
THÈSE

présentée à

l’Université Paris 7 – Denis Diderot

pour obtenir le titre de

Docteur en Informatique

A Shared Memory Poetics

soutenue par

Jade Alglave

le 26 Novembre 2010

Jury

Président Ahmed Bouajjani

Rapporteurs Gérard Boudol

Maurice Herlihy

Examinateurs Peter O’Hearn

Peter Sewell

Directeurs Jean-Jacques Lévy

Luc Maranget

Contents

I Preamble 11

1 Introduction 13

1.1 Context . 13

1.1.1 Early Days (1979 – 1995) 13

1.1.2 Recent Days (2002 – 2010) 19

1.2 Contribution . 20

1.2.1 A Generic Framework 20

1.2.2 A Testing Tool . 20

1.2.3 Synchronisation . 21

1.2.4 Remainder . 21

2 Preliminaries 23

2.1 Relations . 23

2.1.1 Basic Definitions . 23

2.1.2 Orders . 24

2.2 Linear Extension . 25

2.3 A Key Lemma . 25

2.3.1 Hexa Relation . 26

2.3.2 Proof of the Result . 27

II A Generic Framework For Weak Memory Models 29

3 A Generic Framework 33

3.1 Basic Objects . 33

3.1.1 Events and Program Order 35

3.2 Execution Witnesses . 35

3.2.1 Read-From Map . 38

3.2.2 Write Serialisation . 38

3.2.3 From-Read Map . 39

3.2.4 All Together . 39

3.3 Global Happens-Before . 40

3.3.1 Globality . 41

3

3.3.2 Preserved Program Order 42

3.3.3 Barriers Constraints 42

3.3.4 Architectures . 43

3.3.5 Examples . 44

3.4 Validity of an Execution . 45

3.4.1 Uniprocessor Behaviour 45

3.4.2 Thin Air . 48

3.4.3 Validity . 49

3.5 Comparing Architectures . 50

3.5.1 Validity Is Decreasing 50

3.5.2 Monotonicity of Validity 50

4 Classical Models 53

4.1 Implementing an Architecture 53

4.1.1 Building an Execution Witness From an Order 54

4.1.2 Sketch of Proof . 57

4.2 A Hierarchy of Classical Models 59

4.2.1 Sequential Consistency (SC) 60

4.2.2 The Sparc Hierarchy 61

4.2.3 Alpha . 65

4.2.4 RMO and Alpha Are Incomparable 67

5 Related Work 71

5.1 Generic Models . 71

5.2 Global-Time vs. View Orders 72

5.3 Axiomatic vs. Operational . 72

5.4 Characterisation of Behaviours 73

5.5 Memory Models As Program Transformations 73

III Testing Weak Memory Models 75

6 Relaxations 79

6.1 A Brief Glance at the Power Documentation 79

6.1.1 Axioms of Our Model 79

6.1.2 Store Buffering . 80

6.1.3 Load-Load Pairs . 81

6.1.4 Load-Store Pairs . 81

6.1.5 Barriers . 82

6.2 Candidate Relaxations . 85

6.2.1 Communication Candidate Relaxations 85

6.2.2 Program Order Candidate Relaxations 85

6.2.3 Barriers Candidate Relaxations 86

6.2.4 Dependencies Candidate Relaxations 87

6.2.5 Composite Candidate Relaxations 88

6.3 A Preliminary Power Model 89

7 Diy, A Testing Tool 91

7.1 Litmus Tests . 92

7.1.1 Highlighting Relaxations 92

7.1.2 Exercising One Relaxation at a Time 92

7.2 Cycles as Specifications of Litmus Tests 93

7.2.1 Automatic Test Generation 93

7.2.2 Cycles Generation . 95

7.3 Code Generation . 96

7.3.1 Algorithm . 96

7.3.2 Example . 97

7.4 A First Testing Example: x86-TSO 98

7.4.1 A Guided Diy Run . 99

7.4.2 Configuration Files . 101

8 A Power Model 103

8.1 The Phat Experiment . 104

8.1.1 Relaxations Observed on squale, vargas and hpcx . . 104

8.1.2 Safe Relaxations . 104

8.2 Overview of Our Model . 106

8.2.1 Additional Formalism 106

8.2.2 Description of the Model 110

8.3 Discussion of Our Model . 118

9 Related Work 121

IV Synchronisation in Weak Memory Models 123

10 Synchronisation 127

10.1 Covering and well-founded relations 127

10.1.1 Covering relations . 127

10.1.2 Well-founded relations 128

10.2 DRF guarantee . 129

10.2.1 Competing accesses 129

10.2.2 Synchronising competing accesses in a weak execution 130

10.2.3 DRF guarantee . 131

10.3 Lock-free guarantee . 132

10.3.1 Fragile pairs . 132

10.3.2 Synchronising fragile pairs in a weak execution 133

10.3.3 Application to the Semantics of Barriers 134

10.3.4 Lock-free guarantee 137

10.4 Synchronisation idioms . 138

10.4.1 Atomicity . 139

10.4.2 Locks . 139

10.4.3 Lock-free synchronisation 145

11 Stability 149

11.1 Minimal cycles . 149

11.1.1 Violations . 149

11.1.2 Covering the minimal violations 151

11.1.3 Critical cycles . 151

11.1.4 A characterisation of the minimal cycles 154

11.2 Stability from any architecture to SC 155

12 Related Work 159

V Conclusion and Perspectives 163

13 Conclusion 165

13.1 Divining Chicken Entrails . 165

13.1.1 Reading the Documentations 165

13.1.2 Abstract Models . 166

13.1.3 Simple Formal Models 166

13.1.4 The Preserved Program Order Quest 167

13.1.5 Strong Programming Disciplines 167

13.2 A Reading Frame For Weak Memory Models 168

13.2.1 A Common Prism . 168

13.2.2 Tests as Specifications 168

14 Perspectives 169

14.1 Automatisation . 169

14.2 Formalisation of Diy . 169

14.3 Other Models And Paradigms 170

14.4 Testing Semantics For Weak Memory Models 170

14.5 Logics For Weak Memory Models 171

14.6 Partial Orders As a Model of Concurrency 172

VI Appendix 181

A Uniprocessor Equivalences 183

A.1 Some Handy Lemmas . 183

A.2 (Uni2) and (Uni3) Are Equivalent 184

A.3 (Uni1) and (Uni2) Are Equivalent 184

B A Word on the Coq Development 187
B.1 Overview of the Development 188
B.2 Basic Objects . 188

B.2.1 Basic Types . 188
B.2.2 Events and Program Order 190
B.2.3 Execution Witnesses 192

B.3 Architectures and Weak Memory Models 192
B.4 Proofs . 194

Acknowledgements

Oh! I get by with a little help
from my friends,
Hmm, I get high with a little
help from my friends,
Hmm, I’m gonna try with a
little help from my friends...

The Beatles—With a Little Help
from My Friends [LM67c]

Ça vous occupera pendant que je fais le zouave au tableau! Et aussi,
je ferai de bon cœur une dédicace manuscrite, ou je payerai une bière, à
quiconque se sentirait floué de n’avoir pas été remercié ici.

Quand vous entendez ce petit tintement, tournez la page.

9

Pierre Clairambault · Jean-Baptiste Tristan · Delphine
Longuet · Derek Williams · Xavier Leroy · Samuel Mimram
· Fabrice Lemoine · Thomas Braibant · Paul-André Mellies

· Ahmed Bouajjani
· Amélie Mouton ·

Damien Doligez ·
Peter O'Hearn ·
Vincent Jacques ·
Boris Yakobowski
· Emmanuel Beffara ·

Florian Horn · Stéphane Zimmerman ·
Celtique · David Durrleman · Moscova ·

Marion Kermann · Gunther

Sikler ·
Proval · Contraintes ·

Julien Martin · Luc Maranget · Philippe
Paul · David Baelde · Daniel
Hirschkoff · Alexandre
Buisse · Yann
Strozecki · Aquinas
Hobor · Nadia Mesrar · Julien Cristau · Peter Sewell ·
Brice Goglin · Nicolas Kornman · Sylvain Soliman ·
Arnaud Sangnier · Yves-Alexis Perez · Assia Mahboubi ·

Samuel Hym
· Gérard Boudol · Florent
Bouchy · Vincent Siles ·
Nicolas Guenot · Claire
David · Sam Hocevar · Emmanuel
Jeandel · Dider Rémy · Pierre
Weis · Cédric Augonnet · Sandrine Blazy · Miles Alglave
· Maurice Herlihy · Juliette Simonet · Johan Marcellan ·

Christian Gatore · Mexico · Runtime · Arthur Loiret ·
Étienne Lozes · Zaynah Dargaye · Roberto Di Cosmo ·
Thomas Lepoutre · Gallium · Pierre Habouzit · Cristiano
Calcagno ·

Susmit Sarkar ·
Cyril Brulebois ·

Jules Villard ·
Vladimir

Katchadourian ·
Jérémie Leymarie

· Jean-Jacques
Lévy · Samuel Thibault · Sylvain Schmitz · Sylvie Burini

Part I

Preamble

11

Chapter 1

Introduction

Roll up! Roll up for the magical
mystery tour, step right this
way!

The Beatles—Magical Mystery
Tour [LM67a]

1.1 Context

We give here a brief overview of the concepts that we will use throughout the
manuscript. We illustrate these concepts with related work that we enjoyed
reading, and that helped our comprehension of the vast area of weak memory
models. This is nowhere near an exhaustive state of the art, but rather an
overview of the work we found inspiring and from which our work inherits
crucial ideas. We give in Fig. 1.1 a timeline of some of the related work we
mention troughout the manuscript.

I guess that I had no idea how a program should behave. I may have been
quite the only one; indeed programmers seem to expect certain behaviours
and find others surprising when they run a program.

1.1.1 Early Days (1979 – 1995)

1.1.1.1 Sequential Consistency

Most of the time indeed, when writing a concurrent program, one expects (or
would like) it to behave according to L. Lamport’s Sequential Consistency
(SC) [Lam79], where:

[. . .] the result of any execution is the same as if the operations of
all the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in
the order specified by its program.

13

2010

2005

2000

1995

1990

1985

2007

2008

2006

1993

1992

1979

2003

1994

2009
PPC 2.06 [pow09]
Intel rev. 30 [int09]

2002

S. Adve and M. Hill’s Weak Ordering [AH]

1991

1988

1987

2004

S. Adve and H.-J. Boehm’s C++ foundation [BA]
S. Burckhardt and M. Musuvathi’s Efficient Enumeration Techniques for TSO [BMa]
PPC 2.05 [ppc07]
H.-J. Boehm’s Pthread’s Locks study [Boea]
S. Burckhardt et al’s Checkfence [BAM]

M. Herlihy’s Wait-Free Synchronisation [Her]

M. Dubois and C. Scheurich’s Memory Access Dependencies In Shared-Memory Multiprocessors [DS90]

D. Shasha and M. Snir’s delay set algorithm [SS]

M. Dubois and C. Scheurich’s Correct Memory Operation Of Cache Based Multiprocessors [SD87]

S. Burckhardt et al’s study of program transformations [BMS]
S. Adve and H.-J. Boehm’s position paper [AB]

Intel White Paper [int07]

H.-J. Boehm’s Threads Cannot Be Implemented As A Library [Boeb]

L. Lamport’s SC[Lam79]

Alpha’s Fourth Edition [alp02]

A. Adir et al’s pre-cumulativity, view order style Power model [AAS03]

Arvind and J.-W. Maessen’s Instruction Reordering + Store Atomicity [AM]

S. Hangal et al’s TSOTool [HVM+]

S. Adve’s thesis (DRF) [Adv93]

[Col92]

S. Adve and K. Gharachorloo’s tutorial [AG95]

Sparc V8 [spa92]
W. Collier’s framework

Sparc V9 [spa94b]

K. Gharachorloo’s thesis [Gha95]

Figure 1.1: Timeline of Selected Related Work

Consider for example the program given in Fig. 1.2(a), written in pseudo
code. On P0, we start with a store of value 1 to the memory location x,
labelled (a), followed in program order by a load from memory location y into
register r1, labelled (b). On P1, we have a store of value 1 in memory location
y, labelled (c), followed in program order by a load from memory location x

into register r2, labelled (d). The registers are private to a processor, while
the memory locations are shared.

We wonder whether the specified outcome—where r1 on P0 and r2 on
P1 hold 0 in the end—can be observed if we assume SC as the execution
model. The answer is no: SC authorises indeed only three final outcomes,
depicted in Fig. 1.2(b). Suppose for example that the instructions on P0 are
executed before the ones on P1; this corresponds to the first final state given
in Fig. 1.2(b). In this case, the location x holds 1 because of the store (a)
on P0; the load (b) reads the initial value of y, which is 0: hence r1 holds 0
in the end. Afterwards, P1 executes its instructions. The store (c) writes 1
into y, and the load (d) reads from the last store to x, which is (a). Since
(a) wrote 1 into x, r2 holds 1 in the end.

1.1.1.2 Weak Memory Models

However, for matters of performance, modern processors may provide fea-
tures that induce behaviours a machine with a SC model would never ex-
hibit, as L. Lamport already exposed in [Lam79]:

For some applications, achieving sequential consistency may not
be worth the price of slowing down the processors. In this case,
one must be aware that conventional methods for designing mul-
tiprocess algorithms cannot be relied upon to produce correctly
executing programs.

Consider for example the test given in Fig. 1.2(c). It is the same test
as in Fig. 1.2(a), but here it is written in x86 assembly. On P0, the MOV

[x], $1 instruction corresponds to the store (a) of Fig. 1.2(a), and the MOV

EAX, [y] corresponds to the load (b). Similarly on P1, the MOV [y], $1

instruction corresponds to the store (c), and the MOV EAX, [x] corresponds
to the load (d). Although we expected only three possible outcomes when
running this test, an x86 machine may exhibit the one which was specified
in Fig. 1.2(a), because the store-load pairs on each processor may be re-
ordered. Therefore, the load (b) on P0 may occur before the store (c) on P1:
in that case, the load (b) reads the initial value of y, which is 0. Similarly,
the load (c) on P1 may occur before the store (a) on P0, in which case (c)
reads the initial value of x, which is 0. Thus, we obtain r1=0 and r2=0 as
the final state.

Hence we cannot assume SC as the execution model of an x86 machine.
A program running on a multiprocessor behaves w .r .t . the memory model

Init: x=0; y=0;

P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

Observed? r1=0; r2=0;

(a) A Program

(a) (b) (c) (d): r1 = 0 ∧ r2 = 1

(c) (d) (a) (b): r1 = 1 ∧ r2 = 0

(a) (c) (b) (d): r1 = 1 ∧ r2 = 1

(b) The Three SC Outcomes for this program

{0:EAX=0; 1:EAX=0;

x=0; y=0;}

P0 | P1 ;

MOV [x],$1 | MOV [y],$1 ;

MOV EAX,[y] | MOV EAX,[x] ;

exists (0:EAX=0 /\ 1:EAX=0)

Condition is validated

(c) This Program in x86 Assembly

Figure 1.2: An Example

of the architecture. The memory models we studied are said to be weak,
or relaxed w .r .t . to SC, because they allow more behaviours than SC. For
example, such models may allow instruction reordering [AG95, AM]: reads
and writes may not be preserved in the program order, as we just saw with
the example of Fig. 1.2(a). Some of them [ita02, pow09] also relax the
store atomicity [AG95, AM] constraint. A write may not be available to all
processors at once: it could be e.g. at first initiated by a given processor,
then commited to a store buffer or a cache, and finally globally performed to
memory [DS90], at which point only it will be available for all processors to
see. Hence the value of a given write may be available to certain processors
sooner than to others.

Therefore one needs to understand precisely the definition and conse-
quences of a given memory model in order to predict the possible outcomes
of a running program. But some public documentations [int07, pow09] lack
formal definitions of these models. The effort of writing correct concurrent
programs is increased by the absence of precise, if not formal, definitions.

1.1.1.3 Synchronisation

SC is accepted as the most intuitive and simple memory model, as expressed
e.g . by S. Adve and M. Hill in [AH]:

[. . .] programmers prefer to reason about sequentially consistent
memory, rather than having to think about weaker memory, or
even write buffers.

Hence, for easier reasoning, the key idea is to specify a ”contract between
software and hardware”, such that [AH]:

[. . .] software agrees to some formally specified constraints, and
hardware agrees to appear sequentially consistent to at least the
software that obeys those constraints.

Data Race Freeness Guarantee As an example of such a contract,
S. Adve and M. Hill proposed the Data Race Freeness Guarantee (DRF
guarantee) [AH], ensuring a SC behaviour to a certain class of programs,
the correctly synchronised [MPA] ones. They observe that [AH]:

The problem of maintaining sequential consistency manifests it-
self when two or more processors interact through memory oper-
ations on common variables.

For example, the test of Fig. 1.2(a) illustrates exactly the above state-
ment: indeed it may exhibit a non-SC outcome, and involves two processors
communicating via two shared memory locations x and y.

So as to ensure that a program has a SC behaviour, S. Adve and M.
Hill proposed the DRF0 model. The DRF guarantee states that if there is a
mean to arbitrate the data races in a program, then this program can only
have SC executions. We consider that two memory accesses from distinct
processors form a data race when they both are relative to the same location
and one of them at least is a write.

In the example of Fig. 1.2(a), the store (a) on P0 and the load (d) on P1

form a data race. They belong to distinct processors, are both relative to
the memory location x, and (a) is a write. Symmetrically, the store (c) on
P1 and the load (b) on P0 form a data race relative to the memory location y.

Lock-Based Synchronisation The most common way of using the DRF
guarantee is mutual exclusion locks. Locks ensure a certain execution order
on the accesses they protect, hence can be used to arbitrate conflicts [HS08].
Locks authorise access to a given protected memory location if and only if a
certain flag (the lock) is free; otherwise, the processor willing to access the
location has to wait for the lock to be released by the processor currently
holding it.

Consider for example the test of Fig. 1.2(a), where the accesses (a) and
(d)—relative to x—are protected by the same lock ℓ, and the accesses (c)
and (b)—relative to y—by another lock ℓ′. This means that when the lock
ℓ is taken so that the access (a) is protected by ℓ, the access (d) has to wait
for the lock ℓ to be free, and then to take it, to occur. The same reasoning
applies for the accesses (c) and (b). The DRF guarantee ensures that the
only possible outcomes of the modified program are the SC ones, given in
Fig. 1.2(b).

However, locks suffer from several efficiency problems: they can induce
some long delay of waiting for the lock to be free; see for example [HS08,
18.1.1, p.417].

Lock-Free Synchronisation In order to avoid the cost of locks, other
synchronisation protocols were defined, such as lock-free synchronisation
protocols. These protocols use synchronisation instructions provided by the
architecture, such as barriers and composite synchronisation idioms, such
as test-and-set or compare-and-swap [HS08, Sec. 5.6, p.112].

Consider for example the test of Fig. 1.2(a). Suppose that we place a
barrier between (a) and (b) on P0, and another one between (c) and (d) on
P1, such that these barriers prevent the reordering of write-read pairs. In
this case, (a) and (b) cannot be reordered anymore; neither can (c) and (d).
Therefore, the only possible outcomes of the modified program are the SC
ones given in Fig. 1.2(b).

Contrarily to the DRF guarantee, lock-free protocols do not arbitrate
data races. Thus they may improve the performance of the program. How-

ever, such a synchronisation requires a precise knowledge of the underlying
memory model, since it uses barriers to prevent some weaknesses exhibited
by the architecture. Thus the design and correctness of such protocols may
be hard to prove, since the semantics of barriers is unclear, and the lack of
formal definitions of weak memory models worsens the effort. The delay set
algorithm by D. Shasha and M. Snir [SS] is an example of an early study of
barriers placement, which assumes SC as the execution model.

1.1.2 Recent Days (2002 – 2010)

Most of the concurrent verification work suppose SC as memory model, prob-
ably because multiprocessors were not mainstream until recently. Nowadays
however, since multiprocessors are widely spread, there is a recrudescent in-
terest in such issues. Indeed, as exposed by S. Adve and H.-J. Boehm
in [AB]:

The problematic transformations (e.g. reordering accesses to
unrelated variables [. . .]) never change the meaning of single-
threaded programs, but do affect multithreaded programs [. . .].

1.1.2.1 The Problem Of Modelling

Most of the existing formalised yet intelligible memory models are global time
models, for example Alpha’s [alp02] and Sparc’s [spa94a]. In such models,
the actions or events issued by the different threads or processors can be
embedded in a single order, representing the timeline in which these events
occurred w .r .t . the whole system. By this we mean that all the participants
involved agree on that global ordering of the events. Hence I believe that
such models are the easiest to understand and to reason with, which may
explain their prominence.

Indeed weak memory models are a challenging area of modelling. Not
only because they are intricated models, but also because most of the ven-
dors do not provide an abstract model to reason about the architecture
their machines exhibit, apart from a few rare exceptions [alp02, spa94a].
Moreover, as S. Adve and H.-J. Boehm state [AB]:

Part of the challenge for hardware architects was the lack of clear
memory models at the programming language level—it was un-
clear what programmers expected hardware to do.

Thus modelling often resorts to intensive testing to support the theory.
For example W. Collier’s early work adopts a black box testing approach
[Col92]. But this kind of approach is necessarily limited, and somewhat
resembles wild guess, if it is not guided by a precise knowledge of either the
architecture or the implementation.

1.1.2.2 Program Verification

The interest in the area of weak memory models is also probably renewed
by recent research [Boeb, Boea, BPa] that takes the intricacies of weak
memory models into account when proposing a new approach to software
verification. In particular, S. Adve and H.-J. Boehm lead a group dedicated
to these issues: they propose to enforce the DRF guarantee as a sine qua
non condition, so as to make the verification of concurrent programs easier.
S. Burckhardt et al. recently proposed a study of weak memory models in
terms of rewriting rules [BMS]: thus the weak memory model is itself a
program transformation. This elegant approach allows to reason about the
correctness of several program transformations, e.g . induced by compilers.

1.2 Contribution

In that context, we tried to understand and formalise existing weak memory
models. In order to do so, we first relied on the existing documentations.
From this reading, we provided a generic framework which we showed to
embrace several existing models. We then resorted to intensive testing to
support our theory. To ease our pain while testing, we wrote a system-
atic testing tool, which computes small tests exercising one weakness of the
architecture at a time. This allowed us to design a model for the Power ar-
chitecture, which is an instance of our framework as well. Finally, we studied
synchronisation in the context of weak memory models, whether lock-based
or lock-free, from a generic point of view.

We briefly summarise our contribution here. We thus give an outline of
the document, and some reading notes.

1.2.1 A Generic Framework

In Chap. 3, we present the generic axiomatic framework we developped in
Coq [BC]. This is a global time model, widely inspired from Alpha and
Sparc’s documentation [alp02, spa94a]. We illustrate in Chap. 4 how to
instantiate this framework to recover existing models, such as Sequential
Consistency [Lam79], the Sparc hierarchy (i .e. Sun TSO, PSO and RMO)
[spa94a], and Alpha [alp02]. We present some related work in Chap. 5, and
detail some proofs in App. A.

Chap. 3 is the heart of this thesis, on which all our formal results are
built. App. A can easily be skipped: the results which proofs are detailed
in this chapter are described in Chap. 3 anyway.

1.2.2 A Testing Tool

We present in Chap. 7 our diy testing tool: diy computes small tests in
Power or x86 assembly code and run them against hardware. The tests are

computed from specifications proceeding from our generic model, presented
in Chap. 3. We present in Sec. 8.1 the way we used our tool to study the
Power architecture. We detail our experimental protocol, the characteristics
of the machines we tested and the experimental results. Finally in Chap. 8,
we provide and comment on the model for the Power architecture we deduced
from our experiments, and we present some related work in Chap. 9.

Chap. 8 is an interesting instance of our framework. The description of
the tool (Chap. 7) and the detailed experimental protocol (Sec. 8.1) may be
skipped as the description of the Power model is self-contained. However,
the justification for this model lies in those two chapters, because this is
where we explain how we build our tests, and why they are relevant.

1.2.3 Synchronisation

We present in Chap. 11 a unifying approach to study both lock-based and
lock-free synchronisations, which we illustrate by a proof that a generalised
DRF guarantee holds for each instance of our generic model. We also provide
a novel dual result on barrier placement. As both these results may enforce
more synchronisation than necessary, we refine them in the style of D. Shasha
and M. Snir [SS], by using critical cycles.

In addition, we present in Chap. 10 semantics for Power’s locks and
read-modify-write primitives. We show that these locks provide the refined
generalised DRF guarantee. We show that the mapping of certain reads to
read-modify-write primitives, coupled with non-cumulative barriers, restores
Sequential Consistency, which spares the cost of cumulativity. Finally, we
present some related work in Chap. 12.

1.2.4 Remainder

Chap. 2 presents some preliminary definitions and fundamental results on
relations and orders, which we use throughout the document. This chapter
may be skipped.

We give a conclusion and some perspectives of future work in Chap. 13
and Chap. 14 respectively. We say a word on our Coq development in
App. B, which may be skipped.

Chapter 2

Preliminaries

Our basic objects are relations over some elements. We give in this chapter
the fundamental definitions that we used. We also enunciate and prove the
key lemmas that we used.

2.1 Relations

2.1.1 Basic Definitions

We use homogeneous binary relations, that is we use relations
r
→ such that

r is, for a given set A, a set of pairs in A×A.

We define the domain (written domain(
r
→)) and the range (range(

r
→))

of a relation
r
→ as follows :

Definition 1 (Domain and Range of a Relation)

domain(
r
→) , {x | ∃y, x

r
→ y}

range(
r
→) , {y | ∃x, x

r
→ y}

We consider a relation
r
→ to be transitive (written transitive(

r
→)) when:

Definition 2 (Transitivity of a Relation)

transitive(
r
→) , ∀xyz, (x

r
→ y ∧ y

r
→ z)⇒ x

r
→ z

We write (
r
→)

+
for the transitive closure of

r
→, that is:

Definition 3 (Transitive Closure of a Relation)

x (
r
→)

+
y , x

r
→ y ∨ (∃z, x (

r
→)

+
z ∧ z (

r
→)

+
y)

We consider a relation
r
→ to be irreflexive (written irreflexive(

r
→)) when:

23

Definition 4 (Irreflexivity of a Relation)

irreflexive(
r
→) , ¬(∃x, x

r
→ x)

We consider a relation
r
→ to be total over a set E (written total(

r
→, E))

when:

Definition 5 (Totality of a Relation)

total(
r
→, E) , ∀(x, y) ∈ E× E, x

r
→ y ∨ y

r
→ x

We consider a relation
r
→ to be acyclic (written acyclic(

r
→)) when its

transitive closure is irreflexive, i .e.:

Definition 6 (Acyclicity of a Relation)

acyclic(
r
→) , ¬(∃x, x (

r
→)

+
x)

2.1.2 Orders

We consider a relation
r
→ to be a partial order over a set E when:

• the domain and the range of
r
→ are included in E,

•
r
→ is transitive, and

•
r
→ is irreflexive.

Formally, we have:

Definition 7 (Partial Order)

partial-order(
r
→, E) , (domain(

r
→) ∪ range(

r
→)) ⊆ E ∧

transitive(
r
→) ∧ irreflexive(

r
→)

We consider a relation
r
→ to be a total order (or linear strict order) over

E when:

•
r
→ is a partial order over E, and

•
r
→ is total over E.

Formally, we have:

Definition 8 (Total Order)

total-order(
r
→, E) , partial-order(

r
→, E) ∧ total(

r
→, E)

2.2 Linear Extension

We admit the following result: any partial order
r
→ can be extended into

a total order
o
→. This total order

o
→ is a linear extension of

r
→. We write

linear-extension(
o
→,

r
→) to indicate that

o
→ is a linear extension of

r
→. For-

mally, we have:

Axiom 1 (Existence of a Linear Extension)

∀
r
→ E, partial-order(

r
→, E)⇒

∃
o
→, linear-extension(

o
→,

r
→) ∧ total-order(

o
→, E)

We admit that a relation
r
→ is included in any of its linear extension:

Axiom 2 (Inclusion in its Linear Extensions)

∀
r
→

o
→, linear-extension(

o
→,

r
→)⇒ (

r
→ ⊆

o
→)

Finally, when
r
→ is already a total order,

r
→ has only one linear extension,

which is itself:

Axiom 3 (Unicity of the Linear Extension of a Total Order)

∀
r
→ E, total-order(

r
→, E)⇒ (∀

o
→, linear-extension(

o
→,

r
→)⇒

o
→ =

r
→)

2.3 A Key Lemma

We define the sequence of two relations
r1→ and

r2→ (written (
r1→;

r2→)) as
follows:

Definition 9 (Sequence of Relations)

x(
r1→;

r2→)y , ∃z, x
r1→ z ∧ z

r2→ y

We will often show that the acyclicity of a certain relation
r1→ implies the

acyclicity of another one
r2→. In order to do so, we reason by contradiction:

we suppose that
r2→ has a cycle, and show that in this case,

r1→ has a cycle
as well, which contradicts its acyclicity.

