
Fences in Weak Memory Models: Appendix

Jade Alglave1, Luc Maranget1, Susmit Sarkar2, and Peter Sewell2

1 INRIA 2 University of Cambridge

Abstract. We present an axiomatic framework, implemented in Coq, to
define weak memory models w .r .t . several parameters: local reorderings
of reads and writes, and visibility of inter and intra processor communica-
tions through memory, including full store atomicity relaxation. Thereby,
we give a formal hierarchy of weak memory models, in which we provide
a formal study of what should be the action and placement of fences to
restore a given model such as SC from a weaker one. Finally, we provide
a tool, diy, that tests a given machine to determine the architecture it ex-
hibits. We detail the results of our experiments on Power and the model
we extract from it. This identified an implementation error in Power 5
memory barriers (for which IBM is providing a software workaround);
our results also suggest that Power 6 does not suffer from this problem.

We present here additional data and explanations, as well as the proof sketches
of the results that appear in the paper. Moreover, our results are entirely im-
plemented in the Coq proof assistant: the development is available at http:

//moscova.inria.fr/~alglave/wmm/.

1 Tables of notations

Communication relaxations

diy relaxation Relation Source Target Processor Location

Rfe
rfe
→ W R Different Same

Rfi
rfi
→ W R Same Same

Wse
wse
→ W W Different Same

Wsi
wsi
→ W W Same Same

Fre
fre
→ R W Different Same

Fri
fri
→ R W Same Same

Program order relaxations

Program order proper



diy relaxation Relation Source Target Processor Location

PosRR
⋃

ℓ

po
→ ∩(Rℓ × Rℓ) R R Same Same

PodRR
⋃

ℓ1 6=ℓ2

po
→ ∩(Rℓ1 × Rℓ2) R R Same Diff

PosRW
⋃

ℓ

po
→ ∩(Rℓ × Wℓ) R W Same Same

PodRW
⋃

ℓ1 6=ℓ2

po
→ ∩(Rℓ1 × Wℓ2) R W Same Diff

PosWW
⋃

ℓ

po
→ ∩(Wℓ × Wℓ) W W Same Same

PodWW
⋃

ℓ1 6=ℓ2

po
→ ∩(Wℓ1 × Wℓ2) W W Same Diff

PosWR
⋃

ℓ

po
→ ∩(Wℓ × Rℓ) W R Same Same

PodWR
⋃

ℓ1 6=ℓ2

po
→ ∩(Wℓ1 × Rℓ2) W R Same Diff

Dependencies

diy relaxation Relation Source Target Processor Location

DpsR
⋃

ℓ

dp
→ ∩(Rℓ × Rℓ) R R Same Same

DpdR
⋃

ℓ1 6=ℓ2

dp
→ ∩(Rℓ1 × Rℓ2) R R Same Diff

DpsW
⋃

ℓ

dp
→ ∩(Rℓ × Wℓ) R W Same Same

DpdW
⋃

ℓ1 6=ℓ2

dp
→ ∩(Rℓ1 × Wℓ2) R W Same Diff

Barriers relaxations: base cases

Sync

diy relaxation Relation Source Target Processor Location
SyncsRR

⋃

ℓ

sync
→ ∩(Rℓ × Rℓ) R R Same Same

SyncdRR
⋃

ℓ1 6=ℓ2

sync
→ ∩(Rℓ × Rℓ) R R Same Diff

SyncsRW
⋃

ℓ

sync
→ ∩(Rℓ × Wℓ) R W Same Same

SyncdRW
⋃

ℓ1 6=ℓ2

sync
