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Diffuse PRTDiffuse PRT

• Goal: to shade a diffuse object using
Precomputed Radiance Transfer

• Diffuse:
– Reflected light is

view-independent 

– Simplifies equations

– [Sloan02]
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Start from Neumann expansion and make simplifying assumptions
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To derive PRT for the diffuse case we are going to start with just the direct term 
from the Neumann expansion of the rendering equation and make several 
simplifying assumptions.
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Diffuse objects: light reflected equally in all directions ⇒ view-independent
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The bottom equation is the “simplified” form.  First, for diffuse objects light is 
reflected equally in all directions, so outgoing radiance is independent of view 
direction.
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Diffuse PRTDiffuse PRT

Diffuse objects: BRDF is a constant

This also means the BRDF is just a constant (and independent of direction) so it 
can be pulled out of the integral.  Rho_d represents the diffuse reflectivity of the 
surface, and is a number between 0 and 1.  The divide by Pi enforces energy 
conservation.
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Assume: lighting comes from infinity, independent of p

As before, we assume the source radiance function is at infinity, this means we only 
need to concern ourselves with the direction s.
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Diffuse PRTDiffuse PRT

• Visually:
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Incident Light Visibility Cosine

Reflected Light
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VisuallyVisually

Incident Light

Visibility

Cosine

Integrand

Visually, we integrate the product of three functions (light, visibility, and cosine).
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VisuallyVisually

Incident Light

Visibility

Cosine

Integrand∫∫
PrecomputePrecompute

The main trick we are going to use for precomputed radiance transfer (PRT) is to 
combine the visibility and the cosine into one function (cosine-weighted visibility or 
transfer function), which we integrate against the lighting.
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ProblemsProblems

• Problems remain:

– How to encode the spherical functions?

– How to quickly integrate over the sphere?

This is not useful per se. We still need to encode the two spherical functions 
(lighting, cosine-weighted visibility/transfer function). Furthermore, we need to 
perform the integration of the product of the two functions quickly.
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Diffuse PRTDiffuse PRT

Represent lighting using basis function yi()

Now we are going to approximate the source radiance function with its projection 
into a set of basis functions on the sphere (denoted yi() in this equation.)  The l_i are 
the projection coefficients of a particular lighting environment.  For didactic 
purposes we are using piecewise constant basis functions.
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Diffuse PRTDiffuse PRT

Plug into equation. Since it's linear, we can move sum outside integral.

Everything within the integral can be precomputed.
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We can plug this approximation directly into the reflected radiance equation.

Manipulating this expression exploiting the fact that integration is a linear operator 
(sum of integrals = integral of sums), we can generate the following equivalent 
expression.

The important thing to note about the highlighted integral is that it is independent of 
the actual lighting environment being used, so it can be precomputed.
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Diffuse PRTDiffuse PRT

We call the precomputed integrals transfer coefficients

Outgoing radiance: just a dot-product!
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This integral represents a transfer coefficient – it maps how direct lighting in basis 
function I becomes outgoing radiance at point p.  The set of transfer coefficients is a 
transfer vector that maps lighting into outgoing radiance.

We can optionally fold the diffuse reflectivity into the transfer vector as well.
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We do this for every bounce and fold everything into a final transfer vector

A similar process can be used to model the other bounces, so that a final vector can 
be computed and used to map source radiance to outgoing radiance at every point 
on the object.

Outgoing radiance is then just the dot product of the lights projection coefficients 
with the transfer vector.
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Diffuse PRTDiffuse PRT

•• = = 

Project lighting

Lookup ptpt

Rotate light

Compute integral

per 
object

per 
pixel/vertex= = * * 
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This shows the rendering process.

We project the lighting into the basis (integral against basis functions). If the object 
is rotated wrt. to the lighting, we need to apply the inverse rotation to the lighting 
vector (in case of SH, use rotation matrix). 