In order to prove this, we use this key lemma, which states that if there
is a cycle in the union of two irreflexive relations, there is a cycle in their
sequence as well:

Lemma 1 (Cycle in Union Implies Cycle in Sequence)

∀
r1→

r2→, irreflexive(
r1→) ∧ irreflexive(

r2→) ∧

transitive(
r1→) ∧ transitive(

r2→) ∧

¬(acyclic(
r1→∪

r2→))⇒ ¬(acyclic(
r1→;

r2→))

We need to establish a few more lemmas to prove this result.

2.3.1 Hexa Relation

We define the reflexive closure over relations as follows:

Definition 10 (Reflexive Closure)

x (
r
→)

?
y , x

r
→ y ∨ x = y

This means that two elements x and y are in (
r
→)

?
when they are in

r
→

or x = y. Note that for any relation
r
→ and for all x, we have x (

r
→)

?
x.

We define the binary operator phx over relations as follows:

Definition 11 (Pre Hexa)

phx(
r1→,

r2→) , ((
r1→;

r2→)
+
)
?

Note that, since phx is a reflexive closure, we have (x, x) ∈ phx(
r1→,

r2→)
for all

r1→,
r2→ and x. Moreover, a phx construction is trivially transitive.

We define the binary operator hx over relations as follows:

Definition 12 (Hexa)

hx(
r1→,

r2→) , (
r2→)

?
; phx(

r1→,
r2→); (

r1→)
?

We show that the hx of two transitive relations is a transitive relation:

Lemma 2 (Hexa Is Transitive)

∀
r1→

r2→, transitive(
r1→) ∧ transitive(

r2→)⇒ transitive(hx(
r1→,

r2→))

Proof Suppose x, y and z such that (x, y) ∈ hx(
r1→,

r2→) and (y, z) ∈ hx(
r1→,

r2→).
There exist z1, z2, z3 and z4 such that

x (
r2→)

?
z1 phx(

r1→,
r2→)z2 (

r1→)
?
y (

r2→)
?
z3 phx(

r1→,
r2→)z4 (

r1→)
?
z

We have z2 (
r1→)

?
y (

r2→)
?
z3, hence (z2, z3) ∈ phx(

r1→,
r2→). Since a phx con-

struction is transitive, we have (z1, z4) ∈ phx(
r1→,

r2→), hence x (
r2→)

?
z1 phx(

r1→,
r2→

)z4 (
r1→)

?
z. Therefore, by the definition of hx, we have (x, z) ∈ hx(

r1→,
r2→).

We show that when two relations
r1→ and

r2→ are both transitive, a path
in their union is a path in hx(

r2→,
r1→):

Lemma 3 (Path in Union Implies Path in Hexa)

∀
r1→

r2→, transitive(
r1→) ∧ transitive(

r2→)⇒ ((
r1→∪

r2→)
+
⊆ hx(

r2→,
r1→))

Proof Suppose x and y such that x (
r1→∪

r2→)
+

y. Let us reason by induction
over this statement.

• Suppose x(
r1→∪

r2→)y.

– Suppose x
r1→ y. We want to show that (x, y) ∈ hx(

r2→,
r1→), i .e. there

exist z1 and z2 such that x (
r1→)

?
z1 phx(

r2→,
r1→)z2 (

r2→)
?
y. We know that

x (
r1→)

?
y since x

r1→ y. Hence we can take z1 = y. Since (y, y) ∈ phx(
r2→

,
r1→), we can take z2 = y. Indeed we have y (

r2→)
?
y.

– Suppose x
r2→ y, we can take z1 = z2 = x.

• In the inductive case, we have z such that x hx(
r2→,

r1→)z and z hx(
r2→,

r1→)y. By
Lem. 2, we have the result.

We show that if (
r2→;

r1→) is acyclic, then (hx(
r2→,

r1→);
r1→) is irreflexive,

provided
r1→ is irreflexive and transitive:

Lemma 4 (Hexa Right)

∀
r1→

r2→ xy, irreflexive(
r1→) ∧ transitive(

r1→) ∧

(x, y) ∈ hx(
r2→,

r1→) ∧ y
r1→ x⇒ ∃z, z (

r2→;
r1→)

+
z

Proof Suppose x and y such that (x, y) ∈ hx(
r2→,

r1→) and y
r1→ x. There are z1

and z2 such that x (
r1→)

?
z1 phx(

r2→,
r1→)z2 (

r2→)
?
y. The case when x = y is a direct

contradiction to the fact that
r1→ is irreflexive, since y

r1→ x by hypothesis. Otherwise,

we have z1 (
r2→;

r1→)
+

z1.

We show that if (
r2→;

r1→) is acyclic, then (
r1→; hx(

r2→,
r1→)) is irreflexive,

provided
r2→ is irreflexive and transitive:

Lemma 5 (Hexa Left)

∀
r1→

r2→ xy, irreflexive(
r2→) ∧ transitive(

r2→) ∧

x
r2→ y ∧ (y, x) ∈ hx(

r2→,
r1→)⇒ ∃z, z (

r2→;
r1→)

+
z

Proof The proof is similar to the proof of Lem. 4 above.

2.3.2 Proof of the Result

We want to prove the Lem. 1:

∀
r1→

r2→, irreflexive(
r1→) ∧ irreflexive(

r2→) ∧

transitive(
r1→) ∧ transitive(

r2→) ∧

¬(acyclic(
r1→∪

r2→))⇒ ¬(acyclic(
r1→;

r2→))

Proof Since ¬(acyclic(
r1→∪

r2→)), there is x such that x (
r1→∪

r2→)
+

x. Therefore,

there is z such that x(
r1→ ∪

r2→)z and (z (
r1→∪

r2→)
+

x) ∨ (x = z). We do a case
disjunction over this last statement.

• Suppose x = z. As x(
r1→ ∪

r2→)z, we have x(
r1→ ∪

r2→)x. But since
r1→ and

r2→
are both irreflexive, their union is irreflexive as well, hence the result.

• Suppose (z (
r1→∪

r2→)
+

x). In this case, we have (z ((
r1→)

+
∪ (

r2→)
+
)
+

x). By

Lem. 3, we have (z, x) ∈ hx((
r2→)

+
, (

r1→)
+

).

Moreover, we know that x(
r1→∪

r2→)z. Let us do a case disjunction over this
statement.

– Suppose x
r1→ z. By Lem. 4 applied to (z, x) ∈ hx((

r2→)
+
, (

r1→)
+
) and

x
r1→ z, we have the result.

– Suppose now x
r2→ z. By Lem. 5 applied to x

r2→ z and (z, x) ∈

hx((
r2→)

+
, (

r1→)
+
), we have the result.

Part II

A Generic Framework For
Weak Memory Models

29

We present here a generic framework designed to reason on weak mem-
ory models. Though some public documentations, e.g . Intel [int07] and
Power [pow09], lack formal definitions of these models, others—such as Al-
pha [alp02] and Sparc [spa94a]—provide a precise definition of the model
their processors exhibit. Our generic framework is widely inspired of the
common style of Alpha and Sparc’s documentations, in that we use a global
time axiomatic model. However, Alpha and Sparc consider the stores to
be atomic. We adapted the style of their model to allow the store atomic-
ity relaxation, as does e.g . Power. In addition, we took care to minimise
the number and the complexity of our axioms, so that they are easier to
understand.

We present in Chap. 3 the objects, terms and axioms of our framework.
We illustrate in Chap. 4 how to instantiate its parameters to produce several
well known models, namely Sequential Consistency [Lam79], the Sparc hier-
archy (i .e. TSO, PSO and RMO) [spa94a], and Alpha [alp02]. We conclude
with a presentation of some related work in Chap. 5.

Chapter 3

A Generic Framework

3.1 Basic Objects

A memory model determines whether a candidate execution of a program
is valid. We consider an execution of a given program to be valid when
the read and write memory events associated with the instructions of the
program follow a single global timeline, i .e. can be embedded in a single
partial order. This order represents the timeline in which these events are
globally performed, which means that we embed them in the order when
we reach the point in time where all processors involved have to take these
events into account.

We illustrate our model with litmus tests, which are simple tests in
pseudo- or assembly code. Fig. 3.1(a) shows such a test, with an initial state
(which gathers the initial values of registers and memory locations used in
the test), a program in pseudo- or assembly code, and a final condition on
registers and memory (we write x, y for memory locations and r1, r2 for
registers). We give in Fig. 3.1(b) an execution associated with this test. The
validity of this execution is relative to the architecture on which it runs: it
is valid on an architecture such as x86, whereas it is invalid on SC.

Init: x=0; y=0;

P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

Observed? r1=0; r2=0;

(a) Wx1

(b) Ry0

(c) Wy1

(d) Rx0

po:0 po:1

(a) A Program (b) Events and Program Order

Figure 3.1: A Program and an Event Structure

33

(a) Wx1

(b) Ry0

(c) Wy1

(d) Rx0

po:0 rf

fr

po:1rf

fr

rf

rf

Figure 3.2: An Execution for the Program of Fig. 3.1

3.1.1 Events and Program Order

Rather than dealing directly with programs, our models are expressed in
terms of the events E occurring in a candidate execution. A memory event m

represents a memory access, specified by its direction (write or read), its
location loc(m), its processor proc(m), and a unique label. For example, the
store to x marked (a) in Fig. 3.1(a) generates the event (a) Wx in Fig. 3.1(b).
Henceforth, we write r (resp. w) for a read (resp. write) event. We write
Mℓ (resp. Rℓ, Wℓ) for the set of memory events (resp. reads, writes) to a
location ℓ (we omit ℓ when quantifying over all of them). We give a table of
notations for these sets of events, and the corresponding cartesian products
in Fig. 3.4.

The models are defined in terms of binary relations over these events,
and Fig. 3.3 shows a table of the relations we use.

The program order
po
→ is a total order amongst the events from the same

processor that never relates events from different processors. It reflects
the sequential execution of instructions on a single processor: given two
instruction execution instances i1 and i2 that generate events e1 and e2,
e1

po
→ e2 means that a sequential processor would execute i1 before i2. When

instructions may perform several memory accesses, we take intra-instruction
dependencies [SSZN+] into account to build a more precise order.

Hence we describe a program by an event structure, which collects the
memory events issued by the instructions of this program, and the program
order relation, which lifts the program order between instructions to the
events’ level:

Definition 13 (Event Structure)

E , (E,
po
→)

Consider for example the test given in Fig. 3.1(a). We give in Fig. 3.1(b)
an associated event structure. For example, to the store instruction marked
(a) on P0, we associate the write event (a) Wx in Fig. 3.1(b). To the load in-
struction marked (b) on P0, we associate the read event (b) Ry in Fig. 3.1(b).
Since these two instructions are in program order on P0, the associated
events are related by the

po
→ relation. The reasoning is similar on P1.

3.2 Execution Witnesses

Although
po
→ conveys important features of program execution, e.g. branch

resolution, it does not characterise an execution. Indeed, on a weak mem-
ory model, the events in program order may be reordered in an execution.
Moreover, we need to describe the communication between distinct proces-
sors during the execution of a program. Hence, in order to describe an

execution, we postulate two relations
rf
→ and

ws
→ over memory events.

Name Notation Comment Sec.

program order m1
po
→ m2 per-processor total order 3.1.1

dependencies m1
dp
→ m2 included in

po
→, source is a read 3.4.1.3

po-loc m1
po-loc
→ m2 program order restricted to the same

location, included in
po
→

3.4.1.1

preserved program order m1
ppo
→ m2 pairs maintained in program order, in-

cluded in
po
→

3.3.2

read-from map w
rf
→ r links a write to a read reading its value 3.2.1

external read-from map w
rfe
→ r

rf
→ between events from distinct pro-
cessors

3.3.1

internal read-from map w
rfi
→ r

rf
→ between events from the same pro-
cessor

3.3.1

global read-from map w
grf
→ r

rf
→ considered global 3.3.1

write serialisation w1
ws
→ w2 total order on writes to the same lo-

cation
3.2.2

from-read map r
fr
→ w r reads from a write preceding w in

ws
→ 3.2.3

barriers m1
ab
→ m2 ordering induced by barriers 3.3.3

global happens-before m1
ghb
→ m2 union of global relations 3.3.4

communication m1
com
→ m2 shorthand for m1 (

rf
→ ∪

ws
→ ∪

fr
→) m2 3.2.4

F
igu

re
3.3:

T
ab

le
of

R
elation

s

Name Notation Comment

memory events M all memory events

memory events to the same location Mℓ memory events relative to the location ℓ

read events, reads R memory events that are reads

reads from the same location Rℓ reads from the location ℓ

write events, writes W memory events that are writes

writes to the same location Wℓ writes to the location ℓ

memory pairs M×M pairs of any memory events in program order

memory pairs to the same location Mℓ ×Mℓ pairs of any memory events to the same loca-
tion in program order

read-read pairs R× R pairs of reads in program order

read-read pairs to the same location Rℓ × Rℓ pairs of reads from the same location in pro-
gram order

read-write pairs R×W read followed by write in program order

read-write pairs to the same location Rℓ ×Wℓ read followed by write to the same location in
program order

write-write pairs W×W pairs of writes in program order

write-write pairs to the same location Wℓ ×Wℓ pairs of writes to the same location in pro-
gram order

write-read pairs W× R write followed by read in program order

write-read pairs to the same location Wℓ × Rℓ write followed by read from the same location
in program order

F
igu

re
3.4:

T
ab

le
of

N
otation

s
for

even
ts

an
d

p
airs

of
even

ts

P0 P1

(a) x← 1 (b) x← 2

(c) r1← x

Allowed: r1=2; x=1
(a) Wx1

rf

(b) Wx2

ws (c) Rx2

po:1 rf

fr

(a) A Program (b) An Execution Witness

Figure 3.5: A Program and a Candidate Execution

3.2.1 Read-From Map

We write w
rf
→ r to mean that r loads the value stored by w (so w and r

must share the same location). In any execution, given a read r there exists

a unique write w such that w
rf
→ r (w can be an init store when r loads

from the initial state). Thus,
rf
→ must be well formed following the wf-rf

predicate:

Definition 14 (Well-Formed Read-From Map)

wf-rf(
rf
→) ,

(

rf
→ ⊆

⋃

ℓ

(Wℓ × Rℓ)

)

∧ (∀r, ∃!w. w
rf
→ r)

Consider the example given in Fig. 3.5(a). In the associated execution
given in Fig. 3.5(b), the read (c) from x on P1 reads its value from the

write (b) to x on P1. Hence we have a
rf
→ relation between them, depicted

in the execution: (b)
rf
→ (c).

3.2.2 Write Serialisation

We assume all values written to a given location ℓ to be serialised, following a
coherence order. This property is widely assumed by modern architectures.
We define

ws
→ as the union of the coherence orders for all memory locations,

which must be well formed following the wf-ws predicate:

Definition 15 (Well-Formed Write Serialisation)

wf-ws(
ws
→) ,

(

ws
→ ⊆

⋃

ℓ

(Wℓ ×Wℓ)

)

∧
(

∀ℓ. total-order
(

ws
→, (Wℓ ×Wℓ)

))

w

r

w0
rf

fr

ws

Figure 3.6:
fr
→ Proceeds From

rf
→ and

ws
→

Consider the example given in Fig. 3.5(a). In the associated execution
given in Fig. 3.5(b), the write (b) to x on P1 hits the memory before the
write (a) to x on P0. Hence we have a

ws
→ relation between them, depicted

in the execution: (b)
ws
→ (a).

As we shall see in Sec. 3.3.1, we will embed the write events in our global
timeline according to the write serialisation.

3.2.3 From-Read Map

We define the derived relation
fr
→[ABJ+] which gathers all pairs of reads r

and writes w such that r reads from a write that is before w in
ws
→, as depicted

in Fig. 3.6. Intuitively, a read r is in
fr
→ with a write w when r reads from

a write that hit the memory before w did:

Definition 16 (From-Read Map)

r
fr
→ w , ∃ w′. w′ rf

→ r ∧ w′ ws
→ w

Consider the example given in Fig. 3.5(a). In the associated execution
given in Fig. 3.5(b), the write (b) to x on P1 hits the memory before the
write (a) to x on P0, i .e. (b)

ws
→ (a). Moreover, the read (c) from x on P1

reads its value from the write (b) to x on P1, i .e. (b)
rf
→ (c). Hence we have

a
fr
→ relation between (c) and (a) (i .e. (c)

fr
→ (a)) because (c) reads from a

write which is older than (a) in the write serialisation.

As we shall see in Sec. 3.3.1, we will use the
fr
→ relation to include the

read events in our global timeline.

3.2.4 All Together

Given a certain event structure E, we call the
rf
→,

ws
→ and

fr
→ relations the

communication relations, and we write
com
→ for their union:

Definition 17 (Communication Relation)

com
→ ,

rf
→∪

ws
→∪

fr
→

We define an execution witness X associated with an event structure E

as follows:

Definition 18 (Execution Witness)

X , (
rf
→,

ws
→)

For example, we give in Fig. 3.2 an execution witness associated with the
program of Fig. 3.1(a). The set of events is {(a), (b), (c), (d)}, the program

order is (a)
po
→ (b), (c)

po
→ (d). Since the initial state is implicitly a write

preceding any other write to the same location in the write serialisation, the
only communication arrows we have between the events of this execution

are (b)
fr
→ (c) and (d)

fr
→ (a).

The well-formedness predicate wf on execution witnesses is the conjunc-

tion of those for
ws
→ and

rf
→. We write rf(X) (resp. ws(X), po(X)) to extract

the
rf
→ (resp.

ws
→,

po
→) relation from a given execution witness X. When X is

clear from the context, we may write
rf
→ instead of rf(X) for example.

Definition 19 (Well-Formed Execution Witness)

wf(X) , wf-rf(rf(X)) ∧ wf-ws(ws(X))

3.3 Global Happens-Before

We consider an execution to be valid when we can embed the memory events
of this execution is a single global timeline. By global we mean that the
memory events are the events relative to memory actions, in a way that
every processor involved has to take them into account. Therefore, we do
not consider the events relative to store buffers or caches, but rather we wait
until these events hit the main memory. Thus, we focus on the history of
the system from the main memory’s point of view.

Hence, an execution witness is valid if the memory events can be em-
bedded in an acyclic global happens-before relation

ghb
→ (together with two

auxiliary conditions detailed in Sec. 3.4). This order corresponds roughly
to the vendor documentation concept of memory events being globally per-
formed [pow09, DS90]: a write in

ghb
→ represents the point in global time

when this write becomes visible to all processors; whereas a read in
ghb
→ rep-

resents the point in global time when the read takes place. We will formalise
this notion later on, at Sec. 3.3.4.

In order to do so, we present first the choices as to which relations we
include in

ghb
→ (i.e. which we consider to be in global time). Thereby we

define a class of models. In the following, we will call a relation global
when it is included in

ghb
→ . Intuitively, a relation is considered global if

the participants of the system have to take it into account to build a valid
execution.

rfi

WB

P0 P1

WB

Figure 3.7: Store Buffering

3.3.1 Globality

Writes are not necessarily globally performed at once. Some architectures
allow store buffering (or read own writes early [AG95]): the processor issuing
a given write can read its value before any other participant has access
to it. Other architectures allow two processors sharing a cache to read a
write issued by their neighbour w .r .t . the cache hierarchy before any other
participant that does not share the same cache (a case of store atomicity
relaxation, or read others’ writes early [AG95]).

In our class of models,
ws
→ is always included in

ghb
→ . Indeed, the write

serialisation for a given location ℓ is by definition the order in which writes
to ℓ are globally performed.

Yet,
rf
→ is not necessarily included in

ghb
→ . Let us distinguish between

internal (resp. external)
rf
→, when the two events in

rf
→ are on the same

(resp. distinct) processor(s), written
rfi
→ (resp.

rfe
→) :

Definition 20 (Internal and External Read-From Map)

w
rfi
→ r , w

rf
→ r ∧ proc(w) = proc(r)

w
rfe
→ r , w

rf
→ r ∧ proc(w) 6= proc(r)

We model the store buffering by
rfi
→ being not included in

ghb
→ , as depicted

in Fig. 3.7. Indeed, the communication between a write from a given pro-
cessor’s store buffer and a read does not influence the execution of another
processor, because the write has not hit the main memory yet. Therefore,

this communication, modelled by
rfi
→ is private to the processor issuing the

write, and we do not embed it in our global timeline.

Cache

P0 P1 P2 P3

rfe

Cache

Figure 3.8: Store Atomicity Relaxation

Similarly, we model the store atomicity relaxation by
rfe
→ being not global,

as depicted in Fig. 3.8. Indeed, the communication between two processors
via a shared cache may not influence the execution of another processor,
because the write has not hit the main memory yet. Therefore, this com-

munication, modelled by
rfe
→ is private to the two communicating processors,

and we do not embed it in our global timeline.

We write
grf
→ for the subrelation of

rf
→ included in

ghb
→ .

In our framework,
fr
→ is always included in

ghb
→ . Indeed, as r

fr
→ w means

that the write w′ from which r reads is globally performed before w, it forces
the read r to be globally performed (since a read is globally performed as
soon as it is performed) before w is globally performed.

3.3.2 Preserved Program Order

In any given architecture, certain pairs of events in the program order are
guaranteed to occur in this order. We postulate a global relation

ppo
→ gather-

ing all such pairs. For example, the execution witness in Fig. 3.2 is only valid
if the writes and reads relative to different locations on each processor have
been reordered. Indeed, if these pairs were forced to be in program order,

we would have a cycle in
ghb
→ : (a)

ppo
→ (b)

fr
→ (c)

ppo
→ (d)

fr
→ (a). Such a

cycle contradicts the validity of the execution, hence the execution depicted
in Fig. 3.2 is not valid on an architecture such as SC, which maintains the
write-read pairs in program order.

3.3.3 Barriers Constraints

Architectures also provide barrier instructions, e.g. the Power sync, to

enforce ordering between pairs of events. We postulate a global relation
ab
→

gathering all such pairs.
A barrier is non-cumulative when it induces a relation

r
→ ordering certain

pairs of events surrounding (in program order) the barrier; we write NC(
r
→)

in this case. The relation
r
→ induced by a barrier is A-cumulative w .r .t . a

certain subrelation
s
→ of

rf
→ (resp. B-cumulative), written AC(

r
→,

s
→) (resp.

BC(
r
→,

s
→)), when the barrier makes certain writes atomic (e.g . by flushing

the store buffers and caches).
Intuitively, a barrier b placed between two instructions i1 and i2 in pro-

gram order has a non-cumulative ordering over the associated events m1

and m2 when it makes the program order between m1 and m2 visible to
all processors. A barrier b placed between i1 and i2 in program order has
an A-cumulative ordering over m1 and m2 when, if m1 reads from a write

w (i .e. w
rf
→ m1), the barrier b imposes a global ordering (i .e. visible to

all processors) between w and m2. This means that all processors see m2

after w. We will discuss in more details the semantics and use of barriers in
Sec. 10.3.3.

Hence the cumulativity of barriers is modeled in our framework by cer-

tain sequences
rf
→;

po
→ (resp.

po
→;

rf
→) being global. Formally, we have:

Definition 21 (Properties of Barriers)

NC(
r
→) , (

r
→ ⊆

po
→) ∧ (

r
→ ⊆

ab
→) (non-cumulativity)

AC(
r
→,

s
→) , (

s
→ ⊆

rf
→) ∧

(

(
s
→;

r
→) ⊆

ab
→
)

(A-cumulativity)

BC(
r
→,

s
→) , (

s
→ ⊆

rf
→) ∧

(

(
r
→;

s
→) ⊆

ab
→
)

(B-cumulativity)

where
r
→ and

s
→ are two relations.

3.3.4 Architectures

We call a particular model of our class an architecture, written A (or Aǫ

for A where ab returns the empty relation). We model an architecture by
a triple of functions over executions. Hence we consider an architecture as
a filter over executions, which determines which executions are valid and
which are not. We write ppo (resp. grf, ab, ghb) for the function returning

the
ppo
→ (resp.

grf
→,

ab
→ and

ghb
→) relation w .r .t . A when given an event structure

and execution witness:

Definition 22 (Architecture)

A , (ppo, grf, ab)

We use in the following the record notation A.f for a function f over
execution witnesses w .r .t . the architecture A. For example, given an event
structure E, an associated execution witness X and two architectures A1

and A2, we write A1. ghb(E,X) for the
ghb
→ of the execution (E,X) relative

to A1, while A2. ppo(E,X) returns the
ppo
→ of the execution (E,X) relative

to A2. We omit the architecture when it is clear from the context.
Finally, we define

ghb
→ as the union of the global relations:

Definition 23 (Global Happens-Before)

ghb
→ ,

ppo
→ ∪

ws
→ ∪

fr
→ ∪

grf
→ ∪

ab
→

3.3.5 Examples

3.3.5.1 Sequential Consistency (SC)

SC (see also Sec. 4.2.1) allows no reordering of events (
ppo
→ equals

po
→ on

memory events) and makes writes available to all processors as soon as they

are issued (
rf
→ is global, i .e.

grf
→=

rf
→). Thus, there is no need for barriers.

We write MM for the function extracting the pairs of memory events in the
program order of an event structure, i .e. MM(E,X) ,

po
→∩ (M×M):

Definition 24 (Sequential Consistency)

SC , (MM, rf, λ(E,X).∅)

Thus, the outcome of Fig. 3.1 will never be the result of a SC execution.

Indeed, the associated execution exhibits the cycle: (a)
po
→ (b)

fr
→ (c)

po
→

(d)
fr
→ (a). Since

fr
→ is always in

ghb
→ , and since the program order

po
→ is

included in SC ’s preserved program order, this cycle is a cycle in
ghb
→ , hence

we contradict the validity of this execution.

3.3.5.2 Sun’s Total Store Order (TSO)

TSO (see also Sec. 4.2.2.2) allows two relaxations [AG95]: write to read
program order, and read own write early. The write to read program order
relaxation means that TSO ’s preserved program order includes all pairs but
the store-load ones. We write RM (resp. WW) for the function extracting
the read-read and read-write (resp. write-write) pairs in the program order

of an execution witness. Formally, we have RM(E,X) ,
po
→∩ (R×M) and

WW(E,X) ,
po
→∩W×W.

The read own write early relaxation means that TSO ’s internal read-

from maps are not global, i .e.
rfi
→ 6⊆

ghb
→ . Moreover, TSO does not relax the

atomicity of stores, i .e.
rfe
→ ⊆

ghb
→ . Hence we have (omitting the barriers’

semantics):

Definition 25 (TSOǫ)

ppoTSO , (λ(E,X). (RM(E,X) ∪WW(E,X))

TSO ǫ , (ppoTSO, rfe, λ(E,X).∅)

P0 P1

(a) x← 1 (b) r1← x

(c) x← 2

Forbidden: x=1; r1=1;

(a) Wx1

(b) Rx1

rf rf

(c) Wx2

po:1 po-loc

ws

Figure 3.9: Invalid Execution According to the uniproc Criterion

Thus, the outcome of Fig. 3.1 can be the result of a TSO execution.

Even if the associated execution (E,X) exhibits the cycle (a)
po
→ (b)

fr
→

(c)
po
→ (d)

fr
→ (a), this does not form a cycle in TSO. ghb(E,X). Indeed,

the write-read pairs in (a)
po
→ (b) on P0 and (c)

po
→ (d) on P1 are not included

in TSO ’s program order, hence can be reordered.

3.4 Validity of an Execution

We now add two sanity conditions to the above.