→ ∩(Rℓ × Wℓ) R W Same Diff

SyncsWR
⋃

ℓ

sync
→ ∩(Wℓ × Rℓ) W R Same Same

SyncdWR
⋃

ℓ1 6=ℓ2

sync
→ ∩(Wℓ × Rℓ) W R Same Diff

SyncsWW
⋃

ℓ

sync
→ ∩(Wℓ × Wℓ) W W Same Same

SyncdWW
⋃

ℓ1 6=ℓ2

sync
→ ∩(Wℓ × Wℓ) W W Same Diff

LwSync

diy relaxation Relation Source Target Processor Location
LwSyncsRR

⋃

ℓ

lwsync
→ ∩(Rℓ × Rℓ) R R Same Same

LwSyncdRR
⋃

ℓ1 6=ℓ2

lwsync
→ ∩(Rℓ × Rℓ) R R Same Diff

LwSyncsRW
⋃

ℓ

lwsync
→ ∩(Rℓ × Wℓ) R W Same Same

LwSyncdRW
⋃

ℓ1 6=ℓ2

lwsync
→ ∩(Rℓ × Wℓ) R W Same Diff

LwSyncsWR
⋃

ℓ

lwsync
→ ∩(Wℓ × Rℓ) W R Same Same

LwSyncdWR
⋃

ℓ1 6=ℓ2

lwsync
→ ∩(Wℓ × Rℓ) W R Same Diff

LwSyncsWW
⋃

ℓ

lwsync
→ ∩(Wℓ × Wℓ) W W Same Same

LwSyncdWW
⋃

ℓ1 6=ℓ2

lwsync
→ ∩(Wℓ × Wℓ) W W Same Diff



Barriers relaxations: A-cumulativity

Sync

diy relaxation Relation Source Target Processor Location

ACSyncsRR
⋃

ℓ

rfe
→; (

sync
→ ∩(Rℓ × Rℓ)) R R Same Same

ACSyncdRR
⋃

ℓ1 6=ℓ2

rfe
→; (

sync
→ ∩(Rℓ × Rℓ)) R R Same Diff

ACSyncsRW
⋃

ℓ

rfe
→; (

sync
→ ∩(Rℓ × Wℓ)) R W Same Same

ACSyncdRW
⋃

ℓ1 6=ℓ2

rfe
→; (

sync
→ ∩(Rℓ × Wℓ)) R W Same Diff

LwSync

diy relaxation Relation Source Target Processor Location

ACLwSyncsRR
⋃

ℓ

rfe
→; (

lwsync
→ ∩(Rℓ × Rℓ)) R R Same Same

ACLwSyncdRR
⋃

ℓ1 6=ℓ2

rfe
→; (

lwsync
→ ∩(Rℓ × Rℓ)) R R Same Diff

ACLwSyncsRW
⋃

ℓ

rfe
→; (

lwsync
→ ∩(Rℓ × Wℓ)) R W Same Same

ACLwSyncdRW
⋃

ℓ1 6=ℓ2

rfe
→; (

lwsync
→ ∩(Rℓ × Wℓ)) R W Same Diff

Barriers relaxations: B-cumulativity

Sync

diy relaxation Relation Source Target Processor Location

BCSyncsRW
⋃

ℓ
(
sync
→ ∩(Rℓ × Wℓ));

rfe
→ R W Same Same

BCSyncdRW
⋃

ℓ1 6=ℓ2
(
sync
→ ∩(Rℓ × Wℓ));

rfe
→ R W Same Diff

BCSyncsWW
⋃

ℓ
(
sync
→ ∩(Wℓ × Wℓ)); rfe W W Same Same

BCSyncdWW
⋃

ℓ1 6=ℓ2
(
sync
→ ∩(Wℓ × Wℓ));

rfe
→ W W Same Diff

LwSync

diy relaxation Relation Source Target Processor Location

BCLwSyncsRW
⋃

ℓ
(
lwsync
→ ∩(Rℓ × Wℓ));

rfe
→ R W Same Same

BCLwSyncdRW
⋃

ℓ1 6=ℓ2
(
lwsync
→ ∩(Rℓ × Wℓ));

rfe
→ R W Same Diff

BCLwSyncsWW
⋃

ℓ
(
lwsync
→ ∩(Wℓ × Wℓ));

rfe
→ W W Same Same

BCLwSyncdWW
⋃

ℓ1 6=ℓ2
(
lwsync
→ ∩(Wℓ × Wℓ));

rfe
→ W W Same Diff

2 Properties of validity

From our definition of validity arises a simple notion of comparison among ar-
chitectures. A1 ≤ A2 means that A1 is weaker than A2:

Definition 1 (Weaker).

A1 ≤ A2 , (
ppo1→ ⊆

ppo2→ ) ∧ (
grf1→⊆

grf2→ )



2.1 Validity is decreasing

We prove validity of an execution to be decreasing w.r.t the weaker predicate;
thus, a weak architecture exhibits at least all the behaviours authorised by a
stronger one:

Theorem 1 (Validity is decreasing).

