even cheaper approximation
– Compute shadowed value per vertex (conventional

PRT, luminance only)

– Compute unshadowed value (using irradiance
emaps on luminance only)

– Take the ratio – shadowed/unshadowed

– Interpolate over mesh and modulate with normal
map evaluation

A much more approximate solution would be to just use a coarse PRT result to
modulate a per-pixel evaluation.

Precomputed Radiance Transfer:
Theory and Practice

66

Normal Mapping for PRTNormal Mapping for PRT

Projecting into an analytic basis or SVD shadow
blue light and can inter-reflect red light off wall

Precomputed Radiance Transfer:
Theory and Practice

67

Normal Mapping for PRTNormal Mapping for PRT

Most approximate technique effectively
Just “dims” the light

Precomputed Radiance Transfer:
Theory and Practice

68

Normal Mapping for PRTNormal Mapping for PRT

If normal points towards blue light
Outgoing Radiance is blue, not bounced red

Precomputed Radiance Transfer:
Theory and Practice

69

Normal Mapping for PRTNormal Mapping for PRT

• Relatively cheap, allows for “sparse” PRT
that responds to high frequency changes in
surface normal

• Could improve by moving to a YUV color
space
– More precision in luminance, less in chroma

– Like video/image codecs

Precomputed Radiance Transfer:
Theory and Practice

70

Normal Mapping DemoNormal Mapping Demo

[load simple scene]
[go into normal map mode]
[turn off light probe, turn on directional light]

Here is a fairly coarsely tesselated mesh with a normal map, the
precomputation knows nothing about the actual normal map being used. We
can change the scale of the normal map, or switch in a different normal map,
and use the same simulation results.

This achieves the desired effect – a coars PRT simulation is combined with a
high frequency normal map.

Here I will toggle between the “ideal” case and an approximation that I will
describe in a bit. This approximation is quite good, but there is clearly some
error near the silhoutte – which might be a result of compression.

Precomputed Radiance Transfer:
Theory and Practice

71

Simulation on the GPUSimulation on the GPU

Precomputed Radiance Transfer:
Theory and Practice

72

GPU SimulatorGPU Simulator

• Simulation on the CPU is fairly expensive

• It would be nice to get a quick result, even if it is of
lower quality

• Presented technique addresses direct lighting only
for diffuse objects
– See GPUGems2 for indirect lighting

– Similar to ambient occlusion technique in GPUGems

– Triple products can be used to generate transfer matrices

Precomputed Radiance Transfer:
Theory and Practice

73

How to Compute?How to Compute?

• Use MC integration to estimate integral
Foreach P on surface

T = 0
Foreach D on sphere

fCosTerm = dot(D,N)
if (fCosTerm <= 0) continue
if (GeomIntersect(P,D)) continue
T += EvalBF(D)*CosTerm

T *= NormFac

?

Precomputed Radiance Transfer:
Theory and Practice

74

Compute on GPUCompute on GPU

• Doesn’t map well to GPU
– Ray tracing inefficient

– Sum reduction inefficient
• Use of hemicubes for NI would also not pipeline as well

• Reverse order of loops, accumulate
contributions for a given direction to all
samples in parallel

Precomputed Radiance Transfer:
Theory and Practice

75

GPU SetupGPU Setup

• Compute 2 textures
– G geometry texture – pack vertices

into texture (coherent) or use
parameterization

– N normal texture – 1 to 1
correspondence with G

• Create 3 MRT texture stacks of
same resolution (high precision
– this will be T)

Precomputed Radiance Transfer:
Theory and Practice

76

GPU ComputationGPU Computation

Initialize G,N and T (T is zero)
Foreach D on sphere

Render depth into texture DT
Set D and EvalBF(D) as constants
Set transform as constants (3x4 mat)

Foreach P in G [rasterize triangle]
fCosTerm = dot(D,N)
if (fCosTerm <= 0) continue
P’ = xform P
if (P’.z > DT(P’.xy)) continue
T += EvalBF(D)*CosTerm*NormFac

Precomputed Radiance Transfer:
Theory and Practice

77

GPU ComputationGPU Computation

Lookup in G
Lookup in N
Project into shadow
Accumulate scaled by cos

Precomputed Radiance Transfer:
Theory and Practice

78

GPU IssuesGPU Issues

• No blending with high precision formats
– Use ping-pong buffer trick – always render into buffer A,

have shader add buffer A + B[FrameNum%2] into
B[(FrameNum+1)%2]

• No control flow
– Use conditional instructions to multiply result

• Optimizations
– Do multiple directions in a pass

– Multiply texture coordinates by zero if cos < 0

Precomputed Radiance Transfer:
Theory and Practice

79

SH and PRT in DirectXSH and PRT in DirectX

Precomputed Radiance Transfer:
Theory and Practice

80

PRT and DirectXPRT and DirectX

• CPU simulator
– Per vertex or per texel

– Direct for SH + any number of indirect for anything

– Subsurface scattering

– Transfer matrices computed at any point in space
or on mesh (direct or bounced)

– Albedo factored out is default

– Per vertex or per texel albedo

Precomputed Radiance Transfer:
Theory and Practice

81

Adaptive SimulatorAdaptive Simulator

• Refines mesh based on operators change
over the surface

• Can resample into textures (more efficient
than a “per-texel” simulation in general)

• “RobustMeshRefinement”
– Kind of like discontinuity meshing for PRT

– Initial refinement so “features” aren’t skipped

Precomputed Radiance Transfer:
Theory and Practice

82

Adaptive SimulatorAdaptive Simulator

Precomputed Radiance Transfer:
Theory and Practice

83

Run time functionsRun time functions

• Efficient code to evaluate/rotate SH

• Analytic light sources
– Cones,spheres,directional lights

• Projection from cube maps

Precomputed Radiance Transfer:
Theory and Practice

84

Compression in DXCompression in DX

• VQ/PCA

• Local PCA
– “Low Quality” VQ+PCA

– “High Quality” VQPCA (much faster than in paper)

• Can compress any data (not just PRT)

Precomputed Radiance Transfer:
Theory and Practice

85

Miscellaneous StuffMiscellaneous Stuff

• UVAtlas
– Implementation of iso-chart algorithm for

generating parameterizations

• GPU Simulator for direct lighting
– Per vertex or per texel

• GutterHelper
– Propagates data from interior of parameterization

to gutter

Precomputed Radiance Transfer:
Theory and Practice

86

SamplesSamples

• PRTDemo
– Per-vertex simulator, SS, adaptive, etc.

– Irradiance environment map and LDPRT also

• PRTCmdLine
– Command line app that runs the simulator

• LDPRTDemo
– “bat”, just run time for LDPRT

Precomputed Radiance Transfer:
Theory and Practice

87

DX DemoDX Demo

Run through the DX demos.

Precomputed Radiance Transfer:
Theory and Practice

88