3.4.1 Uniprocessor Behaviour

First, we require each processor to respect memory coherence for each lo-
cation [CLS] (i .e. the per-location write serialisation): if a processor writes
e.g. v to ℓ and then reads v′ from ℓ, then the associated writes w and w′

should be in this order in the write serialisation, i .e. w′ should not precede
w in the write serialisation. We formalise this notion as follows.

3.4.1.1 Definition

We define the relation
po-loc
→ over accesses to the same location in the program

order:
m1

po-loc
→ m2 , m1

po
→ m2 ∧ loc(m1) = loc(m2)

We require
po-loc
→ to be compatible with

com
→ (i .e.

rf
→∪

ws
→∪

fr
→):

Definition 26 (Uniprocessor Check)

uniproc(E,X) , acyclic(
com
→ ∪

po-loc
→)

For example, in Fig. 3.9, we have (c)
ws
→ (a) (by x final value) and (a)

rf
→ (b)

(by r1 final value). The cycle (a)
rf
→ (b)

po-loc
→ (c)

ws
→ (a) invalidates this

execution: (b) cannot read from (a) as it is a future value of x in
ws
→.

As a side note, the uniproc check corresponds, as we shall see in Sec. 4.2.1,
to checking that SC holds per location.

3.4.1.2 Alternative Formulations

We give here two alternative formulations of the uniproc definition, which
we show equivalent with each other. We omit these equivalence proofs in
this chapter to ease the reading but they can be found in Chap. A.

We show easily that the transitive closure of
com
→ , written (

com
→)+, is equal

to
com
→ ∪ (

ws
→;

rf
→) ∪ (

fr
→;

rf
→).

We write x
hat
↔ y when x and y are both reads, reading from the same

write. Formally, we have (since this relation is symmetric, we use a double
arrow notation):

Definition 27 (Hat Relation)

x
hat
↔ y , ∃w,w

rf
→ x ∧ w

rf
→ y

Let us consider these three formulations of uniproc:

(Uni1) acyclic(
com
→ ∪

po-loc
→)

(Uni2) ∀xy, x
po-loc
→ y ⇒ ¬(y (

com
→)+ x)

(Uni3)
po-loc
→ ⊆ ((

com
→)+ ∪

hat
↔)

We chose the first one because it is synthetic, but its intuition arises more
clearly in (Uni2) (and equivalently in (Uni3)). The (Uni2) check requires
indeed that if two events x and y are in

po-loc
→ , i .e. in program order and to

the same location, there is no path in the communication arrows
rf
→,

ws
→ or

fr
→ leading from y to x. This means that two events relative to the same
location on the same processor cannot be seen in the converse order by other
processors.

As a remark, it is interesting to note that the uniproc check can spare the
cost of including certains pairs of events in program order in the preserved
program order of an architecture. Consider for example two writes to the
same location in program order. They are necessarily (by uniproc) included
in

ghb
→ . Indeed, such a pair is in

po-loc
→ , thus in ((

com
→)+ ∪

hat
↔) by (Uni3).

Moreover, we know that (
com
→)+ is equal to (

com
→ ∪ (

ws
→;

rf
→)∪ (

fr
→;

rf
→)). Hence,

a write-write pair to the same location is, by (Uni3), in (
com
→ ∪ (

ws
→;

rf
→) ∪

(
fr
→;

rf
→)). The cases (

ws
→;

rf
→) and (

fr
→;

rf
→) do not apply here because of the

directions of the events. Hence a write-write pair to the same location is in
com
→ , i .e. in

ws
→∪

rf
→∪

fr
→. The cases

rf
→ and

fr
→ do not apply because of the

directions of the events, hence such a pair is in
ws
→. We know, by hypothesis

of our framework, that
ws
→ is always global. Hence, there is no need to specify

P0 P1

(a) x← 1 (d) x← 2

(b) r1← x

(c) r2← x

Observed? r1=2; r2=1; x=2

(a) Wx1

(b) Rx2

po:0

(d) Wx2

ws

(c) Rx1

po:0 fr

rf

(a) Program (b) An Execution Witness

Figure 3.10: Load-Load Hasard Example

write-write pairs to the same location in the preserved program order, since
we know that they are preserved globally (i .e. in

ghb
→) by the uniproc check.

The same reasoning applies for read-write pairs to the same location:

such pairs are necessarily in
fr
→, thus in

ghb
→ .

Hence, the uniproc check can be viewed as a minimal condition imposed
by a machine: the write-write and read-write pairs to the same location in
the program order are necessarily preserved globally in the order specified
by the program.

3.4.1.3 Load-Load Hasard

As a side note, all the models embraced by our framework agree with the
uniproc check, except Sun RMO [spa94a] (see also Sec. 4.2.2.4). RMO

preserves the program order between the write-write and read-write pairs
to the same location, and the read-read and read-write pairs in depen-
dency [spa94a].

We postulate a
dp
→ relation to model the dependencies between instruc-

tions, such as data or control dependencies [pow09, pp. 653-668]. For exam-
ple in PowerPC, consider a load lwz r5,0(r1) followed in program order by
a load lwzx r6,r5,r2. The second load is indexed by the register r5; this
register is used as a target by the preceding load in program order. Hence

in PowerPC, the second load depends on the first one. The
dp
→ relation is a

subrelation of
po
→, and always has a read at its source.

We write dp(E,X) for the pairs in dependency in an execution (E,X).
We write MℓWℓ(E,X) for the read-write and write-write pairs to the same
location ℓ, in an execution X. RMO has the same store buffering and store
atomicity policy as TSO , hence (omitting the barriers’ semantics):

P0 P1

(a) r1← x (c) r4← y

r9← xor r1,r1 r9← xor r4,r4

(b) y← 1+r9 (d) x← 1+r9

Forbidden: r1=1; r4=1;

(a) Rx1

(b) Wy1

dp

(c) Ry1

rf

(d) Wx1

dp

rf

Figure 3.11: Invalid Execution According to the thin Criterion

Definition 28 (RMOǫ)

ppoRMO , λ(E,X).(dp(E,X) ∪
⋃

ℓ MℓWℓ(E,X))

RMOǫ , (ppoRMO, rfe, λ(E,X).∅)

RMO allows indeed load-load hasard, meaning two reads from the same
location in program order may be reordered. We give in Fig. 3.10 an example
program of load-load hasard: the read (b) from x and the read (c) from x on
P0 have been reordered. The read (c) reads from the write (a) on P0, hence

(a)
rf
→ (c), which is not depicted in Fig. 3.10 to ease the reading. The read

(b) reads from the write (d) on P1, hence (d)
rf
→ (b). Suppose (a)

ws
→ (d),

then, since (a)
rf
→ (c), we have (c)

fr
→ (d). Since we have (b)

po
→ (c), we

exhibit a cycle which is a contradiction to uniproc: (b)
po
→ (c)

fr
→ (d)

rf
→ (b).

The program order between the two reads (b) and (c) on P0 is not respected,
even though they are to the same location x.

To allow load-load hasard, we define the relation
llh-po-loc
→ over accesses to

the same location in the program order as
po-loc
→ except for read-read pairs:

m1
llh-po-loc
→ m2 , m1

po
→ m2 ∧ loc(m1) = loc(m2) ∧ ¬(m1 ∈ R ∧m2 ∈ R)

Then we slightly alter the definition of uniproc to:

Definition 29 (Load-Load Hasard Uniproc)

llh-uniproc(E,X) , acyclic(
com
→ ∪

llh-po-loc
→)

3.4.2 Thin Air

Second, we rule out programs where values come out of thin air [MPA].
This means that we forbid the causal loops, as illustrated in Fig. 3.11. In
this example, the write (b) to y on P0 is dependent on the read (a) from x

on P0, because the xor instruction between them does a calculation on the

value written by (a) in r1, and writes the result into r9, later used by (b).
Similarly on P1, (c) and (d) are dependent. Suppose the read (a) from x on
P0 reads from the write (d) to x on P1, and similarly the read (c) from y

on P1 reads from the write (b) to y on P0, as depicted by the execution in
Fig. 3.11. In this case, the values read by (a) and (c) seem to come out of
thin air, because they cannot be determined.

The definition of this check is parameterised by the definition of depen-
dencies, relative to the architecture:

Definition 30 (Thin Air Check)

thin(dp, E,X) , acyclic(rf(X) ∪ dp(E,X))

This check is directly inspired of Alpha’s documentation [alp02, (I) 5-
15, p. 245]. Alpha is indeed the only model embraced by our framework
that requires this check. Alpha maintains the write-write, read-read and
read-write pairs to the same location [alp02]. We write RℓMℓ(E,X) (resp.
WℓWℓ(E,X)) for the read-read and read-write (resp. write-write) pairs to
the same location ℓ in an execution (E,X). Similarly to the Sun models,

Alpha’s external
rf
→ are global whereas internal

rf
→ are not (we omit the

barriers’ semantics):

Definition 31 (Alphaǫ)

ppoAlpha , λ(E,X).(
⋃

ℓ RℓMℓ(E,X) ∪
⋃

ℓ WℓWℓ(E,X))

Alphaǫ , (ppoAlpha, rfe, λ(E,X).∅)

All the other models we present have indeed a sufficiently large
ppo
→ that

includes
dp
→, which removes the necessity of the thin check. As the preserved

program order of Alpha (see also Sec. 4.2.3) does not include
dp
→, and since

Alpha explicitely prevents causal loops, this additional check is required.

3.4.3 Validity

We define the validity of an execution w .r .t . an architecture A as the
conjunction of four checks. The first three, namely wf(X), uniproc(E,X)
and thin(E,X) are independent from the architecture. The last one, i .e.

A. ghb(E,X), characterises the architecture. We write A. valid(E,X) when
the execution (E,X) is valid on the architecture A, and A. ghb(E,X) for
the

ghb
→ induced by A on (E,X):

Definition 32 (Validity)

A. valid(E,X) , wf(X)∧uniproc(E,X)∧thin(E,X)∧acyclic(A. ghb(E,X))

For example, the execution of Fig. 3.2 is invalid on SC . Indeed the

SC. ghb(E,X) of this execution contains
po
→ and

fr
→, therefore has a cycle:

(a)
po
→ (b)

fr
→ (c)

po
→ (d)

fr
→ (a). On the contrary, the TSO. ghb(E,X) of this

execution does not contain any
po
→ arrow which source is a write and target

a read, hence does not contain (a)
po
→ (b) and (c)

po
→ (d). Thus, there is no

cycle in TSO. ghb(E,X), which means that this execution is not forbidden
on TSO .

3.5 Comparing Architectures

From our definition of architecture arises a simple notion of comparison
amongst them. A1 ≤ A2 means that A1 is weaker than A2:

Definition 33 (Weaker)

A1 ≤ A2 , (
ppo1→ ⊆

ppo2→) ∧ (
grf1→ ⊆

grf2→)

As an example, TSO ǫ is weaker than SC .

3.5.1 Validity Is Decreasing

The validity of an execution is decreasing w .r .t . the strength of the predicate;
i.e. a weak architecture exhibits at least all the behaviours of a stronger one:

Theorem 1 (Validity Is Decreasing)

∀A1A2, (A1 ≤ A2)⇒ (∀EX,Aǫ
2. valid(E,X)⇒ Aǫ

1. valid(E,X))

Proof From A1 ≤ A2, we immediately have Aǫ
1. ghb ⊆ Aǫ

2. ghb, thus if Aǫ
2. ghb

is acyclic, so is Aǫ
1. ghb. �

For example, since TSOǫ is weaker than SC , all the executions valid on
SC are valid on TSO .

3.5.2 Monotonicity of Validity

The converse is not always true. However, some programs running on an
architecture Aǫ

1 exhibit executions that would be valid on a stronger architec-
ture Aǫ

2. We characterise all such executions as follows, where the expression
A1. checkA2

(E,X) means that the execution X, while running on the weak
architecture A1, would also be valid on the stronger architecture A2:

Definition 34 (Strong Execution On Weak Architecture)

A1. checkA2
(E,X) , acyclic(

grf2→ ∪
ws
→∪

fr
→∪

ppo2→)

We show that executions satisfying this criterion are valid on Aǫ
1 if and

only if they are valid on Aǫ
2:

Theorem 2 (Characterisation)

∀A1A2, (A1 ≤ A2)⇒
(∀EX, (Aǫ

1. valid(E,X) ∧A1. checkA2
(E,X))⇔ Aǫ

2. valid(E,X))

Proof

⇒ (E, X) being valid on Aǫ
1, we have all requirements—well-formedness, uniproc

and thin—to guarantee (E, X) is valid on Aǫ
2, except Aǫ

2. valid(E, X), which
holds by the hypothesis checkA2

.

⇐ (E, X) being valid on Aǫ
2 gives us all requirements—well-formedness, uniproc

and thin—to guarantee its validity on Aǫ
1 except the last one Aǫ

1. valid(E, X).
As A1 ≤ A2, we know that Aǫ

1. ghb ⊆ Aǫ
2. ghb, thus the acyclicity require-

ment for Aǫ
1. ghb holds if Aǫ

2. ghb is acyclic. �

For example, consider the execution of the test of Fig. 3.1(a) where

P0 executes its instructions before P1 does: (a)
po
→ (b)

fr
→ (c)

po
→ (d) and

(a)
rf
→ (d). It is valid on TSO since there is no cycle in TSO. ghb(E,X). It

also satisfies TSO. checkSC (E,X) since there is no cycle in SC. ghb(E,X).
Hence it is valid on SC as well.

These theorems, though fairly simple, will be useful to compare two mod-
els and to restore a strong model from a weaker one, as we do in Chap. 11.

Chapter 4

Classical Models

We expose here how we implement several classical models in our frame-
work, namely Sequential Consistency (SC) [Lam79], the Sparc hierarchy
(i .e. TSO, PSO and RMO [spa94a]) and Alpha [alp02]. We prove our im-
plementations equivalent to the original definitions. We present the models
from the stronger (w .r .t . the order ≤), namely SC, to the weaker, namely
Alpha. We show in Fig. 4.1 the inclusion of these models w .r .t . each other.
The inclusion is here in terms of the behaviours each model authorises,
therefore is in the converse order that the order ≤ induces, as expressed by
Thm. 1.

4.1 Implementing an Architecture

We present each of the following native models in terms of an order
ex
→

representing the order in which the events are globally performed.
All the native definitions of the models we present here roughly follow

the same generic form. In these definitions, an execution
ex
→ is valid if it

is an order on events which contains a certain subrelation of the program
order. This relation corresponds to our preserved program order.

The order
ex
→ is defined as partial in Alpha’s documentation [alp02], or

SC TSO PSO

RMO

Alpha

Figure 4.1: Inclusion of Some Architectures

53

early versions of the Sparc documentation [spa92]. In the current version
of Sparc documentation [spa94b], it is defined as a total order. By Ax. 1,
any partial order can be extended to a total order. Hence we will define
the native versions of the models in terms of a total order. This means for
example that for an execution defined as a partial order, we consider all its
linear extensions to be valid native executions.

For a given architecture A, we write A. native(
ex
→) when

ex
→ satisfies the

conditions imposed by A. Formally, we have:

Definition 35 (Native Definition of an Architecture)

A. native(E,
ex
→) , total-order(

ex
→, evts(E)) ∧ (A. ppo(E) ⊆

ex
→))

Let A be an architecture of our framework. We want to show that
the validity of an execution on A corresponds to the definition above. This
means that whenever an execution

ex
→ is valid on A according to the definition

above, we can build an execution witness (E,X) which is valid on A, such
that

ex
→ and (E,X) have the same events and the same communication

relations. Conversely, from an execution (E,X) valid on A, we are able to
build an execution

ex
→ valid on A with the same events and communication

relations. Formally, writing A.wit(
ex
→) for the execution witness built from

ex
→, we would like to show that:

Goal 1 (Equivalence of validity on A)

∀EX, A. valid(E,X)⇔ ∃
ex
→, A. native(E,

ex
→) ∧A.wit(

ex
→) = X

4.1.1 Building an Execution Witness From an Order

We consider two relations to be compatible when their union is acyclic. Con-
sider an architecture A without barriers, i .e.

abA→ = ∅. The goal above means
in particular that, for any event structure E, one can build an execution, as-
sociated with E and valid on A, from a total order

o
→ on evts(E) compatible

with A. ppo(E).

Consider e.g . the event structure ({(a), (b), (c), (d)}, {(a)
po
→ (b), (c)

po
→

(d)}) associated with the program of Fig. 4.2(a). On SC we have (a)
ppo
→ (b)

and (c)
ppo
→ (d). Hence we can build a valid SC execution from the order

(a)
o
→ (b)

o
→ (c)

o
→ (d), which is the one we give in Fig. 4.3. The first write

in the order
o
→ is (b), a write to y, which is immediately followed by the read

(c) to y, hence we have (b)
rf
→ (c). There is no write preceding the read (a)

from x, hence (a) reads from the initial state. Moreover, this initial write

to x precedes the write (d) in
ws
→, hence (a)

fr
→ (d).

We need to build an execution witness from a given order
ex
→. In order to

do so, we need to extract
rf
→ and

ws
→ from an order

ex
→. We write rf(

ex
→) (resp.

ws(
ex
→)) for the

rf
→ (resp.

ws
→) extracted from

ex
→. We have (x, y) ∈ rf(

ex
→) when

Init: x=0; y=0; z=0

P0 P1

(a) r1← x (c) r2← y

(b) y← 1 (d) x← 1

Observed? r1=1; r2=1;

(a) Rx1

(b) Wy1

po:0

(c) Ry1

rf

(d) Wx1

po:1

rf

(a) A program (b) A non-SC execution

Figure 4.2: A program and a non-SC execution

(a) Rx0

(b) Wy1

po:0

(d) Wx1

fr

(c) Ry1

rf po:1

Figure 4.3: An SC execution for the test of Fig. 4.2(a)

x is a write and y a read, both to the same location, such that x is a maximal
previous write to this location before y in

ex
→. We have (x, y) ∈ ws(

ex
→) when

x and y are writes to the same location and x
ex
→ y. Formally, writing

pw(
ex
→, r) for the set of writes to the same location that precede the read

event r in an order
ex
→, we extract our

rf
→ and

ws
→ relations from

ex
→ as follows:

Definition 36 (Extraction of
rf
→ and

ws
→ From an Order

ex
→)

pw(
ex
→, r) , {w | loc(w) = loc(r) ∧ w

ex
→ r}

rf(
ex
→) , {(w, r) | w = max

ex
→

(

pw((
ex
→), r)

)

}

ws(
ex
→) ,

⋃

ℓ

(Wℓ ×Wℓ) ∩
ex
→

We derive the from-read map as in Sec. 3.2.3:

Definition 37 (Extracted
fr
→)

(r, w) ∈ fr(
ex
→) , ∃w′, (w′, r) ∈ rf(

ex
→) ∧ (w′, w) ∈ ws(

ex
→)

We show that the extracted read-from maps rf(
ex
→), write serialisation

ws(
ex
→) and from-read maps fr(

ex
→) are included in

ex
→:

Lemma 6 (Inclusion of Extracted Communication In
ex
→)

∀
ex
→, rf(

ex
→) ⊆

ex
→∧ ws(

ex
→) ⊆

ex
→∧ fr(

ex
→) ⊆

ex
→

Proof

• Inclusion of read-from maps: The read-from maps extracted from
ex
→ are by

definition in
ex
→.

• Inclusion of write serialisation: The write serialisation extracted from
ex
→ is

included in
ex
→ since it is by definition built from an intersection with

ex
→.

• Inclusion of from-read maps: Consider two events x and y such that (x, y) ∈

fr(
ex
→). We want to show that x

ex
→ y. Since

ex
→ is a total order, we know that

either x
ex
→ y, in which case we have the result, or y

ex
→ x. Suppose this last

possibility, i .e. y
ex
→ x. We know that y is a write to x’s location, since it

is the target of a
fr
→ which source is x. Therefore, if y

ex
→ x, we know that

y is a previous write to x in
ex
→. Hence we have y ∈ pw(

ex
→, x). Moreover,

since (x, y) ∈ fr(
ex
→), we know by definition that there exists wx such that

(wx, x) ∈ rf(
ex
→) and (wx, y) ∈ ws(

ex
→). Since ws(

ex
→) is included in

ex
→, we

have wx
ex
→ y. But by definition of rf(

ex
→), and since (wx, x) ∈ rf(

ex
→), wx is

the maximal previous write to x in
ex
→. Since wx

ex
→ y and y is also a previous

write, this contradicts the maximality of wx. �

4.1.2 Sketch of Proof

4.1.2.1 From the native definition to ours

The extracted
rf
→ and

ws
→ are well formed in a finite execution, hence an

execution witness built from these relations is well formed as well. If these
rf
→ and

ws
→ satisfy the uniproc and thin checks, then the execution witness

built out of
ex
→ is valid on a given architecture A.

We show that an extracted execution witness respects the uniproc check:

Lemma 7 (Extracted Execution Witness Respects uniproc)

∀A, E,
po
→,

ex
→,X,

total-order(
ex
→, E) ∧X = A.wit(

ex
→) ∧

acyclic(
ex
→∪

po-loc
→)⇒ uniproc(X)

Proof We know by Lem. 29 (see App. A) that the uniproc check (Uni1) implies
(Uni2), i .e. ∀xy, x

po-loc
→ y ⇒ ¬(y (

com
→)

+
x). Let us suppose as a contradiction two

events x and y such that x
po-loc
→ y and y (

com
→)

+
x:

• if (y, x) ∈ rf(
ex
→), we have y

ex
→ x by Lem. 6. Therefore, since x

po-loc
→ y, we

have a cycle in
ex
→∪

po-loc
→ , a contradiction.

• if (y, x) ∈ ws(
ex
→), we have y

ex
→ x by Lem. 6. Since x

po-loc
→ y, we have a cycle

in
ex
→∪

po-loc
→ , a contradiction.

• if (y, x) ∈ fr(
ex
→), there exists wy such that (wy , y) ∈ rf(

ex
→) and (wy , x) ∈

ws(
ex
→). Therefore x is a previous write to y’s location that occurs after wy

in
ws
→ thus in

ex
→. This contradicts (wy , y) ∈ rf(

ex
→), i .e. the maximality of wy

in the set of previous writes to y.

• if y
ws
→;

rf
→ x, there exists wx such that y

ws
→ wx

rf
→ x. Since wx

rf
→ x, we have

wx
ex
→ x by Lem. 6. By the same lemma, we have y

ex
→ wx. Hence we have a

cycle in
ex
→∪

po-loc
→ : y

ex
→ wx

ex
→ x

po-loc
→ y, a contradiction.

• if y
fr
→;

rf
→ x, there exists wx such that y

fr
→ wx

rf
→ x. Since wx

rf
→ x, we have

wx
ex
→ x by Lem. 6. By the same lemma, we have y

ex
→ wx. Hence we have a

cycle in
ex
→∪

po-loc
→ : y

ex
→ wx

ex
→ x

po-loc
→ y, a contradiction. �

Lemma 8 (Validity of Extracted Execution Witness)

∀A, E,
po
→,

ex
→,

dp
→,X,

total-order(
ex
→, E) ∧X = A.wit(

ex
→) ∧

acyclic(
ex
→∪

po-loc
→) ∧ acyclic(rf(

ex
→) ∪

dp
→) ∧

acyclic(
ex
→∪

ppoA→)⇒ A. valid(X)

Proof By Sec. 3.4.3, X is valid on A if X is well formed, respects the uniproc

and thin checks, and A. ghb(X) is acyclic.

• Well-formedness: rf(
ex
→) and ws(

ex
→) are trivially well formed, hence X =

(E,
po
→, rf(

ex
→), ws(

ex
→)) is well formed as well.

• Uniproc: we want to show that X respects the uniproc check. Since we know
by hypothesis that acyclic(

ex
→∪

po-loc
→), Lem. 6 applies directly.

• Thin: we want to show that X respects the thin check, i .e. that acyclic(rf(
ex
→)∪

dp
→). This is trivial by hypothesis.

• Acyclicity of
ghb
→ : we want to show that A. ghb(X) is acyclic. We have by

definition that ghb(X) = (grf(
o
→) ∪ ws(

o
→) ∪ fr(

o
→) ∪

ppoA→). Moreover, we

know that grf(
o
→), ws(

o
→) and fr(

o
→) are included in

o
→ by Lem. 6, therefore

we have ghb(X) ⊆
o
→∪

ppoA→ . By hypothesis, we know that acyclic(
o
→∪

ppoA→).
Since A. ghb(X) is included in this relation, this entails its acyclicity. �

This is enough to show that the native validity entails our definition of
validity, for a given architecture A.

4.1.2.2 From our implementation to the native one

Conversely, to show that one of our execution witnesses corresponds to an
execution of the native model, we build an order which satisfies the axioms
of the native model. This order will typically be the

ghb
→ of our execution

witness, or more precisely a linear extension of it, so as to build a total
order. Formally, we want to show:

Lemma 9 (From A to its native definition)

∀EX, A. valid(E,X)⇒ ∃
ex
→, A. native(E,

ex
→) ∧A.wit(

ex
→) = X

Proof From (E, X) being valid on A, we have acyclic(A. ghb(E, X)). There-

fore any linear extension
ex
→ of A. ghb(E, X) is a total order on E which contains

A. ppo(E), since by definition
ppo
→ is included in

ghb
→ . Hence

ex
→ is a total order on

the events of (E, X) which contains
ppo
→ . Thus

ex
→ is such that A. native(E,

ex
→).

Let us show that A.wit(
ex
→) = X, i .e. ws(

ex
→) = ws(X) and rf(

ex
→) = rf(X).

• Equality of write serialisations: by definition, we know that ws(
ex
→) is equal

to
⋃

ℓ(Wℓ ×Wℓ)∩
ex
→, which also corresponds to the definition of ws(X) (see

Sec. 3.2.2).

• Equality of read-from maps:

– rf(
ex
→) ⊆ rf(X): consider two events x and y such that (x, y) ∈ rf(

ex
→).

We want to show that (x, y) ∈ rf(X). By definition of rf(X) being
well formed (see Sec. 3.2.1), we know there exists a unique wy such
that (wy , y) ∈ rf(X). We want to show that x = wy. Suppose as a
contradiction that x 6= wy, in this case we have either (x, wy) ∈ ws(X)
or (wy, x) ∈ ws(X).

∗ Suppose (x, wy) ∈ ws(X). Since (wy , y) ∈ rf(X), we know that

wy is a previous write to y in
ex
→∪

po
→. Indeed if (wy , y) ∈ rfe(X),

then (wy, y) ∈ ghb(X), hence wy
ex
→ y. Otherwise wy

po
→ y. Since

Function Comment

MM , λ(E,X). ((M×M) ∩ po(X)) two memory events in pro-
gram order

RM , λ(E,X). ((R×M) ∩ po(X)) a read followed by a memory
event in program order

WW , λ(E,X). ((W×W) ∩ po(X)) two writes in program order

MW , λ(E,X). ((M×W) ∩ po(X)) a memory event followed by a
write in program order

Figure 4.4: Notations to Extract Pairs From
po
→

(x, wy) ∈ ws(X), we know (x, wy) ∈ ghb(X), hence x
ex
→ wy. Hence

wy contradicts the maximality of x in the set of previous writes to

y w .r .t .
ex
→.

∗ Suppose (wy , x) ∈ ws(X). In this case, we have (y, x) ∈ fr(X),

hence in
ex
→ since

fr
→ is included in

ghb
→ , which

ex
→ linearly extends.

Moreover, we know that (x, y) ∈ rf(
ex
→), hence (x, y) ∈

ex
→. Thus,

we have a cycle in
ex
→, a contradiction.

– rf(X) ⊆ rf(
ex
→): consider two events x and y such that (x, y) ∈ rf(X).

We want to show that (x, y) ∈ rf(
ex
→), i .e. that x is a previous write to

y in
ex
→, and is maximal in this set w .r .t .

ex
→.

∗ Previous write: x is a write to y’s location since they are in rf(X).

Suppose by contradiction that y
ex
→ x. In this case, we have (y, x) ∈

fr(X), hence a cycle in rf(X) ∪ fr(X), a contradiction.