∀A1A2, (A1 ≤ A2) ⇒ (∀X, Aǫ

2. valid(X) ⇒ Aǫ

1. valid(X))

Proof (in Coq). From A1 ≤ A2, we immediately have A1.ghb ⊆ A2.ghb, thus if
A2.ghb is acyclic, so is A1.ghb. ⊓⊔

2.2 Monotonicity of validity

Programs running on an architecture A1 exhibit executions that would be valid
on a stronger architecture A2; we characterise all such executions as follows:

A1. checkA2
(X) , acyclic(

grf2→ ∪
ws
→ ∪

fr
→ ∪

ppo2→ )

Theorem 2 (Characterisation).

∀A1A2, (A1 ≤ A2) ⇒ (∀X, (Aǫ

1. valid(X) ∧ A1. checkA2
(X)) ⇔ Aǫ

2. valid(X))

Proof (in Coq).

⇒ X being valid on A1, we have all requirements – well formedness and uniproc
– to guarantee it is valid on A2, except the last predicate, which holds by
the hypothesis checkA2

.
⇐ X being valid on A2 gives us all requirements – well formedness and uniproc

– to guarantee its validity on A1 except the last one. As A1 ≤ A2, we know
that A1.ghb ⊆ A2.ghb (lemma ghb incl), thus the acyclicity requirement for
A1.ghb holds if A2.ghb is acyclic. ⊓⊔

3 Examples of models in our framework

3.1 SC

Definitions

Sc , (MM ,
rf
→, ∅)

hb-seq
→ ,

ws
→ ∪

fr
→ ∪

rf
→

Sc characterisation

Corollary 1 (Sc characterisation).

∀A, (A ≤ Sc) ⇒ (∀X, validAX ∧ A. checkSc X ⇔ Sc. validX)

Proof (in Coq).

⇒ As
po
→ ∪

hb-seq
→ = Sc.ghb, this is a direct consequence of thm. 2.

⇐ as A ≤ Sc, this is a direct consequence of thm. 1. ⊓⊔



Sc is SC SC has been defined in [1] as follows:

[. . . ] the result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified
by its program.

Thus an SC execution is a total order
ex
→ consistent with the program order:

seq(
ex
→) , total-order(

ex
→, E) ∧

po
→ ⊆

ex
→

The implicit execution model of [1] states that a read r takes its value from

the most recent write that precedes it in
ex
→. Writing pw(o, r) for the set of writes

to the same location that precede r according to partial order o, we extract our
rf
→ relation from

ex
→ as follows:

pw(
ex
→, r) , {w | loc(w) = loc(r) ∧ w

ex
→ r}

SC.rf(
ex
→) , {(w, r) | w = max

ex
→

(

pw(
ex
→, r)

)

}

We extract write serialisation as well, and one of our execution witnesses from
ex
→, which we use to show that the SC definition from [1] is equivalent to ours:

SC.ws(
ex
→) ,

⋃

ℓ

(Wℓ × Wℓ) ∩
ex
→

SC.wit(
ex
→) , (E,

po
→,SC.rf(

ex
→),SC.ws(

ex
→))

Theorem 3 (Sc is SC ).

∀X, Sc. valid(X) ⇔ ∃
ex
→, seq(

ex
→) ∧ SC.wit(

ex
→) = X

Proof (in Coq).

⇒ from X being valid on Sc, we have acyclic(
ghb
→ ), that is acyclic(

hb-seq
→ ∪

po
→)

on Sc, which gives us an equivalent SC execution by Cor. 1.
⇐ from

ex
→, we produce a SC.wit which is valid by Thm. 1.

⊓⊔

3.2 TSO

Definitions
ppo-tso
→ , RM ∪WW

Tsoǫ
, (

ppo-tso
→ ,

rfe
→, ∅)

hb-tso
→ ,

ws
→ ∪

fr
→ ∪

rfe
→



Tso characterisation By Thm. 2 we show the following criterion – where
hb-tso
→

is
ws
→ ∪

fr
→ ∪

rfe
→ – characterises valid executions that are Tso∗ on any A ≤ Tso:

A. checkTso(X) , acyclic(
ppo-tso
→ ∪

hb-tso
→ )

Corollary 2 (Tso characterisation).