At run-time, we need to lookup the transfer vector at every pixel (or vertex, 
depending on implementation). A (vertex/pixel)-shader then computes the dot-
product between the coefficient vectors. The result of this computation is the 
outgoing radiance at that point.
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PRT Results (using SH)PRT Results (using SH)

Unshadowed Shadowed (PRT)

On the left, you can see results down with previous techniques (no shadowing), and 
on the right using Precomputed Radiance Transfer.
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PRT Results (using SH)PRT Results (using SH)

Unshadowed Shadowed (PRT)
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PRT Results (using SH)PRT Results (using SH)

Unshadowed Shadowed (PRT)
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Demos
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• Reminder:

• Need lighting coefficient vector:

• Compute every frame (if lighting changes)

• Projection can e.g. be done using Monte-
Carlo integration, or on GPU

RenderingRendering
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Rendering is just the dot-product between the coefficient vectors of the light and the 
transfer.

The lighting coefficient vector is computed as the integral of the lighting against the 
basis functions (see slides about transfer coefficient computation).
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RenderingRendering

• Work that has to be done per-vertex is easy:

• Only shadows: independent of color 
channels ⇒ single transfer vector

• Interreflections: color bleeding ⇒ 3 vectors

// No color bleeding, i.e. transfer vector is valid for all 3 channels

for(j=0; j<numberVertices; ++j) {   // for each vertex
for(i=0; i<numberCoeff; ++i) {
vertex[j].red += Tcoeff[i] * lightingR[i];  // multiply transfer
vertex[j].green += Tcoeff[i] * lightingG[i];  //   coefficients with
vertex[j].blue += Tcoeff[i] * lightingB[i];  //   lighting coeffs.

}
}

Sofar, the transfer coefficient could be single-channel only (given that the 3-channel 
albedo is multiplied onto the result later on). If there are interreflections, color 
bleeding will happen and the albedo cannot be factored outside the precomputation. 
This makes 3-channel transfer vectors necessary, see next slide.
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RenderingRendering

• In case of interreflections (and color 
bleeding):

// Color bleeding, need 3 transfer vectors

for(j=0; j<numberVertices; ++j) {   // for each vertex
for(i=0; i<numberCoeff; ++i) {
vertex[j].red += TcoeffR[i] * lightingR[i];  // multiply transfer
vertex[j].green += TcoeffG[i] * lightingG[i];  //   coefficients with
vertex[j].blue += TcoeffB[i] * lightingB[i];  //   lighting coeffs.

}
}
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PrecomputationPrecomputation

• Integral

evaluated numerically with e.g. ray-tracing:

• Directions      need to be uniformly 
distributed (e.g. random)

• Visibility     is determined with ray-tracing
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The main question is how to evaluate the integral. We will evaluate it numerically 
using Monte-Carlo integration. This basically means, that we generate a random 
(and uniform) set of directions s_j, which we use to sample the integrand. All the 
contributions are then summed up and weighted by 4*pi/(#samples).

The visibility V(p->s) needs to be computed at every point. The easiest way to do 
this, is to use ray-tracing.

-------------------------------------------------
Aisde: uniform random directions can be generated the following way.
1) Generate random points in the 2D unit square (x,y)
2) These are mapped onto the sphere with:

theta = 2 arccos(sqrt(1-x))
phi = 2y*pi
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Basis 16Basis 16

Basis 17Basis 17

Basis 18Basis 18

illuminateilluminate resultresult

......

......

Precomputation – VisuallyPrecomputation – Visually

Visual explanation 2):

This slide illustrates the precomputation for direct lighting.  Each image on the right 
is generated by placing the head model into a lighting environment that simply 
consists of the corresponding basis function (SH basis in this case illustrated on the 
left.)  This just requires rendering software that can deal with negative lights.

The result is a spatially varying set of transfer coefficients shown on the right.

To reconstruct reflected radiance just compute a linear combination of the transfer 
coefficient images scaled by the corresponding coefficient for the lighting 
environment.
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Precomputation – CodePrecomputation – Code
// p: current vertex/pixel position
// normal: normal at current position
// sample[j]: sample direction #j (uniformly distributed)
// sample[j].dir: direction
// sample[j].SHcoeff[i]: SH coefficient for basis #i and dir #j

for(j=0; j<numberSamples; ++j) {
double csn = dotProduct(sample[j].dir, normal);
if(csn > 0.0f) {
if(!selfShadow(p, sample[j].dir)) {     // are we self-shadowing?
for(i=0; i<numberCoeff; ++i) {
value = csn * sample[j].SHcoeff[i]; // multiply with SH coeff.
result[i] += albedo * value;        //          and albedo

}
}

}
}
const double factor = 4.0*PI / numberSamples; // ds (for uniform dirs)
for(i=0; i<numberCoeff; ++i) 

Tcoeff[i] = result[i] * factor;          // resulting transfer vec.