∗ Maximality: As a contradiction, suppose that x is not a maximal
previous write to y w .r .t .

ex
→. In this case, there exists a write wy

to y, such that x
ex
→ wy

ex
→ y. Since x

ex
→ wy and they are both

writes to the same location, we have (x, wy) ∈ ws(X). In this case,

we have (y, wy) ∈ fr(X). We also know that wy
ex
→ y. Since

ex
→ is

a linear extension of ghb(X) in which is included fr(X), we have

y
ex
→ wy. Hence we have a cycle in

ex
→, a contradiction. �

4.2 A Hierarchy of Classical Models

We write po(E) (resp. dp(E,X), rf(X), rfe(X)) for the function extracting

the
po
→ (resp.

dp
→,

rf
→,

rfe
→) relation from (E,X). We define notations to

extract pairs of memory events from the program order in Fig. 4.4. For
example, WW represents the function which extracts the write-write pairs
in the program order of an execution. We write WℓWℓ when the writes have
the same location ℓ.

We give in Fig. 4.5 a table summarising the implementation of these
models in our framework. Note that all of these models consider the stores

Name Arch Sec.

SC (MM, rf, λ(E,X).∅) 4.2.1

TSO (λ(E,X). (RM(E,X) ∪WW(E,X)) , rfe, λ(E,X).∅) 4.2.2.2

PSO (λ(E,X).RM(E,X), rfe, λ(E,X).∅) 4.2.2.3

RMO (λ(E,X).dp(E,X), rfe, λ(E,X).∅) 4.2.2.4

Alpha (λ(E,X).(
⋃

ℓ RℓRℓ(E,X)), rfe, λ(E,X).∅) 4.2.3

Figure 4.5: Summary of Models

to be atomic. We will see an example of model relaxing the store atomicity
with the Power model presented in Chap. 8.

4.2.1 Sequential Consistency (SC)

SC has been defined in [Lam79] as follows:

[. . .] the result of any execution is the same as if the operations of
all the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in
the order specified by its program.

4.2.1.1 Definition

SC allows no reordering of events (
ppo
→ equals

po
→ on memory events) and

makes writes available to all processors as soon as they are issued (
rf
→ is

global). Thus, there is no need for barriers, and any architecture definable
in our framework is weaker than SC:

Definition 38 (Sequential Consistency)

SC , (MM, rf, λ(E,X).∅)

4.2.1.2 Characterisation

The following criterion characterises, as in Sec. 3.5, valid SC executions on
any architecture:

Definition 39 (SC Check)

A. checkSC (E,X) = acyclic(
com
→ ∪

po
→)

Indeed we show that, given an architecture A weaker than SC, any exe-
cution X valid on A satisfying this criterion is valid on SC:

Corollary 1 (SC Characterisation)

∀A, (A ≤ SC)⇒
(∀EX,A. valid(E,X) ∧A. checkSC (E,X)⇔ SC. valid(E,X))

Proof

⇒ As
po
→ ∪

com
→= SC. ghb(E, X), this is a direct consequence of Thm. 2.

⇐ As A ≤ SC, this is a direct consequence of Thm. 1. �

4.2.1.3 Equivalence With the Native One

In [Lam79], a SC execution is a total order
ex
→ which includes the program

order:
SC. native(

ex
→) , total-order(

ex
→, E) ∧

po
→ ⊆

ex
→

The implicit execution model of [Lam79] states that a read r takes its

value from the most recent write that precedes it in
ex
→. Hence we extract

rf
→

and
ws
→ from

ex
→ following Sec. 4.1, and build one of our execution witnesses

from
ex
→:

SC.wit(
ex
→) , (E,

po
→, rf(

ex
→),ws(

ex
→))

Finally, we show, following the proof given in Sec. 4.1.2, that each ex-
ecution witness built as above corresponds to a valid execution in our SC
model:

Theorem 3 (SC Is SC)

∀EX, SC. valid(E,X)⇔ ∃
ex
→, SC. native(

ex
→) ∧ SC.wit(

ex
→) = X

4.2.2 The Sparc Hierarchy

We present here the definitions of Sun’s TSO, PSO and RMO. We will see
in Sec. 10.3.3.2 how we indeed show that TSO can be obtained by PSO
by barriers placement, and similarly PSO can be obtained from RMO, as
specified in the Sparc documentation [spa94a, V9].

4.2.2.1 The Value Axiom

The execution model of the Sparc architectures is provided by the Value
axiom of [spa94a], which states that a read (La for Sparc) reads from the
most recent write (Sa) before La in the global ordering relation (≤) or in
the program order (;):

Val(La) = Val(max
≤
{Sa | Sa ≤ La ∨ Sa;La})

The Value axiom of [spa94a, V8; App. K; p.283]

[. . .] states that the value of a data load is the value written by
the most recent store to that location. Two terms combine to
define the most recent store. The first corresponds to stores by
other processors, while the second corresponds to stores by the
processor that issued the load.

This means that a
rf
→ relation occurs in the global order relation if and

only if it is a
rf
→ between two events from distinct processors. Therefore, we

deduce that for each of the Sparc architecture, the external
rf
→ are global,

and the internal
rf
→ are not.

4.2.2.2 Total Store Order (TSO)

Definition TSO allows two relaxations [AG95]: write to read program
order, and read own write early. The write to read program order relaxation
means that TSO’s preserved program order includes all pairs but the store-
load ones. The read own write early relaxation means TSO’s internal read-
from maps are not global, which is also expressed by the Value axiom. We
elide here the barriers semantics:

Definition 40 (TSOǫ)

ppoTSO , (λ(E,X). (RM(E,X) ∪WW(E,X))

TSO ǫ , (ppoTSO, rfe, λ(E,X).∅)

Characterisation Sec. 3.5 shows that the following criterion characterises
valid executions (w .r .t . any A ≤ TSO) that would be valid on TSO ǫ, e.g.
in Fig. 3.1:

Definition 41 (TSO Check)

A. checkTSO (X) = acyclic(
ws
→ ∪

fr
→ ∪

rfe
→ ∪

ppo-tso
→)

Indeed we show that, given an architecture A weaker than TSO, any
execution X valid on A satisfying this criterion is valid on TSO:

Corollary 2 (TSO Characterisation)

∀A, (A ≤ TSO)⇒
(∀EX,A. valid(E,X) ∧A. checkTSO (E,X) ⇔ TSO. valid(E,X))

Proof

⇒ As
ppo-tso
→ ∪

hb-tso
→ = TSO. ghb(E, X), this is a direct consequence of Thm. 2.

⇐ As A ≤ TSO, this is a direct consequence of Thm. 1. �

Equivalence With the Native One Sparc [spa94a, V. 8, Appendix K]
formally defines a TSO execution axioms. We formulate1 those axioms as
follows:

ptso(
ex
→) , partial-order(

ex
→, E) ∧ RM ⊆

ex
→∧WW ⊆

ex
→∧

∃
tso
→,

tso
→⊆

ex
→ ∧ total-order(

tso
→, W)

Finally, we show, following the proof given in Sec. 4.1.2, that a partial
order

ex
→ satisfying the axioms of Sun’s TSO’s specification corresponds to

a valid execution in our TSO model:

Theorem 4 (TSO Is TSO)

∀EX,TSO ǫ
. valid(E,X)⇔ ∃

ex
→, ptso(

ex
→) ∧ TSO.wit(

ex
→) = X

4.2.2.3 Partial Store Order (PSO)

Definition PSO maintains only the write-write pairs to the same location
and all read-read and read-write pairs [spa94a]. However, there is no need
to specify the write-write pairs to the same location in PSO’s preserved
program order. Indeed, according to Sec. 3.4.1.2, we know that two writes
in program order to the same location are in

ws
→. We know, by hypothesis of

our framework, that
ws
→ is always global. Hence, there is no need to specify

write-write pairs to the same location in PSO’s preserved program order,
since we know that they are preserved globally (i .e. in

ghb
→) by the uniproc

check. As the Value axiom holds for PSO as well, PSO’s external
rf
→ are

global whereas its internal
rf
→ are not:

Definition 42 (PSOǫ)

ppoPSO , λ(E,X).RM(E,X)

PSOǫ , (ppoPSO, rfe, λ(E,X).∅)

Characterisation Sec. 3.5 shows that the following criterion characterises
valid executions (w .r .t . any A ≤ PSO) that would be valid on PSOǫ, e.g.
in Fig. 3.1:

Definition 43 (PSO Check)

A. checkPSO (E,X) = acyclic(
ws
→ ∪

fr
→ ∪

rfe
→ ∪

ppo-pso
→)

Indeed we show that, given an architecture A weaker than PSO, any
execution (E,X) valid on A satisfying this criterion is valid on PSO:

1We omit the axioms Atomicity and Termination.

Corollary 3 (PSO Characterisation)

∀A, (A ≤ PSO)⇒
(∀EX,A. valid(E,X) ∧A. checkPSO (E,X)⇔ PSO. valid(E,X))

Proof

⇒ As
ppo-tso
→ ∪

hb-pso
→ = PSO. ghb(E, X), this is a direct consequence of Thm. 2.

⇐ As A ≤ PSO, this is a direct consequence of Thm. 1. �

Equivalence With the Native One Sparc [spa94a, V. 8, Appendix K]
formally defines a PSO execution as a partial order

ex
→ on memory events

constrained by some axioms. We formulate those as follows:

ppso(
ex
→) , partial-order(

ex
→, E) ∧

(

RM ∪
⋃

ℓ

WℓMℓ

)

⊆
ex
→

We define Sun PSO’s definition of a valid execution as follows, since the
Value axiom holds for PSO as well:

PSO.wit(
ex
→) , (E,

po
→, rf(

ex
→∪

po
→),ws(

ex
→))

We show, following the proof given in Sec. 4.1.2, that any partial order
ex
→ satisfying Sun PSO’s specification corresponds to a valid execution of our
PSO model:

Theorem 5 (PSO Is PSO)

∀EX,PSO ǫ
. valid(E,X)⇔ ∃

ex
→, ppso(

ex
→) ∧ PSO.wit(

ex
→) = X

4.2.2.4 Relaxed Memory Order (RMO)

Definition RMO preserves the program order between the write-write
and read-write pairs to the same location, and the read-read and read-write
pairs in dependency [spa94a]. However, there is no need to specify the
write-write and read-write pairs to the same location in RMO’s preserved
program order, as exposed in Sec. 3.4.1.2. Indeed, the write-write pairs to
the same location are in

ws
→, hence in

ghb
→ . Moreover, by the same reasoning,

the read-write pairs to the same location are in
fr
→, hence in

ghb
→ .

The Value axiom holds for RMO as well. Hence we have (writing
dp(E,X) for the pairs in dependency in an execution (E,X)):

Definition 44 (RMOǫ)

ppoRMO , λ(E,X).dp(E,X)

RMOǫ , (ppoRMO, rfe, λ(E,X).∅)

Characterisation Sec. 3.5 shows that the following criterion characterises
valid executions (w .r .t . any A ≤ RMO) that would be valid on RMOǫ, e.g.
in Fig. 3.1:

Definition 45 (RMO Check)

A. checkRMO(E,X) = acyclic(
ws
→ ∪

fr
→ ∪

rfe
→ ∪

ppo-rmo
→)

Indeed we show that, given an architecture A weaker than RMO, any exe-
cution (E,X) valid on A satisfying this criterion is valid on RMO:

Corollary 4 (RMO Characterisation)

∀A, (A ≤ RMO)⇒
(∀EX,A. valid(E,X) ∧A. checkRMO(E,X)⇔ RMO. valid(E,X))

Proof

⇒ As
ppo-rmo
→ ∪

hb-rmo
→ = RMO. ghb(E, X), this is a consequence of Thm. 2.

⇐ As A ≤ RMO, this is a consequence of Thm. 1. �

Equivalence With the Native One Sparc [spa94a, V. 8, Appendix K]
formally defines a RMO execution as a partial order

ex
→ on memory events

constrained by some axioms:

prmo(
ex
→) , partial-order(

ex
→, E) ∧ (

dp
→∪

⋃

ℓ

MℓWℓ) ⊆
ex
→

We define Sun RMO’s definition of a valid execution as follows, since the
Value axiom holds for RMO as well:

RMO.wit(
ex
→) , (E,

po
→, rf(

ex
→∪

po
→),ws(

ex
→))

We show, following the proof given in Sec. 4.1.2, that any partial order
ex
→ satisfying Sun RMO’s specification corresponds to a valid execution of
our RMO model:

Theorem 6 (RMO Is RMO)

∀EX,RMOǫ
. valid(E,X)⇔ ∃

ex
→, prmo(

ex
→) ∧RMO.wit(

ex
→) = X

4.2.3 Alpha

4.2.3.1 Definition

Alpha maintains the write-write, read-read and read-write pairs to the same
location [alp02]. We exposed in Sec. 3.4.1.2 why there is no need to include
the write-write pairs to the same location in

ppo
→ (they are in

ws
→ thus in

ghb
→ by

uniproc), and why the read-write pairs to the same location are exempted as

well (they are in
fr
→ thus in

ghb
→ by uniproc). However, we do need to specify

the read-read pairs to the same location in Alpha’s preserved program order,
because such a relation may not be global, if not specified in the

ppo
→ . Hence

we have. Moreover, Alpha specifies, for every read, the write from which it
reads as the last one either:

• in processor issue sequence, i .e. our program order, or

• in the BEFORE order, which corresponds to our global happens-before
order.

Thus, similarly to the Sun models, external
rf
→ are global whereas internal

are not:

Definition 46 (Alphaǫ)

ppoAlpha , λ(E,X).(
⋃

ℓ RℓRℓ(E,X))

Alphaǫ , (ppoAlpha, rfe, λ(E,X).∅)

4.2.3.2 Characterisation

Sec. 3.5 shows the following criterion characterises valid executions (w .r .t .
any A ≤ Alpha) that would be valid on Alphaǫ, e.g. in Fig. 3.1:

Definition 47 (Alpha Check)

A. checkAlpha (E,X) = acyclic(
ws
→ ∪

fr
→ ∪

rfe
→ ∪

ppo-alpha
→)

Indeed we show that this criterion characterises valid executions that are
valid w .r .t . Alphaǫ on any A ≤ Alpha:

Corollary 5 (Alpha Characterisation)

∀A, (A ≤ Alpha)⇒
(∀EX,A. valid(E,X) ∧A. checkAlpha (E,X) ⇔ Alpha. valid(E,X))

Proof

⇒ This is a direct consequence of Thm. 2.

⇐ As A ≤ Alpha, this is a direct consequence of Thm. 1. �

4.2.3.3 Equivalence With the Native One

Alpha [alp02] formally defines an Alpha execution as a partial order
ex
→ on

memory events constrained by some axioms. We formulate those axioms as
follows:

palpha(
ex
→) , partial-order(

ex
→, E) ∧ (

⋃

ℓ

RℓMℓ ∪
⋃

ℓ

WℓWℓ) ⊆
ex
→∧

acyclic(rf(
ex
→) ∪ dp(

ex
→))

P0 P1

(a) x← 1 (d) x← 2

(b) r1← x

(c) r2← x

Observed? r1=2; r2=1; x=2

(a) Wx1

(b) Rx2

po:0

(d) Wx2

ws

(c) Rx1

po:0 fr

rf

(a) Program (b) An Execution Witness

Figure 4.6: Load-Load Hasard Example

Since Alpha’s definition of read-from map corresponds to the Sparc one,

we extract the
rf
→ from an Alpha execution as we did for the Sparc hierarchy,

and define a valid Alpha execution as follows:

Alpha.wit(
ex
→) , (E,

po
→, rf(

ex
→∪

po
→),ws(

ex
→))

Finally, we show, following the proof given in Sec. 4.1.2, that any partial
order

ex
→ satisfying Alpha’s axioms corresponds to a valid execution in our

Alpha model:

Theorem 7 (Alpha Is Alpha)

∀EX,Alphaǫ
. valid(E,X)⇔ ∃

ex
→, palpha(

ex
→) ∧ Alpha.wit(

ex
→) = X

4.2.4 RMO and Alpha Are Incomparable

4.2.4.1 Load-Load Hasard

We exposed in Sec. 3.4.1.3 that RMO authorises load-load hasard, where
two reads on the same processor from the same location can be reordered.
As an illustration, we explained why the example of Fig. 3.10(a) can exhibit
its outcome on a RMO machine. We recall this example in Fig. 4.6.

However, Alpha includes read-read pairs to the same location in its pre-
served program order, as exposed in Sec. 4.2.3. Therefore the read-read pair
(b)

po
→ (c) to the same location on P0 is included in Alpha’s preserved pro-

gram order. Moreover, we know that the external read-from maps are global

on Alpha, hence the
rf
→ relation (d)

rf
→ (b) is global as well. Hence the exe-

cution (E,X) depicted in Fig. 3.10(b) exhibits a cycle in Alpha. ghb(E,X):

(b)
ppo
→ (c)

fr
→ (d)

rfe
→ (b), which forbids this execution.

Hence, RMO authorises load-load hasard whereas Alpha does not.

iriw

P0 P1 P2 P3

(a) r1← x (c) r2← y (e) x← 1 (f) y← 2

(b) r2← y (d) r1← x

Observed? 0:r1=1; 0:r2=0; 1:r2=2; 1:r1=0;
Figure 4.7: The iriw Example

(a) Rx1(b) Ry0 po:0

(f) Wy2

fr

(c) Ry2 (d) Rx0po:1

(e) Wx1

fr

rf

rf

Figure 4.8: An non-SC execution of iriw

4.2.4.2 Iriw With Dependencies

Consider now the iriw (for Independent Reads of Independent Writes) ex-
ample given in Fig. 4.7, and suppose that there is a dependency between

the pairs of reads on P0 and P1, i .e. (a)
dp
→ (b) and (c)

dp
→ (d). We can

enforce these pairs to be in dependency by adding for example a logical op-
eration between them, such as a xor operating on the registers of the load
instructions associated to the read events.

The specified outcome may be revealed by an execution such as the one
we depict in Fig. 4.8. Suppose that each location and register initially hold
0. If r1 holds 1 on P0 in the end, the read (a) has read its value from the

write (e) on P2, hence (e)
rf
→ (a). On the contrary, if r2 holds 0 in the end,

the read (b) has read its value from the initial state, thus before the write (f)

on P3, hence (b)
fr
→ (f). Similarly, we have (f)

rf
→ (c) from r2 holding 1 on

P1, and (d)
fr
→ (e) from r1 holding 0 on P1. Hence, if the specified outcome

is observed, it ensures that at least one execution of the test contains the
cycle depicted in Fig. 4.8:

(a)
dp
→ (b)

fr
→ (f)

rfe
→ (c)

dp
→ (d)

fr
→ (e)

rf
→ (a)

This cycle is not global on Alpha whereas it is on RMO. This means that
the associated execution is authorised on Alpha whereas it is forbidden on
RMO. Indeed on RMO, the pairs in dependency are included in the preserved

program order, hence the pairs (a)
dp
→ (b) and (c)

dp
→ (d) are included in

ppo
→ ,

hence in
ghb
→ . Moreover, the external read-from maps are global on RMO

(see Sec. 4.2.2.4), and
fr
→ is always global. However on Alpha, these pairs

are not preserved globally, therefore this execution is authorised.
Hence, Alpha authorises iriw with dependencies whereas RMO does

not.

Chapter 5

Related Work

We present here three kinds of related work. In Sec. 5.1 we present sev-
eral generic weak memory models. In Sec. 5.2, we examine related work
according to the view of memory they use, either global-time like in our
framework, or using a per-processor view order. Finally, in Sec. 5.3 and
Sec. 5.5, we present related work according to their style, either axiomatic
like us, operational, or specifications of weak memory models as program
transformations.

5.1 Generic Models

The work that is the closest to ours is probably W. Collier’s [Col92]. He
presents several abstract models in terms of the relaxations (w .r .t . SC) they
allow. However he does not address the store atomicity relaxation.

S. Adve and K. Gharachorloo’s tutorial gives a categorisation of memory
models, in which they give intuition about the relaxations in terms of the
actual hardware, i .e. store buffers and cache lines. By contrast, we chose to
abstract from the implementation.

S. Adve [Adv93] and K. Gharachorloo [Gha95] both present in their the-
sis a generic framework. S. Adve’s work focuses on the notion of data race
freeness, and defines and studies models which enforce the data race freeness
guarantee. We choose to examine this property on top of our framework,
and see which conditions enforce this guarantee for its instances, instead of
building a model with a hard-wired data race free guarantee. K. Gharachor-
loo’s work focuses on the implementation and performance of several weak
memory models. We choose to give an abstract view of the memory, because
we want to provide a model in which the programmer does not have to care
about the minute details of the implementation—which are often secret—to
write correct programs.

Finally, the Nemos [YGLS04] framework covers a broad range of mod-
els including Itanium as the most substantial example. Itanium [ita02] is

71

rather different from the models we presented, or from the Power model we
present in Chap. 8; we do not know whether our framework could handle
such a model or whether a satisfactory Power model could be expressed in
Nemos. Indeed, Itanium uses several events per instruction, whereas we rep-
resent instructions by only one memory event. Moreover, Itanium’s model
specifies the semantics not only of stores, loads and fences, but also of load-
acquire and store-release instructions. By contrast, we chose to specify the
semantics of more atomic constructions, and build the semantics of derived
constructions on top of them, as we will see in Chap. 10.

5.2 Global-Time vs. View Orders

We can distinguish weak memory models according to the view of memory
they present. Such models are either in terms of a global time line in which
the memory events are embedded, or provide one view order per processor.

Most of the documentations that provide a formal model, e.g . Alpha
[alp02] and Sun [spa94a], are in terms of a global time line. We believe
this provides a usable model to the programmer, because it abstracts from
the implementation’s details. Moreover such a model allows the vendor
to provide a formal and usable model without revealing the secrets of the
implementation.

Some memory models are in terms of view orders, e.g . [AAS03] and the
Power documentation [pow09]. A. Adir et al. ’s work focuses on the Pow-
erPC model, and presents numerous axioms describing a pre-cumulativity
(pre Power 4) version of Power. We find such models difficult to understand,
because they provide several axioms, often without clear intuition.

5.3 Axiomatic vs. Operational

Formal models roughly fall into two classes: operational models and ax-
iomatic models. Operational models, e.g. [BPa, YGL, HKV98], are abstrac-
tions of actual machines composed of idealised hardware components such as
queues. They seem appealingly intuitive and offer a relatively direct path to
simulation, at least in principle. However, they require a precise knowledge
of the implementation of the hardware.

Axiomatic models focus on the segregation of allowed and forbidden
behaviours, usually by constraining various order relations on memory ac-
cesses; they are well adapted for model exploration, as we do in Chap. 7. Sev-
eral of the most formal vendor specifications have been in this style [alp02,
spa94a, ita02].

5.4 Characterisation of Behaviours

The characterisation we propose in Thm. 2 is simple, since it is merely an
acyclicity check of the global happens-before relation. This check is already
known for SC [LHH91], and recent verification tools use it for architectures
with store buffer relaxation [HVM+, BMa]. We believe our work could help
extending these methodologies to models relaxing store atomicity.

5.5 Memory Models As Program Transformations

Another style of weak memory models’ specification has recently emerged,
e.g . in S. Burckhardt et al. ’s work [BMS] or R. Ferreira et al. ’s [FFS]. This
line of research specifies weak memory models as program transformations.
Instead of specifiying a transition system as in an operational style, rewriting
rules apply to the program as a whole, to represent the effect of the memory
model on this program’s behaviour. Although this approach addresses only
a limited store atomicity relaxation, S. Burckhardt et al. ’s work has an
elegant flavour of testing semantics and realisability, as we shall develop in
Chap. 14.

Part III

Testing Weak Memory
Models

75

A program running on a multiprocessor behaves w .r .t . the memory
model of the architecture. But, as we know, some public documentations
[int07, pow09] lack formal definitions of these models. Hence we rely on in-
tensive testing, via litmus tests, to design and study such models. A litmus
test is a small program in pseudo or assembly code, specifying an initial
state and a condition on the final state. Running such a test on a given ma-
chine and checking whether the final condition is verified or not may reveal
relaxations of the architecture of the machine.

We first give an overview of the relaxations we studied in the Power
architecture, and their syntax. Then, we present in Chap. 7 the tool we wrote
to systematise and automatise the production of litmus tests, in Power or x86
assembly. We present in Chap. 8 the way we used this tool and applied our
testing methodology to produce a model for the Power architecture [pow09],
which we also detail in the same chapter.

Chapter 6

Relaxations

We want to do model exploration: for a given machine—or set of machines—
agreeing with a certain architecture, we want to be able, by testing, to
highlight the parameters (w .r .t . the framework presented in Chap. 3) that
this machine displays. Thus, we need to be able to test whether the relations
ppo
→ or

rf
→ are global or not on this machine. More precisely, we want to

determine which subrelation of the program order
po
→ is global: this will

form the preserved program order
ppo
→ of the machine we test. Similarly, we

want to determine which subrelation of the read-from map
rf
→ is global.

We call any sequence of the relations defined in Chap. 3 a candidate
relaxation. We detail below the syntax of the candidate relaxations we use.
We consider a given candidate relaxation to be relaxed, or non-global , when
we observe it to be exhibited on a machine. On the contrary, safe or global
candidate relaxations are the candidate relaxations guaranteed, e.g . by the
documentation, never to be exhibited. In our framework, global candidate
relaxations are included in

ghb
→ , and non-global ones are not.

6.1 A Brief Glance at the Power Documentation

The Power documentation [pow09] states several particularities. We detail
them in the following section by presenting excerpts from the documenta-
tion. The words added by myself for clarity are between brackets, e.g . [Led
Zeppelin]. The words erased for brevity or irrelevance are represented as
dots between brackets, i .e. [. . .]. In particular, as we focus on giving a
Power model for basic user mode, we do not consider any situation where
the memory is Guarded, or Caching Inhibited [pow09, p. 657].

6.1.1 Axioms of Our Model

We highlight here some excerpts of the documentation that can be in-
terpreted as a confirmation of some of the hypotheses of our model (see

79

Chap. 3).

6.1.1.1 Coherence

The memory is coherent [pow09, p. 657, 1st col, last §]:

Memory coherence refers to the ordering of stores to a single
location. Atomic stores to a given location are coherent if they
are serialized in some order, and no processor or mechanism
is able to observe any subset of those stores as occurring in a
conflicting order.

Hence, we conclude that the write serialisation as described in Sec. 3.2.2
actually exists, and is indeed global, as we supposed in Sec. 3.3.1.

6.1.1.2 Uniprocessor

The sequential execution model is defined as follows [pow09, p. 29, 1st col,
last §]:

The model of program execution in which the processor appears
to execute one instruction at a time, completing each instruc-
tion before beginning to execute the next instruction is called the
”sequential execution model”.

Our uniproc axiom may be related to this excerpt [pow09, p. 661, 2nd
col, penultimate §]:

Because the storage model is weakly consistent, the sequential
execution model as applied to instructions that cause storage ac-
cesses guarantees only that those accesses appear to be performed
in program order with respect to the processor executing the in-
structions.

We believe that this excerpt means that the sequential execution model
actually ensures a guarantee similar to uniproc, and nothing more: in partic-
ular, one should not consider the uniproc check as a global check, since the
excerpt explicitely states that this guarantee only holds for the particular
processor that issued the accesses.

6.1.2 Store Buffering

Power allows store buffering [pow09, p. 661, 1st col, 1st bullet]:

If a Load instruction specifies the same storage location as a
preceding Store instruction [. . .], the load may be satisfied from
a ”store queue” (a buffer into which the processor places stored
values before presenting them to the storage sub-system), and not
be visible to other processors and mechanisms.

From this we can deduce that internal read-from maps are not global in
Power. Since there is no mention of the external ones, we suppose that they
are relaxed, which our experiment confirmed (see Sec. 8.1).

6.1.3 Load-Load Pairs

6.1.3.1 Data Dependencies

The load-load pairs related by a data dependency are preserved in the pro-
gram order [pow09, p. 660, 1st col, last bullet]:

If a Load instruction depends on the value returned by a preced-
ing Load instruction (because the value is used to compute the
effective address specified by the second Load), the correspond-
ing storage accesses are performed in program order with respect
to any processor or mechanism [. . .]. This applies even if the
dependency has no effect on program logic (e.g., the value re-
turned by the first Load is ANDed with zero and then added to
the effective address specified by the second Load).

We consider indeed that the dependency over values described in this
excerpt is a data dependency, as described in Sec. 6.2.4.1.