∀A, (A ≤ Tso) ⇒ (∀X, validAX ∧ A. checkTso X ⇔ validTso(X))

Proof (in Coq).

⇒ As
ppo-tso
→ ∪

hb-tso
→ = Tso.

ghb
→ , this is a direct consequence of thm. 2.

⇐ as A ≤ Tso, this is a direct consequence of thm. 1. ⊓⊔

Tso is TSO

Equivalence with the native model Sparc [3, V. 8, Appendix K] formally defines

a TSO execution as a partial order
ex
→ on memory events constrained by some

axioms that constrain
ex
→. We formulate1 those as follows:

ptso(
ex
→) , partial-order(

ex
→, E) ∧ RM ⊆

ex
→∧ WW ⊆

ex
→∧

∃
tso
→,

tso
→⊆

ex
→ ∧ total-order(

tso
→, W)

Note that
tso
→ above is the postulated total order on stores that justify the

name TSO . An additional axiom, Value, where La (resp. Sa) is the notation
of [3] for a load (resp. a store) with location a:

V al(La) = V al(max
ex
→

{Sa | Sa

ex
→ La ∨ Sa

po
→ La})

[. . . ] states that the value of a data load is the value written by the most
recent store to that location. Two terms combine to define the most recent
store. The first corresponds to stores by other processors, while the second
corresponds to stores by the processor that issued the load.

We relate Sparc TSO and our Tso by interpreting the Value axiom as specifying
rf
→, and extract

ws
→ from

ex
→, as we did in the Sc case:

TSO.rf(
ex
→) , {(w, r) | w = max

ex
→

(

pw(
ex
→∪

po
→, r)

)

}

TSO.ws(
ex
→) , {(w1, w2) | ∃l, (w1, w2) ∈ (Wl × Wl) ∧ w1

ex
→ w2}

TSO.wit(
ex
→) , (E,

po
→,TSO.rf(

ex
→),SC.ws(

ex
→))

Theorem 4 (Tso is TSO).

∀X,Tso∗
. valid(X) ⇔ ∃

ex
→, ptso(

ex
→) ∧ TSO.wit(

ex
→) = X

1 We omit the axioms Atomicity and Termination.



Proof (in Coq).

⇒ from X being valid on Tso, we have acyclic(
ghb
→ ), that is acyclic(

hb-tso
→ ∪

po-tso
→ )

on Tso, which gives us an equivalent TSO execution by Cor. 2.
⇐ from

ex
→, we produce a TSO.wit which is valid by Thm. 1.

⊓⊔

4 Barriers

From now on, we note A.
hb-seq
→ ′ for

?rfe
→ ∪(

ws
→;

?rfe
→ )∪(

fr
→;

?rfe
→ ∪

ws
→∪

fr
→. We trivially

have A.
hb-seq
→ ⊆ A.

hb-seq
→ ′, and that

hb-seq
→ ′ is transitive.

A key lemma is that forall relation
r
→ over events, such that there is a cycle

in
hb-seq
→ ∪

r
→, then there is a cycle in

hb-seq
→ ′; (

+ r
→).

4.1 Barriers guarantee

Consider two architectures A1 ≤ A2. We define the predicate fb (fully barriered)

on A1 ≤ A2, where
r2\1→ ,

r2→ \
r1→ is the set difference, and x

r1→;
r2→ y , ∃z, x

r1→ z ∧ z
r2→ y

stands for the sequence:

A1. fbA2
(X) ,

(

(
ppo2\1→ ) ∪ (

grf2\1→ ;
ppo2→ )

)

⊆
ab1→

We prove that the above condition on
ab1→ suffices to restore A2 from A1:

Theorem 5 (Barriers guarantee).

∀A1A2, (A1 ≤ A2) ⇒ (∀X, A1. valid(X) ∧ A1. fbA2
(X) ⇒ Aǫ

2. valid(X))

Proof (in Coq).

Let relation
hb’2→ be

?rfe2→ ∪ (
ws
→;

?rfe2→ ) ∪ (
fr
→;

?rfe2→ ) ∪
ws
→ ∪

fr
→, and relation

hb”2→

be (
?rfi2→ ∪

ppo2→ )
+
. We prove that

?rf2→ ∪
ws
→ ∪

fr
→ ∪

ppo2→ is acyclic if and only if
R2=

hb’2→ ;
hb”2→ is. Then, to prove the theorem it suffices to prove that

ghb1→ is cyclic
whenever R2 is.