Pseudo-code for the precomputation.

The function selfShadow( p, sample[j].dir ) traces a ray from position p in direction 
sample[j].dir. It returns true if there it hits the object, and false otherwise.
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Precomputation –
Interreflections
Precomputation –
Interreflections
• Light can interreflect from positions    ontoqq

Object

qq pp

pp

qsrqsr

psrpsr
direct

indirect

qsrqsr

Not only shadows can be included into PRT, but also interreflections.

Light arriving at a point q can be subsequently scattered onto a point p. I.e. light 
arriving from s_q can arrive at p, although there is may be no direct path (along s_q) 
to p (as in this example).

Note, that light is arriving from infinity, so both shown direction s_q originate from 
the same point in infinity.
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Precomputation –
Interreflections
Precomputation –
Interreflections

• Light can interreflect from positions   , where 
there is self-shadowing:
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More formally, we do not only have direct illumination L_0, but also light arriving 
from directions s, where there is self-shadowing (i.e. 1-V(P->s)). The light arrives 
from positions q, which are the first hit along s.
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Precomputation –
Interreflections
Precomputation –
Interreflections

• Precomputation of transfer vector has to be 
changed

• An additional bounce b is computed with

where       is from the pure shadow pass

• Final transfer vector:
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To account for interreflections, the precomputation has to be changed again.

Each additional bounce b generates a vector T^b_p = [t^b_{p,0}, …], which is 
computed as shown on the slide. Each of these additional transfer vectors is for a 
certain bounce.

To get the final transfer vector, they have to be added. Again, the run-time remains 
the same!
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Interreflections (using SH)Interreflections (using SH)

No Shadows/Inter              Shadows                No Shadows/Inter              Shadows                Shadows+InterShadows+Inter

This set of images shows the buddha model lit in the same lighting environment, 
without shadows, with shadows and with shadows and inter reflections.
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Choice of Basis FunctionsChoice of Basis Functions

• Criteria
– Want few coefficients, good quality

– No flickering

– People have used: 
• Spherical Harmonics

• Haar Wavelets

• Steerable basis functions
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PRT Quality – SH basisPRT Quality – SH basis

20°20°

40°40°

0°0°

n=2n=2
linearlinear

n=3n=3
quadraticquadratic

n=4n=4
cubiccubic

n=5n=5
quarticquartic

n=6n=6
quinticquintic

n=26n=26 n=26n=26
windowedwindowed

RTRT

Quality of SH solution. 
0 degree (point light) source, 20 degree light source, 40 degree light-source.
Light is blocked by a blocker casting a shadow onto the receiver plane. Different 
order of SH is shown (order^2 = number of basis functions). Very right: exact 
solution.
As stated before, lighting is assumed low-frequency, i.e. point light doesn't work 
well, but large area lights do!
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PRT with Haar WaveletsPRT with Haar Wavelets
• Main difference to SH:

– Haar needs to precompute
and keep all lighting/ 
transfer coefficients!

– Decide depending on 
lighting, which ones to use! 
(see right)

– Implies (compressed) 
storage of all transport 
coefficients (64*64*6)

– Not well-suited to hardware 
rendering

Courtesy Courtesy 
RenRen NgNg

As shown in the comparison on the right, with more coefficients, wavelets do much 
better represent the lighting than the SH (which show a lot of ringing artifacts).

There are a few differences when using Haar instead of SH:
1) All transfer coefficients need to be computed and stored!
2) Because which of the actual N coefficients are used, is decided at run-time 

based on the lighting's most important N coefficients (N=100 seems sufficient).
3) This requires all transfer coefficients to be stored as well (can be compressed 

well, like lossy wavelet compressed images).
4) Since the coefficients to be used change at run-time, this is not well-suited to a 

GPU implementation (but works great on a CPU)
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ConclusionsConclusions

Pros:

• Fast, arbitrary dynamic lighting

• PRT: includes shadows and interreflections

Cons:

• Simple implementation works well only for 
low-frequency lighting
– High-frequency shadows need Wavelets + 

compression to make it fast!
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Diffuse PRTDiffuse PRT

• Questions?
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