6.1.3.2 Semantics of the isync Barrier

The isync barrier, in conjunction with a branch instruction such as bne,
forms a load-load barrier [pow09, p. 661, 1st col, 2nd §]:

[. . .] if an isync follows a conditional Branch instruction that
depends on the value returned by a preceding Load instruction,
the load on which the Branch depends is performed before any
loads caused by instructions following the isync. This applies
even if the effects of the ”dependency” are independent of the
value loaded (e.g., the value is compared to itself and the Branch
tests the EQ bit in the selected CR field), and even if the branch
target is the sequentially next instruction.

Since isync is not mentioned to be cumulative, we consider it non-
cumulative.

6.1.4 Load-Store Pairs

6.1.4.1 Data Dependencies

The load-store pairs related by a data dependency are preserved in the
program order [pow09, p. 661, 1st col, 1st §]:

[. . .] if a Store instruction depends on the value returned by
a preceding Load instruction (because the value returned by the
Load is used to compute either the effective address specified by
the Store or the value to be stored), the corresponding storage
accesses are performed in program order.

We consider indeed that the dependency over values described in this
excerpt is a data dependency, as described in Sec. 6.2.4.1.

6.1.4.2 Control Dependencies

The load-store pairs related by a control dependency are preserved in the
program order [pow09, p. 661, 1st col, 1st §]:

The same [as above, Sec. 6.1.4.1] applies if whether the Store
instruction is executed depends on a conditional Branch instruc-
tion that in turn depends on the value returned by a preceding
Load instruction.

We consider indeed that the dependency over branches described in this
excerpt is a control dependency, as described in Sec. 6.2.4.2.

6.1.5 Barriers

6.1.5.1 Ordering Induced by a Barrier

Plain Ordering is defined as follows [pow09, p. 660, 2nd col, 1st bullet]:

When a processor (P1) executes a Synchronize [sync] [. . .] in-
struction a memory barrier is created, which orders applicable
storage accesses pairwise, as follows. Let A be a set of storage
accesses that includes all storage accesses associated with instruc-
tions preceding the barrier-creating instruction, and let B be a set
of storage accesses that includes all storage accesses associated
with instructions following the barrier-creating instruction. For
each applicable pair aibj of storage accesses such that ai is in A
and bj is in B, the memory barrier ensures that ai will be per-
formed with respect to any processor or mechanism [. . .], before
bj is performed with respect to that processor or mechanism.

We consider here that ”preceding” is w .r .t . program order. Hence a bar-
rier orders certain pairs of accesses (the applicable ones): if two instructions
i1 and i2 on the same processor are separated by a barrier in program order,
then the associated events m1 and m2, if they form an applicable pair, will
be globally ordered according to the program order.

Cumulativity is defined as follows [pow09, p. 660, 2nd col, penulti-
mate §]:

The ordering done by a memory barrier is said to be ”cumu-
lative” if it also orders storage accesses that are performed by
processors and mechanisms other than P1, as follows.

• A includes all applicable storage accesses by any such pro-
cessor or mechanism that have been performed with respect
to P1 before the memory barrier is created.

• B includes all applicable storage accesses by any such pro-
cessor or mechanism that are performed after a [sentinel]
Load instruction executed by that processor or mechanism
has returned the value stored by a store that is in B.

We took some liberty with this definition, as we shall see in Sec. 8.2.2.3.
In particular, we did not formalise the notion of being ”performed with
respect to”, either a processor or all processors. We did not take into account
the notion of sentinel load for the B group either.

Yet, we took this excerpt as a source of inspiration for our definition of

cumulativity. For group A, we consider the events that are in
rf
→ with an

event preceding the barrier in program order. For group B, we consider the

events that are in
rf
→ with an event following the barrier in program order.

Thus, we consider a barrier to be A-cumulative when it imposes a global

ordering to the chains w
rf
→ m1

po
→ m2, provided that the barrier separates

the instructions associated to m1 and m2 in program order. Similarly, we
consider a barrier to be B-cumulative when it imposes a global ordering to

the chains m1
po
→ m2

rf
→ r, provided the barrier separates the instructions

associated to m1 and m2 in program order. We formalise these notions in
Sec. 10.3.3.

6.1.5.2 The sync barrier

The sync barrier preserves all pairs in the program order [pow09, p. 700,
1st col, L=0 case]:

The memory barrier [sync] provides an ordering function for the
storage accesses associated with all instructions that are executed
by the processor executing the sync instruction. The applicable
pairs are all pairs aibj in which bj is a data access [. . .].

Or again, more clearly [pow09, p. 700, 2nd col, 1st bullet]:

Executing the [sync] instruction ensures that all instructions pre-
ceding the sync instruction have completed before the sync in-
struction completes, and that no subsequent instructions are ini-
tiated until after the sync instruction completes.

Hence, we consider that if two instructions i1 and i2 are separated by
a sync in program order, this imposes a global ordering between the asso-
ciated events m1 and m2 according to the program order, regardless of the
directions of m1 and m2.

Moreover, the sync barrier is cumulative [pow09, p.700, 1st col, last
line]:

The ordering done by the memory barrier [sync] is cumulative

That is, more precisely [pow09, p. 700, 2nd col, 3rd bullet]:

The memory barrier [sync] provides the additional ordering func-
tion such that if a given instruction that is the result of a store
in set B is executed, all applicable storage accesses in set A have
been performed with respect to the processor executing the in-
struction to the extent required by the associated memory coher-
ence properties. The cumulative properties of the barrier apply
to the execution of the given instruction as they would to a load
that returned a value that was the result of a store in set B.

We drift away from this definition and prefer to consider that sync is A-
and B-cumulative in the sense we expose in Sec. 6.1.5.1, regardless of any
direction of the events involved. We will see in Chap. 8 that our intensive
testing did not contradict our liberal definition.

6.1.5.3 The lwsync barrier

The lwsync barrier preserves all pairs in the program order, except the
store-load ones [pow09, p. 700, 1st col, L=1 case]:

The memory barrier [lwsync] provides an ordering function for
the storage accesses caused by [. . .] instructions that are executed
by the processor executing the [lw]sync instruction [. . .]. The
applicable pairs are all pairs aibj of such accesses except those in
which ai is an access caused by as Store [. . .] and bj is an access
caused by a Load instruction.

Hence, we consider that if two instructions i1 and i2 are separated by
a lwsync in program order, this imposes a global ordering between the
associated events m1 and m2 according to the program order, provided that
(m1,m2) does not belong to W× R.

Moreover, the lwsync barrier is cumulative, except from stores to loads:

The ordering done by the memory barrier [lwsync] is cumulative.

Once again, we drift away from this definition and prefer to consider
that lwsync is A- and B-cumulative in the sense we expose in Sec. 6.1.5.1,
provided that (e1,e2) does not belong to W × R, where e1 is the beginning

of the chain
rf
→;

po
→ (resp.

po
→;

rf
→) and e2 its end.

Candidate Relaxation Comment

Rfi a write followed by a read from the
same location in program order

Rfe a write and a read from the same lo-
cation on distinct processors

Wsi a write followed by a write to the same
location in program order

Wse two writes to the same location on dis-
tinct processors

Fri a read followed by a write to the same
location in program order

Fre a read and a write to the same location
on distinct processors

Figure 6.1: Table of Communication Candidate Relaxations

6.2 Candidate Relaxations

We present here the syntax of candidate relaxations, and how we implement
a given candidate relaxation, in the light of the excerpts we presented above.

6.2.1 Communication Candidate Relaxations

We call communication candidate relaxations the candidate relaxations as-
sociated to the subrelations of

com
→ , i .e.

rf
→,

fr
→ and

ws
→. We give a table of

their syntax in Fig. 6.1.
We implement an internal communication candidate relaxation (i .e. Rfi,

Wsi, Fri) with two instructions to the same location in the program order,
with the appropriate directions. For example, Rfi corresponds to a write
followed in

po
→ by a read to the same location, hence is implemented by a

store followed by a load on the same processor and to the same location.
We implement an external communication candidate relaxation (i .e. Rfe,

Wse, Fre) with two instructions to the same location on distinct processors,
with the appropriate direction. For example, Fre corresponds to a read
preceding (in

ghb
→) a write to the same location but from a distinct processor,

hence is implemented by a load and a store to the same location but on
distinct processors.

6.2.2 Program Order Candidate Relaxations

We call program order candidate relaxations each relation between two
events in the program order. Program order candidate relaxations have
the following syntax:

Po(s | d)(R |W)(R |W)

Candidate Relaxation Comment

PosRR two reads in program order, to the
same location

PodRR two reads in program order, to distinct
locations

PosRW a read followed by a write to the same
location in program order

PodRW a read followed by a write to a differ-
ent location in program order

PosWW two writes to the same location in pro-
gram order

PodWW two writes to distinct locations in pro-
gram order

PosWR a write followed by a read from the
same location in program order

PodWR a write followed by a read from a dif-
ferent location in program order

Figure 6.2: Table Of Program Order Candidate Relaxations

where:

• s (resp. d) indicates that the two events are relative to the same (resp.
different) location(s);

• R (resp. W) indicates an event to be a read (resp. a write).

We give in Fig. 6.2 a table summarising their syntax. By uniproc, we
know that PosWW and PosRW correspond to Wsi and Fri respectively.

We implement a program order candidate relaxation by generating two
memory instructions following one another on the same processor, according
to the specified directions (store for W and load for R), with the same
location if s is specified and distinct locations if d is specified.

6.2.3 Barriers Candidate Relaxations

We specify the presence of a fence instruction with Fenced candidate relax-
ations, similar to Po candidate relaxations, except that a fence instruction
is inserted. We have the following syntax for these candidate relaxations:

Fenced(s | d)(R |W)(R |W)

The inserted fence is by default the stronger fence provided by the ar-
chitecture, i .e. mfence for x86 and sync for Power.

Barriers can also be specified by using specific names. More precisely,
we have MFence for x86, while on Power we have Sync and LwSync. For

example, in order to yield two reads (RR) to different locations (d) and
separated by the lightweight Power barrier lwsync, we specify LwSyncdRR.
This may lead e.g . to the following code:

(1) lwz r1,0(r2)

(2) lwsync

(3) lwz r3,0(r4)

The instructions lwz r1,0(r2) at line (1) and lwz r3,0(r4) at line (3)
are reads from distinct locations, separated by a lwsync barrier, at line (2).

6.2.4 Dependencies Candidate Relaxations

We distinguish the dependencies candidate relaxations between data and
control dependencies.

6.2.4.1 Data Dependencies

These candidate relaxations have the following syntax:

Dp(s | d)(R |W)

where:

• s (resp. d) indicates that the two events are relative to the same (resp.
different) location(s);

• R (resp. W) indicates that the target event is a read (resp. a write);

We do not need to specify the direction of the source event, since it is
always a read by definition (see Sec. 3.4.1.3).

We implement a data dependency with a false dependency that operates
on the address of the target memory access. See for instance the following
code:

(1) lwz r1,0(r2)

(2) xor r3,r1,r1

(3) stwx r4,r3,r5

The instructions lwz r1,0(r2) at line (1) and stwx r4,r3,r5 at line
(3) correspond to a DpdW candidate relaxation. They are indeed in data
dependency, as they are separated by xor r3,r1,r1 at line (2). Hence the
address of the indexed store stwx r4,r3,r5 depends on the content of the
index register r3, which itself depends on the content of r1. The dependency
is a false one, since the content of r3 always is zero, regardless of the contents
of r1.

6.2.4.2 Control Dependencies

These candidate relaxations have the following syntax:

Ctrl(s | d)(R |W)

A control dependency is implemented with:

• a useless compare and branch sequence when the target is a write;

• a useless compare and branch sequence followed (for PowerPC) by an
isync instruction when the target is a read.

Consider for example the following PowerPC assembly code:

(1) lwz r1,0(r5)

(2) cmpwi r1,0

(3) bne L0

(4) stw r2,0(r6)

L0:

Suppose that the register r5 initially holds the address x, and the reg-
ister r6 the address y. The instructions lwz r1,0(r5) at line (1) and stw

r2,0(r6) at line (4) correspond to a CtrldW candidate relaxation. Indeed,
the first one is a read and the second one a write. They are to distinct
locations, and in control dependency, since they are separated by a compare
and branch sequence, composed of cmpwi r1,0 at line (2) and bne L0 at
line (3).

In both cases, we assume that dependencies are not erased by the as-
sembler or the hardware, as the result of an optimisation.

6.2.5 Composite Candidate Relaxations

We call composite candidate relaxations any sequence of candidate relax-
ations. Their syntax is as follows (with r1 and r2 being candidate relax-
ations):

[r1, r2, . . .]

We use composite candidate relaxations to specify e.g . cumulativity can-
diate relaxations. For example, we write ACSyncsRR for an A-cumulativity
candidate relaxation for two reads to the same location separated in program
order by a sync barrier. We specify this candidate relaxation by the compos-
ite candidate relaxation [Rfe, SyncsRR]. Similarly, we write BCLwSyncdWR
for a B-cumulativity candidate relaxation for a read event followed by a
write to a different location, separated in program order by a lwsync.
We specify this candidate relaxation by the composite candidate relaxation
[LwSyncdWR, Rfe].

6.3 A Preliminary Power Model

Our rather liberal interpretation of the documentation led us to a first in-
formal Power model. We considered all the examples exposed in the doc-
umentation as guarantees: e.g . we considered that the Power architecture
preserves globally the read-read pairs in program order, as long as there is
a data dependency between them (see Sec. 6.1.3.1).

We summarise this informal model in Fig. 6.3, where:

• an underscore depicts all the possibilities: e.g . Ws stands for both
Wsi and Wse, and Dp R for both DpdR and DpsR;

• ”a pair” means a pair of events in program order;

• ”a pair separated by [something]” means the events are in program
order, and there is [something] between them in program order;

• unless otherwise stated, the relation is valid regardless of the directions
and locations of the events;

• m1
sync
→ m2 (resp. m1

lwsync
→ m2) means the instructions i1 and i2

associated to the events m1 and m2 are separated in program order by
a sync (resp. lwsync) barrier (we formalise this notion in Sec. 8.2.1.3,
see infra).

From a communication perspective, Power allows store buffering and
relaxes the atomicity of stores. From a preserved program order point of
view, Power preserves only the read-read and read-write pairs in dependency,
whether data or control. From a barrier point of view, Power features cu-
mulative barriers. Such barriers are a way to compensate for the lack of
store atomicity, as we will see in Sec. 10.3.3.

We explain how we tested this model in the next two chapters.

Candidate Relaxation Comment Ref. in [pow09]

Ws write serialisation p. 657, 1st col,
last §

Fr from-read map p. 661, 2nd
col, penulti-
mate §

PosRW (= Fri) any load-store pair to
the same location

p. 661, 2nd
col, penulti-
mate §

PosWW (= Wsi) any write-write pair to
the same location

p. 657, 1st col,
last §

Dp R any load-load pair in
data dependency

p. 660, 1st col,
last bullet

Dp W any load-store pair in
data dependency

p. 661, 1st col,
1st §

Ctrl R any load-load pair sep-
arated by a compare
and branch sequence
followed by an isync

p. 661, 1st col,
2nd §

Ctrl W any load-store pair
separated by a com-
pare and branch
sequence

p. 661, 1st col,
1st §

Sync any pair separated by
a sync

p. 700, 2nd
col, 1st bullet

LwSync d1d2

w. (d1, d2) 6= (W,R)
any load-load, load-
store or store-store
pair separated by a
lwsync

p. 700, 1st col,
L=1 case

ACSync m1
rfe
→ m2

sync
→ m3 p. 700, 1st col,

last line

BCSync m1
sync
→ m2

rfe
→ m3 p. 700, 1st col,

last line

ACLwSync d1d2

w. (d1, d2) 6= (R,R)
m1

rfe
→ m2

lwsync
→ m3,

with m3 6∈ R

p. 700, 1st col,
last line

BCLwSync d1d2

w. (d1, d2) 6= (W,W)
m1

lwsync
→ m2

rfe
→ m3,

with m1 6∈W

p. 700, 1st col,
last line

Figure 6.3: Safe Candidate Relaxations According to the Documentation

Chapter 7

Diy, A Testing Tool

d.i.y.

 When she

 �������� ��� brand new
���	
���� Monique was
��
�
��� � Nowhere in the forest of

 �����	�
��
� �������� ��
�� she find the operating

 instru
����
� ��� ����
��� � How would she be able to

 find the minute details of

her
���	
��� �� ������ ������ Were reads reorderings

 allowed? Was the read-

 from relation global?

 And what tests
��
�� ��� devise to t����� ��� ��� level questions every

perfect housewife should ask

 herself?

Little did she know that the

 answer laid within reach of

 her hard-working yet

 impeccably manicured hands,

 on the d.i.y. web site!

91

We present our diy (do it yourself) tool, which computes litmus tests in
x86 or Power assembly code by generating violations of SC , i.e. cycles in
com
→ ∪

po
→. A diy tutorial is available at http://diy.inria.fr.

7.1 Litmus Tests

We use litmus tests throughout this document to highlight which behaviours
are allowed and which are forbidden on a given architecture.

7.1.1 Highlighting Relaxations

A given test may exhibit its specified outcome for several different reasons.
Consider for example the test of Fig. 7.1. We already discussed in Sec. 4.2.4.2
why the outcome of this test may be exhibited. We recall the reasoning here.
The specified outcome may be revealed by an execution such as the one we
depict in Fig. 7.2. Suppose that each location and register initially hold 0.
If r1 holds 1 on P0 in the end, the read (a) has read its value from the write

(e) on P2, hence (e)
rf
→ (a). On the contrary, if r2 holds 0 in the end, the

read (b) has read its value from the initial state, thus before the write (f)

on P3, hence (b)
fr
→ (f). Similarly, we have (f)

rf
→ (c) from r2 holding 1 on

P1, and (d)
fr
→ (e) from r1 holding 0 on P1. Hence, if the specified outcome

is observed, it ensures that at least one execution of the test contains the
cycle depicted in Fig. 7.2, written here in terms of the candidate relaxations
presented in Chap. 6:

(a)
PodRR
−→ (b)

Fre
−→ (f)

Rfe
−→ (c)

PodRR
−→ (d)

Fre
−→ (e)

Rfe
−→ (a)

The outcome may be exhibited for two reasons: either the external
rf
→ are

not global on the machine running the test, or the read-read pairs ((a)
po
→

(b) on P0 and (c)
po
→ (d) on P1) are not preserved in the program order.

Therefore, when running this test, we cannot decide which weakness of the
memory model is responsible for the outcome to be exhibited.

7.1.2 Exercising One Relaxation at a Time

So as to make the analysis of the testing results feasible, we focus on tests
which exercise a unique weakness of the memory model at a time. Hence, if
the outcome of a given test is exhibited, we know that the feature we tested
is used by the machine on which we ran the test.

For example, suppose that we modify the test of Fig. 7.1 and impose
dependencies between the pairs of reads on P0 and P1, so that these depen-
dencies are global, e.g . by being included in

ppo
→ . We give in Fig. 7.5 the

iriw test, written in PowerPC assembly, and modified to impose such global

http://diy.inria.fr

iriw

P0 P1 P2 P3

(a) r1← x (c) r2← y (e) x← 1 (f) y← 2

(b) r2← y (d) r1← x

Observed? 0:r1=1; 0:r2=0; 1:r2=2; 1:r1=0;
Figure 7.1: Study of iriw

(a) Rx1(b) Ry0 po:0

(f) Wy2

fr

(c) Ry2 (d) Rx0po:1

(e) Wx1

fr

rf

rf

Figure 7.2: A non-SC execution of iriw

dependencies to the pairs of reads. In order to do so, we use a xor between
the loads (a) and (b) on P0 and (c) and (d) on P1. Hence (a) is in data
dependency with (b), and so is (c) with (d).

In this case the only reason why the specified outcome may arise is the
non-globality of external read-from maps. Hence, the test of Fig. 7.5 is
significant to check whether an architecture relaxes the atomicity of stores.

7.2 Cycles as Specifications of Litmus Tests

We want to be able to generate such significant tests, automatically and
systematically. We noticed that the interesting behaviours of a litmus test
can be characterised by cycles formed of the relations of our model.

7.2.1 Automatic Test Generation

For example, as we exposed above, the outcome of Fig. 7.1 leads to the
com
→

∪
po
→ cycle depicted in Fig. 7.2. Conversely, the iriw test of Fig. 7.1 can

be built from the sequence
rfe
→;

po
→;

fre
→;

rfe
→;

po
→;

fre
→ interpreted as a cycle. The

computed outcome ensures—as we exposed in Sec. 7.1.1—that the input
cycle appears in at least one of the execution witnesses of the test. If the
outcome is observed, then at least one subsequence in the cycle is not global,

i.e. not in
ghb
→ : in the case of Fig. 7.1, either the

po
→ or the

rfe
→ relations may

not be included in
ghb
→ .

− a relaxation supposed to be exhibited by the machine
− a pool of global relaxations
− a limiting cycle size
− a bound for the number of processors involved
− the architecture of the machine, i.e. PowerPC or x86

Input:

Output:
litmus tests in the specified architecture’s
assembly, up to the limiting size, that
exercise the given relaxation

Code Generation

Cycles Generation

see Sec. 7.2.2

see Sec. 7.3

Figure 7.3: Overview of Diy

To generate automatically litmus tests that exercise relations specified
by the user, we wrote the diy testing tool. We give in Fig. 7.3 an overview of
the tool. When given a certain sequence of relations, diy produces tests such
that one of their executions contains at least one occurrence of the given
sequence. Hence, if we want to check whether the external read-from maps

are relaxed on a given machine, we specify
rfe
→ to be relaxed to diy, following

the concrete syntax we give in Sec. 6.2. diy then produces cycles containing

at least one occurrence of the specified relation (e.g .
rfe
→ in our case), up to a

certain size, as exposed in Sec. 7.2.2. Each cycle is then parsed to produce
a litmus test exercising the given relaxation on the specified architecture,
following the code generation algorithm presented in Sec. 7.3.

#rfe PPC conf file

-arch PPC

-nprocs 4

-size 6

-name rfe

-safe Fre DpdR

-relax Rfe

Figure 7.4: Example Configuration File for Diy

7.2.2 Cycles Generation

diy needs to be specified which candidate relaxations are considered global
and which are not. When specified a pool of safe candidate relaxations, a
single non-global relaxation (expected to be relaxed), and a size n (i.e. the
number of candidate relaxations arrows in the cycle, e.g. 6 for the iriw test
of Fig. 7.1), diy generates cycles up to size n that contains at least one oc-
currence of the non-global candidate relaxation. If no non-global candidate
relaxation is specified, diy generates cycles up to size n that contain the
specified global candidate relaxations.

We do not generate all these cycles: we indeed eliminate some sequences
of candidate relaxations. In particular, we eliminate a sequence of two can-
didate relaxations when the target of the first one is incompatible with the

source of the second one: for example, we eliminate a sequence
Rfe
−→;

Rfe
−→

because the target of the first
Rfe
−→ is a read, whereas the source of the sec-

ond one is a write. We also eliminate any sequence of candidate relaxations
included in the program order (whether two events in program order or sep-
arated by a fence). This reduces the number of cycles to generate, and in
any case, such sequences of candidate relaxations can be specified by using
composite candidate relaxations (see Sec. 6.2.5).

We give in Fig. 7.4 an example of configuration file that diy takes as an
argument to generate tests. This configuration file forces diy to generate
tests in PowerPC assembly up to 4 processors, as specified by the -arch

PPC and -nprocs 4 arguments, so that the number of relations involved
in the generated cycles is 6 at most, because of the -size 6 argument.
Moreover, the candidate relaxations Fre (external from-read map) and DpdR
(data dependency between two reads from distinct locations) are considered
global, and Rfe is considered relaxed, as specified by the -safe Fre DpdR

and -relax Rfe arguments. Finally, all the tests generated by diy running
on this configuration file will have the prefix rfe in their name, followed by
a fresh number, as specified by the -name rfe argument.

When the generation of cycles is over, diy computes litmus tests from
those cycles, as detailed in the following.

7.3 Code Generation

diy interprets a sequence of candidate relaxations as a cycle from which
it computes a litmus test or fails. The final condition is a conjunction of
equalities on the values hold by registers and memory locations in the final
state. This condition ensures that at least one of the execution witnesses of
this test includes a cycle compliant with the input sequence, following the
principle exposed in Sec. 7.1.2.

7.3.1 Algorithm

Test generation performs the following successive steps:

1. We map the edges sequence to a circular double-linked list. The cells
represent memory events, with direction, location, and value fields.
An additional field records the edge starting from the event. This list
represents the input cycle and appears in at least one of the execution
witnesses of the produced test.

2. A linear scan sets the directions of the events, by comparing each target
direction with the following source direction. When they are equal, the
in-between cell direction is set to the common value; otherwise (e.g.
Rfe; Rfe), the generation fails.

3. We pick an event e which is the target of a candidate relaxation specify-
ing a location change. If there is none, the generation fails. Otherwise,
a linear scan starting from e sets the locations. At the end of the scan,

if e and its predecessor have the same location (e.g.
Rfe
−→ e

PodRW
−→), the

generation fails, since we picked e to correspond to a location change.

4. We cut the input cycle into maximal sequences of events with the same
location, each being scanned w .r .t . the cycle order: we give the value
1 to the first write in this sequence, 2 to the second one, etc. Thus the
writes’ values reflect the write serialisation for the specified location.

5. We define significant reads as the sources of
fr
→ edges and the targets

of
rf
→ edges. We associate each significant read with the write on the

other side of the edge. In the
rf
→ case, the value of the read is the one

of its associated write. In the
fr
→ case, the value of the read is the value

of the predecessor of its associated write in
ws
→, i.e. by construction

the value of its associated write minus 1 (see step 4). Non-significant
reads do not appear in the test condition.

6. We cut the cycle into maximal sequences of events from the same
processor, each being scanned, generating load instructions to (resp.
stores from) fresh registers for reads (resp. writes). We insert some

code implementing a dependency in front of events targeting
dp
→ and

the appropriate barrier instruction for events targeting
fenced
→ edges.

We build the initial state at this step: stores and loads take their ad-
dresses from fresh registers, and their content (an address to a memory
location) is defined in the initial state. Part of the final condition is
also built: for any significant read with value v resulting in a load
instruction to register r, we add the equality r = v.

7. We complete the final condition to characterise write serialisations.
The write serialisation for a given location x is defined by the sequence
of values 0 (initial value of x), . . . , n, where n is the last value allocated
for location x at step 4. If n is 0 or 1 then no addition to the final
condition needs to be performed, because the write serialisation is
either a singleton or a pair. If n is 2, we add the equality x = 2.
Otherwise (n > 2), we add an observer to the program, i.e. we add a
thread performing n loads from x to registers r1, . . ., rn and add the
equalities r1 = 1 ∧ . . . ∧ rn = n to the final condition.

7.3.2 Example

We show here how to generate a Power litmus test from a given cycle of
candidate relaxations by an example. We write for the information not yet
set by diy: is an undetermined event, W a write with yet unset location
and value, and Rx a read from x with undetermined value.