Let us consider a cycle in R2. Because m1
rf
→ m2

hb’2→ m3 implies m1
hb’2→ m3,

we can safely assume that no
hb”2→ step ends by a

?rfi1→ step. Then, as no two
rfi
→

steps can follow one another, condition A1. fbA2
(X) suffices to guarantee the

inclusion R2 ⊆ (
ghb1→ )+ and conclude. ⊓⊔

4.2 Considering a weaker barriers guarantee

When two architectures A2 and A1 have the same policy w .r .t . the store atom-
icity and store buffer relaxations, which we model by

grf1→=
grf2→ , there is no need

for a barrier as powerful as above to restore A2 from A1: a barrier that only
orders the events that surround it statically—that is, a non cumulative barrier,
which action we model by non-cumul(X,

fenced
→ ) ,

fenced
→ —is enough. Consider



the wfb predicate, which states that the barriers provided by A1 maintain the
pairs that are preserved in the program order on A2 but not on A1.:

A1.wfbA2
(X) ,

ppo2\1→ ⊆
ab1→

The same guarantee applies if A2 hinders the store buffer relaxation by its

preserved program order, i.e. when
rfi
→ ⊆

ppo2→ —which is particular to Sc:

Theorem 6 (Non cumulative barriers guarantee).

∀A1A2, ((A1 ≤ A2) ∧ (
grf1→ =

grf2→ ∨(
rfi
→ ⊆

ppo2→ ))) ⇒

(∀X, A1. valid(X) ∧ A1.wfbA2
(X) ⇒ Aǫ

2. valid(X))

Proof (in Coq). As for Thm. 5 we need prove R2 = (
hb’2→ ;

hb”2→ ) ⊆ (
ghb1→ )+. First,

by hypothesis ext1 = ext2, we get
hb’2→ =

hb’1→ ⊆
ghb1→ . Second, we prove

hb”2→ ⊆
(
ghb1→ )

+
, by considering each step in

hb”2→ . For a particular step m1
ppo2→ m2, we

have either m1
ppo1→ m2 ⇒ m1

ghb1→ m2, or m1
ppo2\1→ m2 ⇒ m1

ab1→m2 ⇒ m1
ghb1→ m2.

While for all
rfi
→ steps, we conclude either by

rfi
→ ⊆

ghb1→ — when int2 = int1 =

true, or by
rfi
→ ⊆

ppo2→ . ⊓⊔

From Tso to Sc As
rfe
→ are global in both Tso and Sc, and Sc hinders the store

buffering relaxation by its
ppo
→ definition, it suffices by Thm. 6 to fence all pairs

in
ppo-sc
→ \

ppo-tso
→ = WR (where WR , (W × R) ∩

po
→) to restore Sc from Tso:

Corollary 3 (Barriers restoring Sc from Tso).

∀X, (Tso. valid(X) ∧ non-cumul(X,WR) ⊆
abTso→ ) ⇒ Sc. valid(X))

From Pso to Tsoǫ We comment here on the two definitions of PSO given in
Sparc documentations [3]. We adapt the definition of [3, V8] to our framework:

Psoǫ.Arch , (λX.RM ,
rfe
→, λX.∅)

Tso and Pso agree on both the store atomicity and the store buffering relax-
ations, which allows us to apply Thm. 6: Tsoǫ is restored from Pso by inserting
non cumulative barriers between all

ppo-tso
→ \

ppo-pso
→ = WW pairs. Indeed, TSO

is obtained from PSO by adding StoreStore barriers after each write [3, V9].

5 diy

5.1 Cycles generation

A type edge represents the arrows of an execution witness. It can be in
rf
→,

ws
→,

fr
→: their source and target share the same location and have the appropriate



directions (e.g.
rf
→ has a write as source and a read as target). Similarly to

rfi
→

and
rfe
→, we define

wsi
→ and

wse
→ ,

fri
→ and

fre
→. An edge can also be in

po
→,

dp
→ or

fenced
→ ,

where we need to specify the source and target directions (except for
dp
→ whose

source is a read by definition), and if they share the same location.