1. Consider e.g. the input cycle, issued by diy’s cycles generation phase,
with the input being the configuration file given in Fig. 7.4:

(a)
Rfe
−→ (b)

DpdR
−→ (c)

Fre
−→ (d)

Rfe
−→ (e)

DpdR
−→ (f)

Fre
−→ (a)

2. A linear scan sets the directions from the edges. Observe e.g. the last

edge;
Fre
−→ requires a R source and a W target:

(a)W
Rfe
−→ (b)R

DpdR
−→ (c)R

Fre
−→ (d)W

Rfe
−→ (e)R

DpdR
−→ (f)R

Fre
−→ (a)

3. As
DpdR
−→ specifies a location change, we pick (c) to be the first event

and rewrite the cycle as:

(c)R
Fre
−→(d)W

Rfe
−→(e)R

DpdR
−→ (f)R

Fre
−→(a)W

Rfe
−→(b)R

DpdR
−→ (c)

We set the locations starting from (c), with a change of location e.g .
between (e) and (f) since

DpdR
−→ specifies a location change:

(c)Rx
Fre
−→(d)Wx

Rfe
−→(e)Rx

DpdR
−→ (f)Ry

Fre
−→(a)Wy

Rfe
−→(b)Ry

DpdR
−→ (c)

{ 0:r2=y; 0:r5=x; 1:r2=x; 2:r2=x; 2:r5=y; 3:r2=y; }

P0 | P1 | P2 | P3

(b) lwz r1,0(r2) | li r1,1 | (e) lwz r1,0(r2) | li r1,1

xor r3,r1,r1 | (d) stw r1,0(r2) | xor r3,r1,r1 |(a) stw r1,0(r2)

(c) lwzx r4,r3,r5 | | (f) lwzx r4,r3,r5 |

exists (0:r1=1 /\ 0:r4=0 /\ 2:r1=1 /\ 2:r4=0)

Figure 7.5: iriw with dependencies in Power assembly

4. We cut the input cycle into maximal sequences of events with the same
location (i.e. (c)(d)(e) and (f)(a)(b)), each being scanned w .r .t . the
cycle order. The values then reflect the write serialisation order for
the specified location:

(c)Rx
Fre
−→(d)Wx1

Rfe
−→(e)Rx

DpdR
−→ (f)Ry

Fre
−→(a)Wy1

Rfe
−→(b)Ry

DpdR
−→ (c)

5. All the reads are significant here; we set their values according to
step 5:

(c)Rx0
Fre
−→(d)Wx1

Rfe
−→(e)Rx1

DpdR
−→ (f)Ry0

Fre
−→(a)Wy1

Rfe
−→(b)Ry1

DpdR
−→ (c)

6. We generate the litmus test given in Fig. 7.5 for Power according to
6 and 7. For example on P0, we add a xor instruction between the
instructions lwz r1,0(r2) and lwzx r4,r3,r5 associated with the
events (b) and (c) to implement the dependency required by the

DpdR
−→

relation between them. The events (d) and (e), associated respectively
to stw r1,0(r2) on P1 and lwz r1,0(r2) on P2, are specified in the

cycle to be in
rfe
→. Hence, we specify in the final state that the register

r1 on P2 holds finally 1. Indeed the store associated with (d) writes
1 into the address x addressed by r2 on P1 , since the contents of the
register r1 on P1 is 1 (because of the preceding li r1, 1 instruction).

Since (d)
rfe
→ (e), the load associated with (e) on P2 reads the value 1

from the address x addressed by r2, and writes 1 into the register r2.

The test in Fig. 7.5 is a Power implementation of iriw [BA] with depen-
dencies. It can be obtained by running diy on the configuration file given
in Fig. 7.4. diy recovers indeed classical tests, such as rwc [BA], given in
Fig. 7.6(a). As one can deduce from the execution given in Fig. 7.6(b), this

test can be obtained from the cycle
Rfe
−→;

PodRR
−→ ;

Fre
−→;

PodWR
−→ ;

Fre
−→.

7.4 A First Testing Example: x86-TSO

x86 has a TSO model [OSS]. As we saw in Sec. 4.2.2.2, this means that
the internal read-from maps are not global, and that the write-read pairs in
program order may not be preserved. All the other relations are global.

rwc

P0 P1 P2

(a) x← 1 (b) r1← x (d) y← 1

(c) r2← y (e) r3← x

Observed? 1:r1=1; 1:r2=0; 2:r3=0

(a) Wx1

(b) Rx1

rf

(c) Ry0

po:1

(d) Wy0
fr

(e) Rx0

po:2

fr

(a) The rwc test (b) An Execution Witness

Figure 7.6: The rwc Test and a Candidate Execution

7.4.1 A Guided Diy Run

We give here a step-by-step protocol to generate and run tests to check
whether the reordering of a write followed by a read in program order is
allowed on a x86 machine, i .e. if the PodWR candidate relaxation is actually
relaxed on a x86-TSO machine.

7.4.1.1 Generating a Test for Testing the PodWR Relaxation

We want to generate at least one test exercising the PodWR candidate
relaxation, e.g . the classical litmus test given in Fig. 3.1(a). In the execution

depicted in Fig. 3.1(b), there is a cycle (a)
po
→ (b)

fr
→ (c)

po
→ (d)

fr
→ (a). The

event (a) (resp. (c)) is a write, since it is the target of an
fr
→ arrow. Similarly,

(b) (resp. (d)) is a read since it is the source of an
fr
→ arrow. Moreover, the

test of Fig. 3.1(a) involves two processors, therefore the
fr
→ arrows are in fact

external from-read maps. We suppose that
fr
→ is always global, therefore the

only possible relaxation is PodWR.

Hence this test can be generated from the cycle
PodWR
−→ ;

Fre
−→;

PodWR
−→ ;

Fre
−→,

specifying the architecture to be x86, and the number of processors to be 2.
The command:

$ diy -arch X86 -nprocs 2 -safe Fre -relax PodWR -name classic

produces a test, classic000.litmus, testing the PodWR candidate re-
laxation:

Generator produced 1 tests

Relaxations tested: {PodWR}

The test classic000.litmus is the test of Fig. 3.1 implemented in x86
assembly:

% cat classic000.litmus

X86 classic000

"Fre PodWR Fre PodWR"

{ x=0; y=0; }

P0 | P1 ;

MOV [y],$1 | MOV [x],$1 ; #(a)Wy1 | (c)Wx1

MOV EAX,[x] | MOV EAX,[y] ; #(b)Rx0 | (d)Ry0

exists (0:EAX=0 /\ 1:EAX=0)

7.4.1.2 Running This Test Against Hardware

Now we want to run this test against our machine, which should of course
be an x86 one, with at least two cores.

The command:

$ litmus classic000.litmus

runs our test against the hardware and produces an output similar to
the following one:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Results for classic000.litmus %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

X86 classic000

"Fre PodWR Fre PodWR"

{ x=0; y=0; }

P0 | P1 ;

MOV [y],$1 | MOV [x],$1 ;

MOV EAX,[x] | MOV EAX,[y] ;

exists (0:EAX=0 /\ 1:EAX=0)

Generated assembler

_litmus_P0_0_: movl $1,(%rcx)

_litmus_P0_1_: movl (%rsi),%eax

_litmus_P1_0_: movl $1,(%rsi)

_litmus_P1_0_: movl $1,(%rsi)

_litmus_P1_1_: movl (%rcx),%eax

Test classic000 Allowed

Histogram (4 states)

34 :>0:EAX=0; 1:EAX=0;

499911:>0:EAX=1; 1:EAX=0;

499805:>0:EAX=0; 1:EAX=1;

#rfi x86 conf file

-arch X86

-nprocs 4

-size 6

-name rfi

-safe PosR* PodR* PodWW PosWW

Rfe Wse Fre

FencedsWR FenceddWR

-relax Rfi

Figure 7.7: x86 Configuration File For Rfi Relaxation

250 :>0:EAX=1; 1:EAX=1;

Ok

Witnesses

Positive: 34, Negative: 999966

Condition exists (0:EAX=0 /\ 1:EAX=0) is validated

Hash=eb447b2ffe44de821f49c40caa8e9757

Time classic000 0.60

...

This output first reproduces the test litmus ran, followed by the actual
x86 assembly that was run one million times. The code is followed by a
histogram, which gives the 4 states of the memory that were observed while
running this test. The first one is the one of interest to us, as it was the
non-SC outcome specified by diy. It was exhibited 34 times on the hardware:
therefore litmus wrote Ok, which means we observed the PodWR candidate
relaxation to be exhibited.

The same test, and additional ones, can be obtained by running directly:

$ diy -conf podwr.conf

where podwr.conf is the configuration file for the PodWR candidate
relaxation given in Fig. 7.8.

7.4.2 Configuration Files

Finally, we give the configuration files to test a x86 machine. In Fig. 7.7,
we give a configuration file to generate tests exercising the internal read-
from maps, as specified by the -relax Rfi argument. In Fig. 7.8, we give a
configuration file to generate tests exercising the write-read pairs in program
order and to distinct locations, as specified by the -relax PodWR argument.
There is no need to generate tests for the PosWR candidate relaxation, since
such pairs are handled by the Rfi tests. In Fig. 7.9, we give a configuration

#podwr x86 conf file

-arch X86

-nprocs 4

-size 6

-name podwr

-safe Fre

-relax PodWR

Figure 7.8: x86 Configuration File For PodWR Relaxation

#safe x86 conf file

-arch X86

-nprocs 4

-size 6

-name safe

-safe PosR* PodR* PodWW PosWW

Rfe Wse Fre

FencedsWR FenceddWR

Figure 7.9: x86 Configuration File For Safe Relaxations

file to generate tests exercising all the candidate relaxations that we consider
to be safe in TSO .

Chapter 8

A Power Model

103

8.1 The Phat Experiment

With the informal model of Sec. 6.3 in mind, we ran The Phat Experiment
from December 2009 to January 2010, as a case study for the diy tool pre-
sented in Chap. 7. We tested 3 Power machines with our diy tool. We
present here the experimental results. More details can be found online at
http://diy.inria.fr/phat.

8.1.1 Relaxations Observed on squale, vargas and hpcx

We used diy to generate 800 Power tests and run them up to 1012 times
each on 3 machines: squale, a 4-processor Power G5 running Mac OS X;
hpcx, a Power 5 with 16 processors per node and vargas, a Power 6 with
32 processors per node, both of them running AIX.

We ran the tests supposed to, according to the informal model presented
in Sec. 6.3, exhibit relaxations. We observed all of them at least on one
machine, except PodRW, which does not contradict our model. We give in
Fig. 8.1 the number of times the outcome was observed (where M stands
for million). For each relaxation observed on a given machine, we write the
highest number of outcomes. When a candidate relaxation is not observed,
we write the total of outcomes: thus we write e.g. 0/16725M for PodRR on
vargas.

For a given candidate relaxation, we generated tests with diy by writing
a simple configuration file setting its relax list to this candidate relaxation,
and some of the candidate relaxations that we considered to be safe (see
Fig. 6.3).

The PodRW relaxation did not exhibit itself in convincing ways. But
the documentation does not specify this candidate relaxation to be safe,
therefore we still consider it to be relaxed.

8.1.2 Safe Relaxations

Following our informal model, we assumed that the candidate relaxations of
Fig. 6.3 were global and tested this assumption by computing safe tests in
which the input cycles only include candidate relaxations that we supposed

global, e.g.
SyncdWW
−→ ;

Wse
−→;

SyncdWR
−→ ;

Fre
−→.

For each machine, we observed the number of runs required to exhibit
the least frequent relaxation (e.g. 32 million for Rfe on vargas), and ran the
safe tests at least 20 times this number. The outcomes of the safe tests have
not been observed on vargas and squale, which increases our confidence in
the safe set we assumed.

Yet, hpcx exhibits non-SC behaviours for some A-cumulativity tests,
including classical ones [BA] like iriw with sync instructions on P0 and

http://diy.inria.fr/phat

Relaxation Definition hpcx squale vargas

PosRR rℓ

po
→ r′

ℓ
2/40M 3/2M 0/4745M

PodRR rℓ

po
→ r′

ℓ
′ 2275/320M 12/2M 0/16725M

PodRW rℓ

po
→ w′

ℓ
′ 0/6000M 0/6000M 0/6000M

PodWW wℓ

po
→ w′

ℓ
′ 2029/4M 2299/2M 2092501/32M

PodWR wℓ

po
→ r′

ℓ
′ 51085/40M 178286/2M 672001/32M

Rfi
rfi
→ 7286/4M 1133/2M 145/32M

Rfe
rfe
→ 177/400M 0/1776M 9/32M

LwSyncsWR wℓ

lwsync
→ r′

ℓ
243423/600M 2/40M 385/32M

LwSyncdWR wℓ

lwsync
→ r′

ℓ
′ 103814/640M 11/2M 117670/32M

ACLwSyncsRR wℓ

rfe
→ r′

ℓ

lwsync
→ r′′

ℓ
11/320M 0/960M 1/21M

ACLwSyncdRR wℓ

rfe
→ r′

ℓ

lwsync
→ r′′

ℓ
′ 124/400M 0/7665M 2/21M

BCLwSyncsWW wℓ

lwsync
→ w′

ℓ

rfe
→ r′′

ℓ
68/400M 0/560M 2/160M

BCLwSyncdWW wℓ

lwsync
→ w′

ℓ
′

rfe
→ r′′

ℓ
′ 158/400M 0/11715M 1/21M

F
igu

re
8.1:

S
elected

R
esu

lts
of

th
e

D
iy

E
x
p
erim

en
t

M
atch

in
g

O
u
r

M
o
d
el

Cycle hpcx In [BA]

Rfe SyncdRR Fre Rfe SyncdRR Fre 2/320M iriw

Rfe SyncdRR Fre SyncdWR Fre 3/400M rwc

DpdR Fre Rfe SyncsRR DpdR Fre Rfe SyncsRR 1/320M

Wse LwSyncdWW Wse Rfe SyncdRW 1/800M

Wse SyncdWR Fre Rfe LwSyncdRW 1/400M

Figure 8.2: Anomalies Observed on Power 5

P1. These results are in contradiction with our model. We summarise these
contradictions in Fig. 8.2.

We understand that this is due to an erratum in the Power 5 implementa-
tion. IBM is providing a software workaround, replacing the sync barrier by
a short code sequence [Personal Communication], and our testing suggests
that this does regain SC behaviour for the examples in question (e.g. with
0/4e10 non-SC results for iriw). We understand also that Power 6 is not
subject to the erratum, which is consistent with our testing on vargas.

8.2 Overview of Our Model

We now instantiate the formalism of Sec. 3.1 for Power, in the light of the
experiment described in Sec. 8.1.

8.2.1 Additional Formalism

To do so, we have to extend our formalism a bit, as follows.

8.2.1.1 Register Events

We first add register events to reflect register accesses [SSZN+]. Loads and
stores now yield additional register events, as depicted in Fig. 8.3.

For example, consider two registers r1 and r2, such that r1 initially
holds the value 0, r2 initially holds an address x, and x holds the value 1.
In this case, an instruction lwz r1,0,r2 creates a read event Rr2x from
register r2, with label (b) in Fig. 8.3. This event reads the address x in r2;
this leads to a read event Rx1 from x labelled (a) in Fig. 8.3. The event (a)
was previously the only event we considered. Finally, the value read from x

by the event (a) being 1, the lwz r1,0,r2 creates a write event Wr11 to
register r1 with value 1, labelled (c) in Fig. 8.3.

Similarly, consider two registers r1 and r2, such that r1 initially holds
the value 1, r2 initially holds an address x, and x holds the value 0. In this
case, an instruction stw r1,0,r2 creates a read event Rr2x from register
r2, with label (c) in Fig. 8.3. This event reads the address x in r2. In

[lwz r1,0(r2)]

(a) Rx1

(c) Wr11

iico

(b) Rr2x

iico

rf

rf

rf

[stw r1,0(r2)]

(a) Wx1

rf

(b) Rr11

iico

(c) Rr2x

iico

rf rf

Figure 8.3: Semantics of lwz and stw

parallel, the load creates a read event Rr11 from r1, reading 1, labelled (c)
in Fig. 8.3. Finally, the value read from r1 by the event (b) being 1, the
stw r1,0,r2 creates a write event Wx1 to x with value 1, labelled (a) in
Fig. 8.3. The event (a) previously was the only event we considered.

Intra-Instruction Causality An execution witness now includes an ad-
ditional intra-instruction causality relation

iico
→ .

For example, executing the load lwz r1, 0(r2)—which semantics is
given in Fig. 8.3 (r2 holding the address of a memory location x containing
1)—creates three events (a) Rr2x, (b) Rx1 and (c) Wr11, such that (a)

iico
→

(b)
iico
→ (c). The

iico
→ relation between (a) and (b) indicates that the load

instruction has to perform the read (a) from r2 before the read (b) from x.
Before reading x from r2 via the event (a), the address x is undetermined.
Similarly, (b) and (c) are related by

iico
→ , since the write (c) determines the

value it has to write into r1 from the value read by (b).

Stores are less constrained, as depicted in Fig. 8.3. Indeed the read
events (b) and (c) may be performed independently. However, the write
event (a) determines its target x and its value 1 from the reads (c) and (b)
respectively, hence (b)

iico
→ (a) and (c)

iico
→ (a).

PPC ctrl

{

0:r5=x; 0:r6=y;0:r2=1;

x=0; y=0;

}

P0 ;

(1) lwz r1,0(r5) ;

(2) cmpwi r1,0 ;

(3) bne L0 ;

(4) stw r2,0(r6) ;

L0: ;

exists(y=1)

Figure 8.4: A Test For Control Dependency in PowerPC Assembly

Read-From Map Naturally,
rf
→ now also relates register events: we write

rf-reg
→ the subrelation of

rf
→ relating register stores to register loads that read

their values.

8.2.1.2 Commit Events

We add commit events in order to express branching decisions. We write C

for the set of commits, and c for an element of C.

Consider for example the test given in Fig. 8.4, written in PowerPC
assembly, which corresponds to the piece of code given in Sec. 6.2.4.2. Sup-
pose that the register r5 initially holds the address x, and the register r6

the address y.

The lwz r1,0(r5) at line (1) and the stw r2,0(r6) at line (4) are
separated at line (2) by a compare instruction, written cmpwi r1,0, which
influences the taking of the following branch, written bne L0 (line (3)).

In the execution of this test, given in Fig. 8.5, the lwz r1,0(r5) leads
to the read event Rx0 from x labelled (a). The stw r2,0(r6) leads to the
write event Wy1 to y labelled (b). These two instructions are separated by a
branch. This is depicted in the execution we give here by the commit event
labelled (h). Hence the read (a) from x and the write (b) to y are in control
dependency, as depicted by the

ctrl
→ arrow between them.

8.2.1.3 Barriers Events

We add barrier events in order to indicate the presence of a barrier in the
code. We handle three barrier instructions : isync, sync and lwsync.
Thus, we distinguish the corresponding events by the eponymous predicates,
is-isync, is-sync and is-lwsync.

[lwz r1,0(r5)]

[cmpwi r1,0]

[bne L0]

[stw r2,0(r6)]

(a) Rx0

(d) Wr10

iico

(b) Wy1

ctrl

(c) Rr5x

iico

(e) Rr10

rf po

(f) WCR02

iico

(g) RCR02

rf po

(h) Commit

iico

(i) Rr21

po

(j) Rr6y

po

iico iico

Figure 8.5: A Candidate Execution for the Test of Fig. 8.4

PPC isync

{

0:r5=x; 0:r6=y;0:r2=0;

x=0; y=1;

}

P0 ;

(1) lwz r1,0(r5) ;

(2) cmpwi r1,0 ;

(3) bne L0 ;

(4) isync ;

(5) lwz r2,0(r6) ;

L0: ;

exists(0:r2=1)

Figure 8.6: An Example Use of the isync Barrier

Consider for example the test given in Fig. 8.6, written in PowerPC
assembly. Suppose that the register r5 initially holds the address x, and the
register r6 the address y.

The lwz r1,0(r5) at line (1) and the lwz r2,0(r6) at line (5) are
separated at line (2) by a compare instruction, written cmpwi r1,0, which
influences the taking of the following branch at line (3), written bne L0.
The branch is followed by an isync barrier at line (4).

In the execution of this test we give in Fig. 8.7, the lwz r1,0(r5) at
line (1) leads to the read event Rx0 from x labelled (a). The lwz r2,0(r6)

at line (5) leads to the read event Ry1 from y labelled (b). These two
instructions are separated by a branch followed by an isync. This is depicted

in the execution we give here by the commit event labelled (h), in
po
→ with

the isync event labelled (i). Hence the read (a) from x and the read (b) from
y are globally ordered by the isync barrier, as depicted by the

isync
→ arrow

between them.

8.2.2 Description of the Model

We now give a description of our Power model. We give a full formalisation
of this model in Fig. 8.8.

8.2.2.1 Preserved Program Order

We present in Fig. 8.8(a) the definition of
ppo-ppc
→ , induced by lifting the

ordering constraints of a processor to the global level (where (
r
→)

+
stands

for the transitive closure of a given relation
r
→). This is a formal presenta-

tion of the data dependencies (
dd
→) and control dependencies (

ctrl
→ and

isync
→)

[lwz r1,0(r5)]

[cmpwi r1,0]

[bne L0]

[isync]

[lwz r2,0(r6)]

(a) Rx0

(d) Wr10

iico

(b) Ry1

isync

(c) Rr5x

iico

(e) Rr10

rf po

(f) WCR02

iico

(g) RCR02

rf po

(h) Commit

iico

(i) Isync

po

(j) Rr6y

po

(k) Wr21

iico

iico

Figure 8.7: A Candidate Execution for the Test of Fig. 8.6

dd
→, (

rf-reg
→ ∪

iico
→)+ r

ctrl
→ w , ∃c ∈ C. r

dd
→ c

po
→ w

r
isync
→ e , ∃c ∈ C. r

dd
→ c ∧ ∃b. is-isync(b) ∧ c

po
→ b

po
→ e

dp
→,

ctrl
→ ∪

isync
→ ∪

((dd
→ ∪ (

po-loc
→ ∩ (W× R))

)
+
∩ (R×M)

) ppo-ppc
→ ,

dp
→

(a) Preserved program order

m1
sync
→ m2 , ∃b. is-sync(b) ∧m1

po
→ b

po
→ m2

m1
ab-sync
→ m2 , m1

sync
→ m2

∨ ∃r. m1
rf
→ r

ab-sync
→ m2

∨ ∃w. m1
ab-sync
→ w

rf
→ m2

(b) Barrier sync

m1
lwsync
→ m2 , ∃b. is-lwsync(b) ∧m1

po
→ b

po
→ m2

m1
ab-lwsync
→ m2 , m1

lwsync
→ m2 ∩ ((W×W) ∪ (R×M))

∨ ∃r.m1
rf
→ r

ab-lwsync
→ m2 ∧m2 ∈W

∨ ∃w.m1
ab-lwsync
→ w

rf
→ m2 ∧m1 ∈ R

(c) Barrier lwsync

ab-ppc
→ ,

ab-sync
→ ∪

ab-lwsync
→

Power , (
ppo-ppc
→ , ∅,

ab-ppc
→)

Figure 8.8: A Power Model

of [pow09, p. 661] which allow loads to be speculated if no isync is added
after the branch but prevents stores from being speculated in any case.

Data Dependencies More precisely, we consider that two events are in

data dependency, written m1
dd
→ m2, when:

• they are in
rf-reg
→ , i .e. m1 is a register write and m2 a register read

reading from m1, or

• they are in
iico
→, i .e. they both come from the same instruction and the

execution of m2 depends on m1, e.g . when using the value m1 read,
or

• there is a path of
rf-reg
→ ∪

iico
→ between m1 and m2.

Control Dependencies We consider that two events are in control de-
pendency, written m1

ctrl
→ m2, when:

• m1 is a read and,

• m2 is a write, and

• there exists a commit event c between them in the program order, such
that c is in data dependency with m1.

If two events m1 and m2 are in control dependency, it means that they
form a read-write pair separated by a conditional jump or loop, and that
the condition of the jump is data-dependent over m1.

Moreover, it means that two events separated by a conditional jump may
perfectly well be reordered if:

• the first one is a write, or

• they are both reads (c.f . infra, semantics of isync)

The test of Fig. 8.4 and the execution of Fig. 8.5 give an example of
control dependency between the read (a) associated to the lwz r1,0(r5)

at line (1) and the write (b) associated to the stw r2,0(r6) at line (3).

Semantics of the isync Barrier We now give our semantics of the isync
barrier. The ordering induced by isync is similar to a control dependency
on read-read pairs. We consider that two events m1 and m2 are ordered by
an isync barrier when:

• m1 is a read, and

• there exists a commit event c in data dependency with m1, separated
from m2 by an isync barrier in the program order.

In particular, this means that two events m1 and m2 separated by an
isync can be reordered, if:

• m1 is a write, or

• there is no commit between m1 and m2.

The test of Fig. 8.6 and the execution of Fig. 8.7 give an example of
isync ordering between the read (a) associated to lwz r1,0(r5) at line (1)
and the read (b) associated to lwz r2,0(r6) at line (5).

All Together Finally, we consider that two events m1 and m2 are in
Power’s preserved program order, written m1

ppo-ppc
→ m2 when:

• they are in control dependency, i .e. m1
ctrl
→ m2, or

• they are ordered by an isync barrier, i .e. m1
isync
→ m2, or

• m1 is a read, and there is a path of
dd
→∪ (

po-loc
→ ∩ (W× R)) between m1

and m2.

Resemblance to RMO’s Preserved Program Order The pre-
served program order that we suggest for Power is similar to the one of
Sparc RMO [spa94a, V9, p. 293]. Indeed, Sparc’s documentation defines
the dependence order as follows:

Dependence order is a partial order that captures the constraints
that hold between instructions that access the same processor reg-
ister or memory location. [. . .] Two memory transactions [i .e.

accesses] X and Y are dependence ordered, denoted by X <d Y ,
if and only if they are program ordered, [written] X <p Y , and

at least one of the following conditions is true:

(1) The execution of Y is conditional on X, and S(Y) is true.
[i .e. they are in control dependency: in particular, Y is a
write.]

(2) Y reads a register that is written by X. [This corresponds
to our

rf-reg
→ relation.]

(3) X and Y access the same memory location, and S(X) and
L(Y) are both true. [This corresponds to the

po-loc
→ ∩(W× R)

part of Power’s
ppo
→ definition.]

[. . .] It is important to remember that partial ordering is transi-
tive.

The items (1) and (2) correspond to our
ctrl
→ and

dd
→ relations, while the

item (3) corresponds to the
po-loc
→ ∩ (W× R) part of Power’s

ppo
→ definition.

Moreover, as mentioned in the excerpt above, that order should be transitive.
Hence we take the transitive closure of the relation formed by the union of
these two relations.

Finally, we take the intersection of (
dd
→∪ (

po-loc
→ ∩ (W× R)))

+
and R×W,

exactly as in RMO [spa94a, V9, p.295], where the legality of a RMO memory
order is defined as follows:

A memory order [written <m] is legal [in RMO] if and only if:

(1) X <d Y & L(X) ⇒ X <m Y [i .e. X and Y are in depen-
dence order as defined above, and X is a read.]

(2) M(X,Y) ⇒ X <m Y [i .e. X and Y are separated by a

barrier; we treat this via
ab
→, not

ppo
→ .]

(3) Xa <p Y a & S(Y) ⇒ X <m Y [Y is a write, and they are
both relative to the same memory location a. This corre-

sponds to the fact that we consider
wsi
→ and

fri
→ to be global.]

The first item indicates that RMO also only considers the dependency
chains starting from a load, which explains why we take the intersection
with R×M.

Discussion of Power’s
ppo
→ We include in

ppo
→ any chain of data de-

pendencies and
rfi
→ starting from a read, by the ((

dd
→∪ (

po-loc
→ ∩ (W× R)))

+
∩

(R×M) part. However, we do not authorise control dependencies in such
a chain. Indeed, consider the example given in Fig. 8.9, which we observed
to be exhibited on a Power 5 for example.

On P0, the lwz r1,0(r7) at line (1) is in control dependency with the
stw r3,0(r9) at line (5), because of the compare and branch sequence be-
tween them (lines (2) to (4)). The lwz r2,0(r9) at line (6) is in data depen-
dency with the lwzx r4,r10,r8 at line (8), because of the xor r10,r2,r2

between them, at line (7).

Since the lwz r1,0(r7) at line (1) on P0 reads 1 (see the final state,

0:r1=1), there is a
rfe
→ between the stw r2,0(r7) at line (3) on P1 and the

lwz r1,0(r7) at line (1) on P0. Because of the A-cumulativity of the sync

barrier on P1, the stw r1,0(r8) at line (1) on P1 is in
ab
→ with the lwz

r1,0(r7) at line (1) on P0.

Since the lwzx r4,r10,r8 at line (8) on P0 reads 0 (see the final state,

0:r4=0), there is a
fr
→ between this load and the stw r1,0(r8) at line (1)

on P1.

{

0:r7=y; 0:r8=z; 0:r9=x; 0:r3=1;

1:r7=y; 1:r8=z; 1:r1=1; 1:r2=1;

}

P0 | P1 ;

(1) lwz r1,0(r7) | stw r1,0(r8) ;

(2) cmpwi r1,0 | sync ;

(3) beq L0 | stw r2,0(r7) ;

(4) L0: | ;

(5) stw r3,0(r9) | ;

(6) lwz r2,0(r9) | ;

(7) xor r10,r2,r2 | ;

(8) lwzx r4,r10,r8 | ;

exists (0:r1=1 /\ 0:r4=0)

Figure 8.9: Contradiction with the View Order Formulation

Hence we have a cycle of relations as follows, starting from lwz r1,0(r7)

at line (1) on P0 (writing (i : j) for the instruction at line (j) on Pi):

(0 : 1)
CtrldW
−→ (0 : 5)

PosWR
−→ (0 : 6)

DpdR
−→ (0 : 8)

Fre
−→ (1 : 1)

ACSyncdWW
−→ (0 : 1)

Since the specified outcome is exhibited, we know that there is a sub-
sequence of this cycle which is not global. The only possible relaxation
here is the PosWR one between the stw r3,0(r9) at line (5) and the lwz

r2,0(r9) at line (6). If we added
ctrl
→ to the transitive part of Power’s

ppo
→ ,

the outcome would be forbidden in our model. We deduce from this example
that

ctrl
→ cannot be included in such chains.

8.2.2.2 Read-From Maps

Internal Read-From Maps The internal read-from maps are not global,
since Power allows store buffering (see Sec. 6.1.2). Running the test given
in Fig. 8.10 confirms this hypothesis. Indeed this test, generated by diy,

proceeds from a cycle
DpdR
−→ ;

Fre
−→;

Rfi
−→;

DpdR
−→ ;

Fre
−→;

Rfi
−→. We know that

dp
→ is

global, since included in
ppo
→ , and

fr
→ is global as well. Thus in this test, the

only possible relaxation is
rfi
→. Since the outcome is exhibited, as shown in

Fig. 8.1, we know that
rfi
→ is actually relaxed on Power.

Store buffering is a fairly common relaxation. Indeed, all the models we
presented in Chap. 4, except SC , also relax their internal read-from maps,
i .e. allow store buffering.

External Read-From Maps The external read-from maps are not global
either, as revealed by running iriw with data dependencies (Fig. 7.5) on a

PPC rfi000

"DpdR Fre Rfi DpdR Fre Rfi"

Cycle=DpdR Fre Rfi DpdR Fre Rfi

Relax=Rfi

Safe=Fre DpdR

{

0:r2=x; 0:r6=y;

1:r2=y; 1:r6=x;

}

P0 | P1 ;

li r1,1 | li r1,1 ;

stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r2) | lwz r3,0(r2) ;

xor r4,r3,r3 | xor r4,r3,r3 ;

lwzx r5,r4,r6 | lwzx r5,r4,r6 ;

exists

(0:r3=1 /\ 0:r5=0 /\ 1:r3=1 /\ 1:r5=0)

Figure 8.10: A Diy PowerPC Test for the Rfi Relaxation

Power machine. Indeed, this test is associated to a cycle
Fre
−→;

Rfe
−→;

DpdR
−→ ;

Fre
−→

;
Rfe
−→;

DpdR
−→ . We know that

fre
→ is always considered global in our framework,

an hypothesis which has not been invalidated by the experiment we present

in Sec. 8.1. We also know that
dp
→ is global in Power, since

ppo
→ is equal to

dp
→. Therefore, the only possible relaxation in the test of Fig. 7.5 is

rfe
→. Since

the specified outcome is exhibited as shown in Fig. 8.1,
rfe
→ is relaxed.

This is probably the main particularity of the Power architecture: all the
models we presented in Chap. 4 do not relax the atomicity of stores. Another
model relaxing store atomicity may be Itanium [ita02]. However, we do not
know whether Itanium could be described by the generic framework we
presented in Chap. 3.

8.2.2.3 Barriers

The sync Barrier The sync barrier is defined in Fig. 8.8 (b) as a full A-
and B-cumulative barrier. We will see in Sec. 10.3.3.1 that such a barrier
restores SC from a weaker model.

The lwsync Barrier The lwsync barrier is defined in Fig. 8.8 (b). lwsync
acts as sync except on store-load pairs, in both the base and cumulativity
cases.

P0 P1

(a) x← 1 (d) r1← p

(b) p← & x (c) r2← *r1

Observed? r1=& x; r2=0;

Figure 8.11: A Common Programming Idiom

{0:r5=x; 0:r6=y; 0:r3=1; 0:r4=1;

1:r5=x; 1:r6=y; 1:r1=0; 1:r9=0; 1:r2=0;

x=0; y=0;}

P0 | P1 ;

stw r3,0(r5) | lwz r1,0(r6) ;

lwsync | xor r9,r1,r1 ;

stw r4,0(r6) | lwzx r2,r9,r5 ;

exists(1:r3=1 /\ 1:r4=0)

Figure 8.12: The Example of Fig. 8.11 in PowerPC Assembly

8.3 Discussion of Our Model

We do not claim our model to be definitive, as we explain in the following. In
particular, our model is probably too coarse-grained. To refine our model, we
would probably need to design a less coarse-grained model, in which either
we would split the write events into several ones, in the spirit of Itanium
[ita02], or in which we would examine the views of each processor separately,
instead of considering a single global time line. Indeed the documentation is
in terms of view orders, since it specifies the events to be ”performed w .r .t .”
a processor, or all processors.

For example, consider the common programming idiom given in Fig. 8.11
in C-like syntax. We are unable to explain why this example is guaranteed
not to happen if the two instructions on P0 are globally maintained e.g .

by a lwsync barrier, because our semantics for the lwsync barrier is rather
weak.

Consider indeed the PowerPC example we give in Fig. 8.12, which cor-
responds to the idiom of Fig. 8.11. The example given in Fig. 8.12 could,
according to our Power model, exhibit the execution given in Fig. 8.13 since
there is no cycle in

ghb
→ . Hence this behaviour is not forbidden by our model,

though it is expected to be.

A per-processor view of the memory helps to explain why the example of
Fig. 8.13 is guaranteed not to happen. Indeed, the definition of lwsync of the
documentation (see Sec. 6.1.5.1) specifies (since the pair ((a), (b)) is a write-

(a) Wx1

(b) Wy1

po:0 lwsync

(c) Ry1

rf

(d) Rx0

po:1 ppo

fr

Figure 8.13: Weakness of Our lwsync Semantics

write pair, hence applicable to lwsync) that ”the memory barrier ensures
that [(a)] will be performed with respect to any processor [. . .] before [(b)]
is performed with respect to that processor [. . .].” Hence the pair ((a), (b))
has to be seen in the same order by P0 and P1, because there is a lwsync

between (a) and (b). Therefore, if the read (c) on P1 reads 1 from the write
(b) on P0, then P1 has also seen the write (a) to x on P0, hence we cannot

have (d)
fr
→ (a) as in Fig. 8.13.

We would like to reconcile our model and the one that is presented in the
Power documentation, in the light of what we learnt during our experiment.
However, even though our model should be further refined, this is a first
non-trivial attempt towards the formalisation of the Power architecture. We
consider this attempt as a success because the model, though a bit loose,
has not been invalidated by our thorough experiment: at least it is a valid
model. Moreover, our testing methodology can perfectly well be reused, and
adapted if needed to the study of other architectures, as we sketched with
the x86 example of Sec. 7.4, or to investigate further the Power architecture.

Chapter 9

Related Work

We present here some related work, either using the concept of relaxation or
focussing on the testing of weak memory models. Finally, we present some
studies of the Power architecture.

The framework we presented in Chap. 3 owes much to the concept of
relaxation, as used in the documentations we consider formal (i .e. Alpha’s
and Sparc’s), and presented in [AG95].

More generally, several papers on the design of abstract memory models
use a similar concept, e.g . W. Collier’s [Col92]. Moreover, it seems to me
that the concept of relaxation is really well illustrated by litmus tests, as
we tried to explain in this part of the manuscript. Hence, the Intel White
Paper on memory ordering [int07] provides an informal memory model of
the x86 architecture in terms of ten litmus tests, each of which illustrates
one or several relaxations. Several other papers on memory models, both
on hardware and software, illustrate their formalisation with such tests, e.g .

[BA, ASb].

W. Collier’s framework is, like ours, used to do model exploration via
litmus tests—like we did with our experiment on the Power architecture.
However, W. Collier’s framework does not provide a way to generate tests
systematically as we do.

A. Adir et al. ’s model [AAS03] also provides a set of litmus tests to
illustrate their formalisation of the Power architecture. However, their work
does not include a systematic test generation, and, like W. Collier’s, does
not adress the cumulativity of barriers.

A recent work by S. Mador-Haim et al. describes a method for systemat-
ically generating litmus tests [MHAM]. However, their tests serve a different
purpose. The goal is to distinguish two models by a given test: if the out-
come of a test is observable on one model and not on the other, the two
models are distinct. This may be used for example to highlight specifica-
tion bugs: if the specification of an architecture can be distinguished from
a machine with the same architecture, then either the specification is false,

121

or the machine has a bug. This can be related to the implementation error
we found on Power 5: the iriw example distinguishes our Power model from
the Power 5 implementation we tested.

Part IV

Synchronisation in Weak
Memory Models

123

We know that an execution of a program running on a multiprocessor
may not be an interleaving of its instructions, as it would be on a Sequen-
tially Consistent (SC) architecture [Lam79]. Fortunately, a program running
on a weak architecture may be constrained to behave as if it were running
on a stronger one (e.g . SC) by synchronisation primitives.

Two approaches coexist: lock-based and lock-free synchronisation. Both
ensure stability of a program: the program has no other executions than
the ones valid on SC. Locks allow the programmer to ignore the details of
the memory model, thanks to the data race free guarantee (DRF guarantee)
proposed by S. Adve and M. Hill [AH], but are costly. On the other hand,
lock-free techniques are efficient [Her], but require a detailed knowledge of
the memory model. For instance, D. Shasha and M. Snir proposed the delay
set analysis to ensure stability to a program by inserting barriers [SS].

We examine here how to force all the executions of a program running
on a weak architecture A1 to be valid on a stronger one A2, i .e. we examine
when the following property holds for all executions (E,X) of a program
(writing A. valid(E,X) when (E,X) is valid on the architecture A):

stableA1,A2
(E,X) , (A1. valid(E,X)⇔ A2. valid(E,X))

A program that is not stable is often considered as erroneous: for ex-
ample, a program with data races may have non-SC behaviours. Hence,
checking the stability of a program is a crucial step towards checking its
correctness. Moreover, a precise study of the stability of a program can lead
to optimisations, as we illustrate here. Indeed, the stability of a program
can be naively enforced by placing synchronisation primitives everywhere;
but using too much synchronisation can severely impair the performance of
this program. Showing exactly where a program needs to be synchronised,
i .e. how to make it stable, can help improve its performance.

Ideally, we want to examine the stability of a program by checking its
executions on the strong architecture A2 only, because the executions on A2

are easier to reason about than on A1, since they endure less relaxations. As
a consequence, the design of a proof or an algorithm checking this property
will be easier.

We provide in Sec. 10.1 a generic sufficient condition over the strong ex-
ecutions (i .e. the ones valid on A2) ensuring stability. To do so, we describe
a class of synchronisation relations, the covering and well-founded relations.
We show that if all the conflicting accesses of a given execution X valid on
A2 are arbitrated by such a relation, then X is stable.

Hence, we propose a unifying approach to describe both lock-based and
lock-free synchronisation. We instantiate this approach to produce a gen-
eralisation of the DRF guarantee in Sec. 10.2 and a novel dual result on
barrier placement in Sec. 10.3, which we call the lock-free guarantee.

We illustrate these two guarantees by the study of Power’s lock and
read-modify-write primitives (e.g . test-and-set and compare-and-swap): we

propose in Sec. 10.4 a semantics for these primitives. We show that locks
ensure the DRF guarantee, and that mapping certain loads to read-modify-
write primitives coupled with non-cumulative barriers restores SC.

Moreover, we refine the data race free and lock-free guarantees in the
style of [SS] in Sec. 11.1, in order to minimise the required amount of syn-
chronisation. Finally, we show in Sec. 11.2 that it is necessary and sufficient
to synchronise the minimal cycles of an execution valid on SC to ensure its
stability. This gives a characterisation of the stable executions.

In the following, we consider the architecture A2 to be without barriers,
i .e.

ab2→= ∅. We write
ghb2→ for A2. ghb(E,X). Moreover, although the defi-

nition of stableA1,A2
holds for any pair of architectures, we focus here on two

architectures A1 and A2 such that A1 ≤ A2.

Chapter 10

Synchronisation

Synchronisation idioms are used to arbitrate conflicts between accesses, i .e.

to ensure that one out of two conflicting accesses occurs before the other.

10.1 Covering and well-founded relations

To formalise this notion, given an execution (E,X), we postulate an ir-

reflexive conflict relation
c
→, such that ∀xy, x

c
→ y ⇒ ¬(y

po
→ x) and a

synchronisation relation
s
→ over its events. An execution (E,X) is covered

when the pairs of
c
→ are arbitrated by

s
→, which means that the conflicts

gathered in
c
→ are ordered by

s
→:

Definition 48 (Covered Execution)

covered(E,X,
c
→,

s
→) , ∀xy, x

c
→ y ⇒ x

s
→ y ∨ y

s
→ x

We define in the following a class of synchronisation relations which we
show to ensure stability. We then illustrate two example synchronisations of
this class, which lead us to a proof that a generalised DRF guarantee holds
for the framework presented in Chap. 3, and a novel dual result on lock-free
synchronisation, which we call the lock-free guarantee.

10.1.1 Covering relations

We consider a relation
s
→ to be covering when ordering by

s
→ the conflicting

accesses of an execution (E,X) valid on A1 guarantees the validity of (E,X)
on A2. This means that the chosen synchronisation

s
→ arbitrates indeed

enough conflicts in (E,X) to enforce a strong behaviour. We know by
Thm. 2 that given an execution valid on A1 it is enough to enforce the
acyclicity of

ghb2→ to ensure the validity of the execution on A2, hence we
formalise the notion of covering as follows:

127

Init: x=0; y=0; z=0

P0 P1

(a) r1← x (c) r2← y

(b) y← 1 (d) x← 1

Observed? r1=1; r2=1;

(a) Rx1

(b) Wy1

po:0

(c) Ry1

rf

(d) Wx1

po:1

rf

(a) A program (b) A non-SC execution

Figure 10.1: A program and a non-SC execution

Definition 49 (Covering Relation)

covering(
c
→,

s
→) , ∀EX, (A1. valid(E,X)∧

covered(E,X,
c
→,

s
→))⇒ acyclic(A2. ghb(E,X))

For example, the DRF guarantee [AH] stipulates in particular that if certain
accesses (the competing accesses, defined in Sec. 10.2) of a given execution
are ordered by a given synchronisation relation

sync
→ , then this execution is

SC. This means that
sync
→ is covering w .r .t . the competing accesses.

10.1.2 Well-founded relations

We consider a synchronisation relation to be well founded when each conflict
it arbitrates on the strong architecture is arbitrated on the weaker one. This
means that it is enough to arbitrate the conflicts on the strong executions
of a program to ensure that every execution of this program will be strong,
even if it is running on a weak architecture.

Formally, we define a synchronisation relation to be well founded when,
given an uncovered execution (E,X) valid on A1, one can build an uncovered
execution Y associated with the same event structure E and valid on A2:

Definition 50 (Well-Founded Synchronisation)

wf(
c
→,

s
→) , ∀EX,

(

A1. valid(E,X) ∧ ¬(covered(E,X,
c
→,

s
→))

)

⇒
(

∃Y,A2. valid(E,Y) ∧ ¬(covered(E,Y,
c
→,

s
→))

)

This means that given a conflicting pair (x, y) unarbitrated by
s
→ in an

execution (E,X) on a weak architecture A1, if (x, y) is also conflicting in an

execution (E,Y) on a stronger architecture A2, then (x, y) is unarbitrated
by

s
→ in (E,Y). In other words, this means that the conflicting accesses to

arbitrate stay the same from one architecture to another. This will allow us
to check these conflicting accesses on the strong executions only.

For example, the competing accesses of the DRF guarantee are accesses
to the same location, from distinct processors, such that one of them at
least is a write. If we have an execution (E,X) where two such competing
accesses are not arbitrated by a lock for example, then we can build a SC
execution containing the same accesses, where they will not be arbitrated
by a lock either. This means that the synchronisation relation induced by
the locks is well-founded w .r .t . the competing accesses.

Finally, we show that if a well-founded synchronisation relation covers
any execution valid on A2 then any execution is stable:

Theorem 8 (Well-founded and covering ensure stability)

∀
c
→

s
→,wf(

c
→,

s
→) ∧ covering(

c
→,

s
→)⇒

((∀EX,A2. valid(E,X)⇒ covered(E,X)) ⇒
(∀EX, stableA1,A2,(E,X)))

Proof Let E be an event structure; suppose that any associated execution (E, X)
valid on A2 is covered. Let us show that in this case, any execution (E, X) is sta-
ble, i .e. A1. valid(E, X) ⇔ A2. valid(E, X). The converse way A2. valid(E, X) ⇒
A1. valid(E, X) is given by Thm. 1, since A1 is weaker than A2.

Conversely, suppose (E, X) valid on A1. If (E, X) is covered, since
s
→ is cov-

ering, we know by definition that (E, X) is valid on A2. If (E, X) is uncovered,

since
s
→ is well-founded, we know by definition that there exists an execution Y

associated with E, valid on A2 and uncovered. But this contradicts our hypothesis
that any execution associated with E and valid on A2 is covered. �

This result means that, provided a well-founded and covering synchro-
nisation relation, it is enough to arbitrate the conflicts occurring in all the
strong executions in order to ensure stability. In other words, this means
that we only have to reason on the strong executions of a program to ensure
that this program behaves as if it were running on a strong architecture,
typically SC.

10.2 DRF guarantee

We propose here a first example of covering relation, leading to a proof that
a generalised DRF guarantee holds for each instance of the framework of
Chap. 3.

10.2.1 Competing accesses

We follow the DRF0 model of [AH], where two events are competing if they
are from two distinct processors, relative to the same location, and one of
them at least is a write:

Definition 51 (Competing Accesses)

m1
cdrf↔ m2 , proc(m1) 6= proc(m2) ∧ loc(m1) = loc(m2) ∧

(m1 ∈W ∨m2 ∈W)

Consider the program given in Fig. 10.1(a): the read (a) from x on P0

competes with the write (d) to x on P1. Similarly, the write (b) to y on P0

and the read (c) from y on P1 are competing.

Synchronisation We postulate a relation
sync
→ over E compatible with

com
→ ,

and define our synchronisation relation as the transitive closure of
sync
→ ∪

po
→,

i .e. the happens-before of [AH]:

Definition 52 (Lock-Based Synchronisation)

sdrf→ , (
sync
→ ∪

po
→)

+

This synchronisation relation corresponds for example to the order in-
duced by locks on competing accesses. For example in Fig. 10.1(a), this
corresponds to placing locks to a variable ℓ1 on the accesses (a) and (d)
relative to x, in which case we have (d)

sync
→ (a), and locks to a different

variable ℓ2 on the accesses (b) and (c) relative to y, i .e. (b)
sync
→ (c).

Finally, an execution is covered in the DRF sense if all the competing
pairs are arbitrated by

sdrf→ :

Definition 53 (DRF Covered)

coveredDRF(X) , ∀xy, x
cdrf↔ y ⇒ x

sdrf→ y ∨ y
sdrf→ x

10.2.2 Synchronising competing accesses in a weak execution

Consider the example in Fig. 10.1(a), and suppose that we have placed locks
to ℓ1 on the accesses (a) and (d) relative to x (i .e. (d)

sync
→ (a)), and locks

to ℓ2 on the accesses (b) and (c) relative to y (i .e. (b)
sync
→ (c)). Hence we

have a cycle in
sync
→ ∪

po
→: (a)

po
→ (b)

sync
→ (c)

po
→ (d)

sync
→ (a). If we have the

guarantee that
sync
→ is compatible with

po
→ (i .e.

sync
→ ∪

po
→ is acyclic), then this

cycle is forbidden, which forbids the execution of Fig. 10.1(b).

Indeed, we show that if
sdrf→ is irreflexive (i .e.

sync
→ ∪

po
→ acyclic), then

sdrf→
is covering:

Lemma 10 (An irreflexive
sdrf→ is covering)

irreflexive(
sdrf→)⇒ covering(

cdrf↔ ,
sdrf→)

(a) Rx1

(b) Wy1

po:0

(c) Ry0

fr

(d) Wx1

po:1

rf

(a) Rx0

(b) Wy1

po:0

(d) Wx1

fr

(c) Ry1

rf po:1

(a) Rx0

(b) Wy1

po:0

(d) Wx1

fr

(c) Ry0

fr
po:1

(a) (b) (c)

Figure 10.2: SC executions for the test of Fig. 10.1(a)

Proof Let (E, X) be valid on A1 and covered. Suppose by contradiction that

there is a cycle in
ghb2→ , which is by definition a cycle in

ws
→∪

fr
→∪

grf2→ ∪
ppo2→ . The

events in
ws
→,

fr
→ or

rf
→ and from distinct processors are competing. Since (E, X) is

covered,
sync
→ orders the competing accesses according to

com
→ . The remaining events

in
com
→ belong to the same processor, hence are in

po
→ by uniproc. Moreover, we know

ppo2→ ⊆
po
→. Hence a cycle in

ws
→ ∪

fr
→ ∪

grf2→ ∪
ppo2→ is a cycle in

sync
→ ∪

po
→, which

contradicts the irreflexivity of
sdrf→ . �

This means that if we synchronise the competing accesses of a weak
execution (e.g . in Fig. 10.1(b)), (a) and (d) on the one hand and (b) and (c)
on the other hand) then this execution is either valid on A2, or forbidden
on A1.

10.2.3 DRF guarantee

We now refine this result: we show that it is enough to synchronise the
competing accesses of all the strong executions to ensure that there cannot
be any weak execution.

Indeed, the DRF guarantee of [AH] stipulates that if the competing
accesses (i .e.

cdrf↔) of the SC executions of a given program are arbitrated

by (
sync
→ ∪

po
→)

+
(i .e. by

sdrf→), then there can be no other executions. We
generalise this to any A1 ≤ A2:

Definition 54 (DRF Guarantee from A1 to A2)

A1. drfg(A2) ,

(∀EX,A2. valid(E,X)⇒ coveredDRF(E,X)) ⇒
(∀EX, stableA1,A2,(E,X))

We showed in Lem. 10 that
sdrf→ is covering if it is irreflexive. Hence

Thm. 8 ensures that, if
sdrf→ is irreflexive and well-founded, our generalised

DRF guarantee holds:

Corollary 6 (Irreflexivity of
sdrf→ ensures stability)

∀A1 ≤ A2,wf(
cdrf↔ ,

sdrf→) ∧ irreflexive(
sdrf→)⇒ A1. drfg(A2)

This means that we only have to synchronise the competing accesses of
all the strong executions of a program to ensure its stability. Consider again
the test given in Fig. 10.1(a). We give in Fig. 10.2 the additional executions
of this test. They are valid on SC since they do not exhibit any cycle in
SC. ghb (i .e. in

com
→ ∪

po
→). Cor. 6 shows that it is enough to arbitrate the

competing accesses of the SC executions of Fig. 10.2 to prevent the non-SC
execution of Fig. 10.1(b) from happening. Hence in Fig. 10.2, we have to
order (a) and (d) on the one hand and (b) and (c) on the other hand. The
pairs to be arbitrated are the same as in Fig. 10.1(b). However, we only had
to examine the SC executions to ensure that there can be no other execution
but those ones.

10.3 Lock-free guarantee

We give here another example of covering relation, relative to lock-free syn-
chronisation.

10.3.1 Fragile pairs

We saw in Chap. 3 that two architectures A1 ≤ A2 can be distinguished
according to their preserved program order (i .e. which pairs in

po
→ they

maintain in this order for every processor involved), and their policy w .r .t .
store atomicity (i .e. which writes are considered to be committed to memory
as soon as they are issued). Hence, a same program can exhibit different
executions on A1 and A2 for two reasons.

First, if the program involves a pair (x, y) of events that are maintained
in program order on A2 (i .e. x

ppo2→ y) but not on A1 (i .e. ¬(x
ppo1→ y)). For

example in Fig. 10.1(b), the read (a) from x on P0 is in program order with

the write (b) to y on P0, i .e. (a)
po
→ (b). Hence on a strong architecture A2

such as SC where
ppo2→ =

po
→, we have (a)

ppo2→ (b). On a weak architecture
A1 such as Power, where the read-write pairs in program order are not
maintained, we have ¬((a)

ppo1→ (b)).
Second, if the program involves a read reading from a write that is

considered atomic on A2 but not on A1. For example in Fig. 10.1(b), the
read (a) from x on P0 reads from the write (d) to x on P1, via an external
read-from map (since (a) and (d) belong to different processors). Hence we

have (d)
rfe
→ (a). On a strong architecture A2 such as SC where the writes

are atomic, i .e.
grf
→=

rf
→, we have (d)

grf
→ (a). On a weak architecture A1 such

as Power, which relaxes store atomicity, we have ¬((d)
grf
→ (a))

We consider such differences between architectures as conflicts, and for-
malise this notion as follows. We consider that two events form a fragile
pair if they are maintained in the program order on A2, and either they are
not maintained in the program order on A1, or the first event reads from a

write that is atomic on A2 but not on A1. We call such reads fragile reads
and define them as follows (

r2\1→ ,
r2→ \

r1→ being the set difference):

Definition 55 (Fragile Read)

fragile(r) , ∃w,w
grf2\1→ r

Finally, we define the conflicting pairs
clf→ as the fragile pairs:

Definition 56 (Fragile Pairs)

m1
clf→ m2 , m1

ppo2→ m2 ∧
(

¬(m1
ppo1→ m2) ∨ fragile(m1)

)

For example, in Fig. 10.1(b), the read (a) from x on P0 is fragile on an
architecture A1 relaxing store atomicity, since it reads from the write (d) to

x on P1 via a
rf
→ that is not global. Suppose that A2 preserves the read-write

pairs: in this case the events (a) and (b) form a fragile pair on P0, since they
are in

ppo2→ and (a) is a fragile read. Similarly, the events (c) and (d) on P1

form a fragile pair.

10.3.2 Synchronising fragile pairs in a weak execution

An execution is covered if the fragile pairs are arbitrated by a synchronisa-
tion relation

slf→:

Definition 57 (LF Covered)

coveredLF(X) , ∀xy, x
clf→ y ⇒ x

slf→ y ∨ y
slf→ x

This synchronisation relation corresponds intuitively to the order in-
duced by placing barriers between the events of the fragile pairs. For ex-
ample in Fig. 10.1(b), this corresponds to placing a barrier between (c) and
(d) on P1, in which case we have (c)

slf→ (d), and another barrier between (a)
and (b) on P0, in which case we have (a)

slf→ (b). Hence we have a cycle in
slf→ ∪

rf
→: (d)

rfe
→ (a)

slf→ (b)
rfe
→ (c)

slf→ (d). If we have the guarantee that
slf→

is A-cumulative w .r .t .
grf2\1→ (i .e. ∀xyz, (x

grf2\1→ y ∧ y
slf→ z)⇒ x

ab1→ z), and if
slf→ is included in

ghb1→ , we create a cycle in
ghb1→ : (d)

slf→ (b)
slf→ (d).

Indeed, we show that if
slf→ is A-cumulative w .r .t .

grf2\1→ and compatible
with

grf2→ ,
ppo2→ and

ghb1→ , then
slf→ is covering:

Lemma 11 (A
slf→ compatible with

ghb1→ is covering)

acyclic(
slf→ ∪

grf2→) ∧ acyclic(
slf→ ∪

ppo2→)∧

acyclic(
slf→ ∪

ghb1→) ∧ AC(
slf→,

grf2\1→)⇒ covering(
clf→,

slf→)

Proof Consider an execution (E, X) valid on A1 and covered. Suppose by

contradiction that there is a cycle in
ghb2→ , which is by definition a cycle in

ws
→ ∪

fr
→∪

grf2→ ∪
ppo2→ . Since

ws
→,

fr
→ and

ppo1→ are included in
ghb1→ , this cycle is a cycle in

ghb1→ ∪
ppo2\1→ ∪ (

grf2\1→ ;
ppo2→). Since

slf→ orders all fragile pairs, and is compatible with
ppo2→ , we know that

ppo2\1→ is included in
slf→ and (

grf2\1→ ;
ppo2→) ⊆ (

grf2\1→ ;
slf→). Since

slf→

is A-cumulative, (
grf2→ ;

slf→) is in
ab1→ , hence in

ghb1→ . Thus there is a cycle in
slf→∪

ghb1→ ,
which contradicts their compatibility. �

This means that if we place such barriers between the fragile pairs of a
weak execution (e.g . (a) and (b) on P0 and (c) and (d) on P1), then this
execution is either valid on A2, or forbidden on A1. We prove this result
under the name Barrier guarantee in [AMSS].