We specify a concrete syntax for the edges: thus Rfe represents a
rfe
→ arrow,

Fre a
fre
→ arrow, PosRW specifies a

po
→ arrow with a read (R) as source, a write

(W) as target, knowing these events share the same location (s), and DpdR a
dp
→

arrow with a read (R) as target, with different (d) source and target locations.
We define two relations

relax
→ and

safe
→ , whose default values are respectively

po
→ ∪

rf
→ and

ws
→ ∪

fr
→ ∪

dp
→ ∪

fenced
→ . They can be modified by an input of the user:

e.g. on a x86 machine, which has a Tso model [2],
rfe
→ can be specified as safe.

We show a cycle in
hb-seq
→ ∪

po
→ is a cycle in

(relax) +
→ ∪

(safe) +
→ ∪

(relax) +
→ ;

(safe) +
→ .

Thus, a test violating Sc corresponds to a cycle in this second relation. But we do
not generate cycles with more than one relaxation: if a test exhibits a relaxation,
we cannot decide which one is responsible. A cycle Rfe; DpsW; Fre determines

whether
rfe
→ is global or not since

dp
→ and

fr
→ are safe, whereas Rfe; DpsW; Rfi;

Fre is inconclusive as it exercises both
rfe
→ and

rfi
→. We also generate the cycles

exhibiting no relaxation (in
(safe) +
→ ), to test our assumption

safe
→ is global.

5.2 Code generation

diy interprets a sequence of edges as a cycle from which it computes a litmus
test or fails. One of its execution witnesses includes a cycle compliant with the
input edges sequence. The final condition is a conjunction of equalities over the
final state of registers and memory locations characterising this cycle.

Test generation performs the following successive steps.

1. We map the edges sequence to a circular double-linked list, whose cells repre-
sent memory events, with direction, location, and value fields. An additional
field records the edge starting from the event. This list represents the input
cycle and appear in at least one of the execution witnesses of the produced
test.

2. A linear scan sets the events directions, by comparing each target direction
with the following source direction. When equal, the in-between cell direction
is set to the common value; otherwise (e.g. Rfe; Rfe), the generation fails.

3. If no event e has an incoming edge specifying a location change, generation
fails. Otherwise, a linear scan starting from e sets the locations. We reject
the cycles where e and its predecessor have different locations (e.g. Rfe;
PodRW).

4. We cut the input cycle into maximal sequences of events with the same
location, each being scanned w .r .t . the cycle order: we give the value 1 to
the first write in this sequence, 2 to the second one, etc. Thus the values also
reflect the write serialisation order for the specified location.



5. Significant reads are the sources of
fr
→ edges and the targets of

rf
→ edges.

They are associated with the write on the other side of the edge. In the
rf
→

case, the value of the read is the one of its associated write. In the
fr
→ case,

the value of the read is the value of the predecessor of its associated write
in

ws
→, i.e. by construction the value of its associated write minus 1. Non

significant reads do not appear in the test condition.
6. We cut the cycle into maximal sequences of events from the same processor,

each being scanned, generating load instructions to (resp. stores from) fresh
registers for reads (resp. writes). We insert code implementing a dependency

in front of events targeting
dp
→ and the appropriate barrier instruction for

events targeting
fenced
→ edges. We built initial state at this step: stores and

loads take their addresses from fresh registers whose content (a memory
location) is defined in the initial state. Part of the final condition is also
built: for any significant read with value v resulting in a load instruction to
register r, we add the equality r = v.

7. We complete the final condition to characterise write serialisations. The write
serialisation for a given location x is defined by the sequence of values 0
(initial value of x), . . . , n, where n is the last value allocated for location x

at step 4. If n is 0 or 1 then no addition to the final condition needs to be
performed, because the write serialisation is either a singleton or a pair. If
n is 2, we add the equality x = 2. Otherwise (n > 2), we add an observer to
the program, i.e. we add a thread performing n loads from x to r1, . . . , rn

and add the equalities r1 = 1 ∧ . . . ∧ rn = n to the final condition.

References

1. L. Lamport. How to Make a Correct Multiprocess Program Execute Correctly on
a Multiprocessor. IEEE Trans. Comput., 46(7):779–782, 1979.

2. S. Owens, S. Sarkar, and P. Sewell. A Better x86 Memory Model: x86-TSO. In
TPHOL 2009.

3. Sparc Architecture Manual Versions 8 and 9, 1992 and 1994.