10.3.3 Application to the Semantics of Barriers

This means that if there is an A-cumulative barrier after each fragile read and
a non-cumulative barrier between each remaining fragile pair of an execution
X valid on A1, then X is valid on A2. For example in the execution depicted
in Fig. 10.1, we need an A-cumulative barrier between (a) and (b) on P0 and
between (c) and (d) on P1.

10.3.3.1 Barriers Placement

We define the semantics and placement in the code that barriers should have
to restore a stronger model from a weaker one. We define the predicate fb

(fully barriered) on A1 ≤ A2:

Definition 58 (Fully Barriered Execution)

A1. fbA2
(X) ,

(

(
ppo2\1→) ∪ (

grf2\1→ ;
ppo2→)

)

⊆
ab1→

The fb predicate provides an insight to the strength that the barriers of
the architecture A1 should have to restore the stronger A2. They should:

1. restore the pairs that are preserved in the program order on A2 and
not on A1, which is a static property;

2. compensate for the fact that some writes may not be globally per-
formed at once on A1 while they are on A2, which we model by (some

subrelation of)
rf
→ not being global on A1 while it is on A2; this is a

dynamic property.

We prove indeed that the above condition on
ab1→ restores Aǫ

2 from A1:

Theorem 9 (Barriers Placement)

∀A1A2, (A1 ≤ A2)⇒ (∀X,A1. valid(X) ∧A1. fbA2
(X)⇒ Aǫ

2. valid(X))

iriw

P0 P1 P2 P3

(a) r1← x (c) r2← y (e) x← 1 (f) y← 2

fence fence

(b) r2← y (d) r1← x

Observed? 0:r1=1; 0:r2=0; 1:r2=2; 1:r1=0;

Figure 10.3: The iriw Example

Proof Let X be an execution valid on A1. Suppose A1. fbA2
(X); let us show

that X is valid on A2. By definition,
ab1→ is compatible with

ghb1→ since included in
it. Moreover, under the fully barriered hypothesis,

ab1→ is A-cumulative. Hence, by
Lem. 11,

ab1→ is covering. Moreover, the fully barriered hypothesis ensures that X is
covered by

ab1→ . Hence, by the definition of covering, if X is valid on A1 then it is
valid on A2. �

The static property of barriers is expressed by the condition
ppo2\1→ ⊆

ab1→ .
A barrier provided by A1 should ensure that the events generated by a same
processor are globally performed in program order if they are on A2. In this
case, it is enough to insert a barrier between the instructions that generate
these events.

The dynamic property of barriers is expressed by the more involved
condition (

grf2\1→ ;
ppo2→) ⊆

ab1→ . A barrier provided by A1 should ensure store
atomicity to the write events that have this property on A2.

Thm. 9 states that, to restore A2 from A1, it suffices to insert an A-
cumulative barrier between each pair of instructions such that the first one
in the program order reads from a write which is to be globally performed
on A2 but is not on A1.

Yet, it is enough to have w
ab1→ r whenever w

grf2\1→ r holds to restore store

atomicity, i.e. a barrier ensuring that
rf
→ is global. But then a processor

holding such a barrier placed after r would wait until w is globally per-
formed, then read again to ensure that r is globally performed after w. Our

requirement is less costly: when w
rf
→ r

po
→ m, where r may not be globally

performed after w is, inserting a barrier instruction between the instructions
generating r and m only forces the processor generating r and m to delay m

until w is globally performed.

Restoring SC Thm. 9 shows that inserting an A-cumulative barrier be-
tween all

po
→ pairs restores SC :

Corollary 7 (Barriers Restoring SC)

∀A X, (A. valid(X) ∧ AC(
po
→,

rf
→))⇒ SC. valid(X)

Consider e.g. the iriw test depicted in Fig. 10.3. The specified outcome
may be the result of a non-SC execution on a weak architecture in the

absence of barriers. Our A-cumulative barrier forbids this outcome, as shown
in Fig. 10.4: if placed between each pair of reads on P0 and P1, not only
does it prevent their reordering, but also ensures that the write (e) on P2

(resp. (y) P3) is globally performed before the second read (b) on P0 (resp.
(d) on P1).

10.3.3.2 Weak Barrier Placement

We refine the study for two architectures that share the same store relaxation
policy (e.g. Sparc TSO and PSO).

When two architectures A1 and A2 have the same policy w .r .t . the store
atomicity and store buffer relaxations, which we model by

grf1→=
grf2→ , there is

no need for a barrier as powerful as above to restore A2 from A1: a barrier
that only orders the events that surround it statically—that is, a non cumu-
lative barrier, which action we model by non-cumul(X,

fenced
→) ,

fenced
→ —is

enough. Consider the wfb predicate, which states that the barriers provided
by A1 maintain the pairs that are preserved in the program order on A2 but
not on A1:

Definition 59 (Weakly Fully Barriered Execution)

A1.wfbA2
(X) ,

ppo2\1→ ⊆
ab1→

The same guarantee applies if A2 hinders the store buffer relaxation by

its preserved program order, i.e. when
rfi
→ ⊆

ppo2→ —which is particular to SC :

Theorem 10 (Non-Cumulative Barriers Placement)

∀A1A2, ((A1 ≤ A2) ∧ (
grf1→ =

grf2→ ∨(
rfi
→ ⊆

ppo2→)))⇒

(∀X,A1. valid(X) ∧A1.wfbA2
(X)⇒ Aǫ

2. valid(X))

From TSO to SC As
rfe
→ are global in both TSO and SC , and SC hinders

the store buffering relaxation by its
ppo
→ definition, it suffices by Thm. 10 to

fence all pairs in
ppo-sc
→ \

ppo-tso
→ = WR (where WR , (W × R) ∩

po
→) to

restore SC from TSO :

Corollary 8 (Barriers Restoring SC From TSO)

∀X, (TSO. valid(X) ∧ NC(WR))⇒ SC. valid(X)

(a) Rx1(b) Ry0 fenced

(f) Wy2

fr

(c) Ry2 (d) Rx0fenced

(e) Wx1

fr

rfA cumul

rf A cumul

Figure 10.4: Study Of iriw With A-Cumulative Barriers

From PSO to TSO ǫ We comment here on the two definitions of PSO
given in Sparc documentations [spa94a]. TSO and PSO agree on both
the store atomicity and the store buffering relaxations (see Sec. 4.2.2.2 and
4.2.2.3), which allows us to apply Thm. 10: TSO ǫ is restored from PSO by
inserting non-cumulative barriers between all

ppo-tso
→ \

ppo-pso
→ = WW pairs.

Indeed, TSO is obtained from PSO by adding store-store barriers after each
write [spa94a, V9, D.6, p. 296]:

The specification of Total Store Order (TSO) is that of Partial
Store Order (PSO) with the additional requirement that all mem-
ory transactions with store semantics are followed by an implied
MEMBAR [i .e. memory barrier] #StoreStore.

10.3.4 Lock-free guarantee

We now refine this result: we show that we only have to check the barriers’
placement on all the executions valid on A2 (instead of A1 in Thm. 9).

We define the lock-free guarantee to stipulate that if all the fragile pairs
of the executions valid on A2 are arbitrated by

slf→, then there is no other
execution:

Definition 60 (Lock-Free Guarantee)

A1. lfg(A2) ,

(∀EX,A2. valid(E,X) ⇒ coveredLF(E,X))⇒
(∀EX, stableA1,A2,(E,X))

We have shown in Lem. 11 that a
slf→ which is A-cumulative and com-

patible with
grf2→ ,

ppo2→ and
ghb1→ , is covering. Hence Thm. 8 ensures that if

slf→

Name Code Comment

plain load lwz r1,0,r2 loads into r1 from the address in r2

plain store stw r1,0,r2 stores from r1 into the address in r2

load reserve lwarx r1,0,r2 loads from the address in r2 into r1 and re-
serves the address in r2

store conditional stwcx. r1,0,r2 checks if the address in r2 is reserved; if so,
stores from r1 into this address; if not, fails

branch not equal bne L branches to L if condition code register (CR0)
encodes disequality

compare cmpw r4, r6 compares values in r4 and r6 and stores result
into CR0

isync isync when placed after a bne, forms a RW, RR
non-cumulative barrier

lwsync lwsync RW, RR, WW A- and B-cumulative barrier

sync sync RW, RR, WW, WR A- and B-cumulative bar-
rier

Figure 10.5: Table of the Power assembly instructions used in this chapter

satisfies these properties and is well-founded, our lock-free guarantee holds:

Corollary 9 (Compatibility of
slf→ with A1 ensures stability)

wf(
clf→,

slf→) ∧ acyclic(
slf→ ∪

grf2→) ∧ acyclic(
slf→ ∪

ppo2→)∧

acyclic(
slf→∪

ghb1→) ∧ AC(
grf2\1→ ,

slf→)⇒ A1. lfg(A2)

This states that it is enough to place barriers in an execution (E,X) valid
on A2, between each pair of

ppo2\1→ and after each read reading from a write
that should be atomic on A2 but is not on A1. For example in Fig. 10.2(b),
we have to place an A-cumulative barrier between (c) and (d) on P1 and
a non-cumulative one between (a) and (b) on P0. In Fig. 10.2(c), we have
to place two non-cumulative barriers, one between (a) and (b) on P0 and
another one between (c) and (d) on P1. This ensures that there can be no
other execution but the SC ones depicted in Fig. 10.2. Once again, the pairs
to be arbitrated are the same as in Fig. 10.1(b), but we only had to examine
the SC executions to find them.

10.4 Synchronisation idioms

We examine here the semantics of some synchronisations primitives. We
study the locks and read-modify-writes as described in Power’s documen-
tation [pow09]. We show that these constructs ensure a SC behaviour to
Power programs, as they induce covering relations. We give a table of the
instructions in Fig. 10.5.

loop:

(a1) lwarx r1,0,r5

[...]

(a2) stwcx. r2,0,r5

(b) bne loop

Figure 10.6: A generic read-modify-write in Power assembly

10.4.1 Atomicity

Fig. 10.6 gives a generic Power read-modify-write. In between the lwarx

(a1) and the stwcx. (a2), the code is left to the choice of the programmer,
supposing there are no other lwarx and stwcx. between (a1) and (a2). The
lwarx (a1) loads from its source address (in register r5) and reserves it.
Any subsequent store to the reserved address from another processor and
any subsequent lwarx from the same processor invalidates the reservation.
The stwcx. (a2) checks if the reservation is still valid; if so, it is said to be
successful : it stores into the reserved address and the code exits the loop.
Otherwise, the stwcx. does not perform any store and the code loops. Thus
these instructions ensure atomicity to the operations they surround, as no
other processor can write to the reserved location between the lwarx and
the successful stwcx..

We distinguish the read and write events issued by such instructions
from the plain ones: we write R

∗ (resp. W
∗) for the subset of R (resp. W)

issued by a lwarx (resp. a successful stwcx.), and define an atomic pair as
follows:

Definition 61 (Atomic pair)

atom(r, w, ℓ) , r ∈ R
∗ ∧ w ∈W

∗ ∧ loc(r) = loc(w) = ℓ∧

r = maxpo
→

({m | m ∈ (R∗ ∪W
∗) ∧m

po
→ w})∧

¬(∃w′, proc(w′) 6= proc(r) ∧ loc(w′) = ℓ ∧ r
fr
→ w′ ws

→ w)

Thus two events r and w form an atomic pair w .r .t . a location ℓ if:

• w was issued by a successful stwcx. to ℓ, and

• r was issued by the last lwarx (in
po
→) from ℓ before the stwcx. that

issued w, and

• no other processor wrote to ℓ between r and w.

10.4.2 Locks

Atomic pairs are used e.g . in lock and unlock primitives [pow09, App. B].
The idiomatic Power implementation of lock is shown in Fig. 10.7(a). The

Initially r3 = ℓ, r4 = 0 and r5 = 1
loop:

(a1) lwarx r6,0,r3

(b) cmpw r4,r6

(c) bne loop

(a2) stwcx. r5,0,r3

(d) bne loop

(e) isync

[...]

[...]

(f) lwsync

(g) stw r4,0,r3

(a) Lock (b) Unlock

Figure 10.7: Lock and Unlock in Power

lines (a1) to (a2) match the scheme of Fig. 10.6; this sequence loops until
it acquires the lock. The acquisition is followed by a sequence bne;isync

(lines (d) and (e)), forming a barrier, which ensures that no access inside
the critical section can be speculated before the lock primitive.

Fig. 10.7(b) shows the implementation of unlock. It starts with a lwsync

barrier (line (f)), ensuring that no access inside the critical section can be
delayed after the unlock. The barrier is followed by a store to the lock
variable ℓ (line (g)), which frees the lock.

Semantics We formalise these notions as follows. A read r takes a lock ℓ

if it reads from ℓ and forms an atomic pair with a write w to ℓ. The next
write event to ℓ (if any) in program order after a lock acquisition frees the
lock. Such a write writes to the lock variable, and is after r in the program
order:

Definition 62 (Taken and Free)

taken(ℓ, r) , ∃w, atom(r, w, ℓ)

free(ℓ, r, w) , r
po
→ w ∧ taken(ℓ, r) ∧ loc(w) = ℓ

A lock acquisition consists of a taken operation (see Fig. 10.7, lines (a1)
to (a2)) followed by an import barrier [pow09, p. 721] (lines (d) and (e)),
whose properties we study in the next paragraph. An unlock consists of an
export barrier [pow09, p. 722] (line (f)), also studied next, followed by a
write freeing the lock (line (g)):

Definition 63 (Lock and Unlock)

Lock(ℓ, r) , taken(ℓ, r) ∧ import(r)

Unlock(ℓ, r, w) , free(ℓ, r, w) ∧ export(w)

ghb1

ghb1

ghb1

po:0 po:1

po:1

po:1

rf

Unlock2(l)(f) Wl0

Unlock1(l)

Lock1(l) Lock2(l)

(a1) R*l0

(a2) W*l1m1

m2

Figure 10.8: Opening Lock and Unlock

A critical section consists of a lock and an unlock with the same variable
ℓ, and the events in

po
→ between the lock’s barrier and the unlock’s one:

Definition 64 (Critical Section)

cs(E , ℓ, r, w) , Lock(ℓ, r) ∧

E = {e | r
po
→ e

po
→ w} ∧ Unlock(ℓ, r, w)

We write loc(cs) for the location of a given critical section cs. Two
critical sections cs1 and cs2 with the same location ℓ are serialised if cs2
reads from cs1, as depicted in Fig. 10.8: the left-hand side of the picture
is the first critical section cs1, composed of a lock acquisition Lock1(ℓ), an
event m1 and an unlock Unlock1(ℓ), which writes into ℓ via the write (f).
The second critical section cs2 is on the right-hand side: the read (a1) of
its lock acquisition Lock2(ℓ) reads from (f). Thus, cs1 and cs2 are serialised
if cs2 Lock’s read (written R(cs2)) reads from cs1 Unlock’s write (written
W(cs1)):

Definition 65 (Serialisation of critical sections)

cs1
cssℓ→ cs2 , loc(cs1) = loc(cs2) = ℓ ∧W(cs1)

rf
→ R(cs2)

Given a location ℓ, two events m1 and m2 are in
lockℓ→ if they are in two

serialised critical sections (as in Fig. 10.8), or m1 is in
lockℓ→ with an event

itself in
lockℓ→ with m2 (m ∈ cs ensures m is between cs import and export

barriers in
po
→):

Definition 66 (Per location lock relation)

m1
lockℓ→ m2 ,

(∃ cs1 cs2,m1 ∈ cs1 ∧m2 ∈ cs2 ∧ cs1
cssℓ→ cs2) ∨

(∃m,m1
lockℓ→ m

lockℓ→ m2)

Finally, two events m1 and m2 are in
lock
→ if: ∃ℓ,m1

lockℓ→ m2.

iriw

P0 P1 P2 P3

(a) r1← x (c) r2← y (e) x← 1 (f) y← 2

(b) r2← y (d) r1← x

Observed? 0:r1=1; 0:r2=0; 1:r2=2; 1:r1=0;

Figure 10.9: The iriw example

(a) Rx1(b) Ry0 po:0

(f) Wy2

fr

(c) Ry2 (d) Rx0po:1

(e) Wx1

fr

rf

rf

Figure 10.10: A non-SC execution of iriw

Barriers We define an import barrier to prevent any event to float above
a read issued by a lwarx: in Fig. 10.8, the event m2 in cs2 is in

ghb1→ with the
read (a1) from its Lock’s lwarx. We define an export barrier to force all the
events inside a critical section to be globally performed before the next lock
primitive takes the lock: in Fig. 10.8, the event m1 in cs1 is in

ghb1→ with the
read (a1) of cs2’s Lock. This means that we define an export barrier to be
B-cumulative, but only w .r .t . read-from maps whose target is a read issued
by a lwarx. Formally, we have:

Definition 67 (Import and export barriers)

import(r) , ∀m, (r
po
→ m)⇒ (r

ab1→ m)

export(w) , ∀rm, (r ∈ R
∗ ∧ (m

po
→ w

rf
→ r))⇒ (m

ab1→ r)

DRF guarantee If the import and export barriers of our critical sections
have the above semantics, there is no nested critical sections and no event
of a critical section accesses its lock variable, then we show that

lock
→ ∪

po
→ is

acyclic:

Lemma 12 (Compatibility of
lock
→ with

po
→)

∀EX,A1. valid(E,X)⇒ acyclic(
lock
→ ∪

po
→)

Proof Suppose by contradiction a cycle in
lock
→ ∪

po
→. This cycle is a cycle

in ((
lock
→)+;

po
→) since

po
→ is transitive. Let us show by induction that any path of

(
lock
→)

+
;
po
→ from an event x to an event y is a path in (

ghb1→)
+
. Hence, a cycle is in

(
lock
→)

+
;
po
→ is a cycle in (

ghb1→)
+
, which contradicts the validity of (E, X) on A1.

Consider the base case with three events m1
lock
→ m2

po
→ m3. Let us do an induc-

tion over m1
lock
→ m2. Consider the base case where m1 and m2 belong respectively

to the critical sections cs1 and cs2, such that cs1
css
→ cs2.

In this case, m3 is in
po
→ after cs2’s import barrier, which prevents any event

to float above the read issued by cs2’s lwarx. Thus we have R(cs2)
ab1→ m3, hence

R(cs2)
ghb1→ m3. Moreover, m1 is in

po
→ before cs1’s export barrier (i .e. m1

ab1→

W(cs1)) hence m1
ghb1→ W(cs1). Since W(cs1)

rfe
→ R(cs2), by B-cumulativity of cs1’s

export barrier, we have m1
ab1→ R(cs2), hence m1

ghb1→ R(cs2). Thus m1 (
ghb1→)

+
m3.

The transitive cases follows by induction. �

This result means, following Lem. 10, that
lock
→ ∪

po
→ is a covering syn-

chronisation relation for the competing accesses. We show that
lock
→ ∪

po
→

forms a well founded relation:

Lemma 13 (
lock
→ ∪

po
→ is well-founded)

wf(
cdrf↔ ,

lock
→ ∪

po
→)

Proof Let (E, X) be an execution valid on A1 and uncovered: there is a compet-

ing pair x
cdrf↔ y which is not arbitrated by

lock
→ ∪

po
→. Hence one of them at least is

not protected by any critical section: suppose it is x (we omit the symmetrical case).

We know by definition that x
cdrf↔ y ⇒ ¬(y

po
→ x). Hence, since A2. ppo(E) ⊆ po(E),

we have (x
cdrf↔ y) ⇒ ¬((y, x) ∈ A2. ppo(E)). Therefore, ((x, y) ∪A2. ppo(E))

+
is

a partial order over evts(E) compatible with A2. ppo(E). We know by Lem. ??

that from any linear extension of this order, we can build an execution witness Y

associated with E and valid on A2. Moreover, (x, y) belongs to (E, Y), and since

we kept exactly the events of E, there are no events forming a critical section to

protect x in Y either.

Hence by Cor. 6 the critical sections defined above provide the DRF
guarantee as detailed in the following. We take the

sync
→ relation of the DRF0

model defined at Sec. 10.2 to be as follows and compatible with
ws
→ ∪

fr
→ ∪

rf
→:

sync
→ , {(x, y) | ∃cs1 6= cs2, loc(cs1) = loc(cs2) ∧ x ∈ cs1 ∧ y ∈ cs2}

This means that two events are in
sync
→ when they belong to distinct criti-

cal sections with the same variable.
sync
→ is well-founded since the competing

pairs and the
sync
→ definitions are independent of any execution.

We show that two events x
sync
→ y are ordered by

lock
→ :

Lemma 14 (
lock
→ orders

sync
→)

∀xy, x
sync
→ y ⇒ x

lock
→ y ∨ y

lock
→ x

Proof Consider two events m1
sync
→ m2. We write cs1 (resp. cs2) for the critical

section to which m1 (resp. m2) belongs. If cs2 reads from cs1 (resp. cs1 from cs2),
we know x

lock
→ y (resp. y

lock
→ x). Otherwise, there exists a write w1 (resp. w2)

from which cs1 (resp. cs2) reads. The writes w1 and w2 are to the same location,

since they are in
rf
→ with the reads from cs1 and cs2, which have the same location.

Since
ws
→ is a total order on the writes to the same location, we have w1

ws
→ w2

or w2
ws
→ w1. Suppose w1

ws
→ w2. cs1 reads from w1, therefore W(cs1) (the write

releasing the lock of cs1) occurs in
ws
→ after w1. Since W(cs1) and w2 have the same

location, we have W(cs1)
ws
→ w2∨w2

ws
→W(cs1). The second case is impossible since

no write to the lock variable can occur between the read and the write of a critical
section. In the first case, we have x

lock
→ y. �

Since
sync
→ is compatible with

ws
→ ∪

fr
→ ∪

rf
→, it is also compatible with

lock
→ .

Indeed,
lock
→ is induced by a

rf
→ relation between the write of the first critical

section and the read of the second. Therefore,
sync
→ is included in

lock
→ :

Lemma 15 (
sync
→ is included in

lock
→)

sync
→ ⊆

lock
→

Proof Consider two events x and y in
sync
→ . Since

lock
→ orders

sync
→ , we know

x
lock
→ y or y

lock
→ x. Since

sync
→ and

lock
→ are compatible, we have x

lock
→ y. �

We know by Lem. 12 that
lock
→ and

po
→ are compatible. Since

sync
→ is

included in
po
→, we know that

sync
→ and

po
→ are compatible. Since

sync
→ is well

founded, we know by Cor. 6 that (
sync
→ ∪

po
→)

+
provides the DRF guarantee.

Thus, given a program, we only have to place such critical sections on
the competing accesses of the strong executions of this program to ensure
that all its executions are strong.

Discussion Our import barrier allows events to be delayed so that they are
performed inside the critical section. Our export barrier allows the events
after the unlock to be speculated before the lock is released. Such relaxed se-
mantics already exist for high-level lock and unlock primitives [Boea, Sev08].

Our study does not contradict the Power documentation [pow09, p. 721
and 722], but suggests that we do not need all the features of the import
barrier appearing in the documentation, and supposes an undocumented
feature of the export barrier, though it has not been invalidated by our
experiments.

Indeed, the import barrier is a sequence bne;isync (i .e. a read-read,
read-write non-cumulative barrier) or a lwsync (i .e. a read-read, read-write,
write-write A- and B-cumulative barrier) [pow09, p.721]. We show that we
do not need cumulativity, nor to maintain write-write pairs. We only need
to maintain read-read and read-write pairs. Moreover, we can even restrict
these pairs to pairs where the first read corresponds to a lwarx.

The export barrier is a sync (i .e. an A- and B-cumulative barrier main-
taining all pairs) or a lwsync [pow09, p. 722]. We show that we only
need a B-cumulative barrier towards reads issued by a lwarx, therefore a

sync is unnecessarily costly. Moreover, lwsync is cumulative except from a
write to a read, whereas we require the export barrier to be B-cumulative
from any event to a read issued by a lwarx. Although a lwsync is not B-
cumulative towards plain reads, its implementations appear experimentally
to treat reads issued by a lwarx specially, and be B-cumulative towards such
reads. Since this is undocumented, this raises the question of whether this
implementation of locks actually ensures the DRF guarantee, and even if it
does, for which reasons. The lack of details in the documentation leaves the
answer unclear.

10.4.3 Lock-free synchronisation

Consider the iriw example [BA] given in Fig. 10.9; we also give an associated
non-SC execution in Fig. 10.10. We know by Lem. 11 that we can restore SC
by placing two A-cumulative barriers between the fragile pairs (i .e. between
(a) and (b) on P0, and between (c) and (d) on P1).

However, the cumulativity of a barrier may be challenging to implement
or too costly in practice. We propose a mapping of certain reads to read-
modify-write primitives (RMW) (such as the one given in Fig. 10.6), and
show that this mapping restores a strong architecture from a weaker one
without using cumulativity, and by checking the strong executions only.

Consider the execution of iriw given in Fig. 10.11. This execution is
valid on SC since it does not exhibit any cycle in

com
→ ∪

po
→. We give in

Fig. 10.12(a) the same execution, where we have replaced the fragile reads
(a) and (c) by RMW primitives: we say these fragile reads are protected (a
notion defined below).

In fact, we have chosen a particular kind of RMW for this example: we
use fetch and no-op (FNO) primitives. The FNO idiom of [pow09, p.719] is
a RMW such as in Fig. 10.6, with no code between the lwarx and stwcx.,
such that the target of the lwarx is the source of the stwcx.. Hence, a FNO
implements an atomic read. Yet, our results hold for any kind of RMW.

We show indeed that when the fragile reads are protected, we do not need
cumulative barriers anymore, but just non-cumulative ones. The intuition
is that if a read is protected by a RMW, then the RMW compensates the
need for cumulativity by enforcing enough order to the write from which the
protected read reads.

Protecting the fragile reads with RMW We consider that two events
r and w form a RMW w .r .t . a location ℓ if they form an atomic pair w .r .t .
ℓ (i .e. the code in Fig. 10.6 does not loop), or there is a read r′ after r in
the program order forming an atomic pair w .r .t . ℓ with w, such that r′ is
the last read issued by the loop before the stwcx. succeeds (i .e. the code in
Fig. 10.6 loops). We do not consider the case where the loop never returns.

For example in Fig. 10.12(b), we open up the FNO box protecting the
read (a) from x on P0. We suppose here that the FNO is immediately
successful, i .e. the code in Fig. 10.6 does not loop. Hence we expand the
FNO event (a) on P0 to the r∗ (a1) (from the lwarx) in program order with
the w∗ (a2) (from the successful stwcx.). Formally, we define a RMW as
follows:

Definition 68 (Read-modify-write)

rmw(r, w, ℓ) , atom(r, w, ℓ)∨

(∃r′, r
po
→ r′ ∧ loc(r) = loc(r′) ∧ atom(r′, w, ℓ))

We define a read to be protected when it is issued by the lwarx of a
RMW immediately followed in program order by a non-cumulative barrier;
an execution X is protected when its fragile reads are:

Definition 69 (Protected read and execution)

protected(r) , ∃w, rmw(r, w, loc(r))∧

(∀m,w
po
→ m⇒ w

ab1→ m)

protected(E,X) , ∀r, fragile(r)⇒ protected(r)

Consider Fig. 10.12(b): the read (a1) and the write (a2) are in the pro-

gram order and to the same location, hence we have (a1)
fr
→ (a2). This

means that the write (e) from which (a1) reads hits the memory before (a2)

does, i .e. (e)
ws
→ (a2). Hence the sequence (e)

rf
→ (a)

po
→ (b) is covered by the

sequence (e)
ws
→ (a2)

po
→ (b). Thus, we compensate the lack of store atomicity

of (e) (i .e. the fact that (e)
rfe
→ (a) is not global) without using cumulativity,

but by using the write serialisation between (e) and the write (a2) from the
RMW. Formally, we show that any sequence w

grf2\1→ r
ppo2→ m where r is

protected is in
ws
→;

ghb1→ , hence in (
ghb1→)+:

Lemma 16 (Protected reads property)

∀wrm, (protected(r) ∧w
grf2\1→ r

ppo2→ m)⇒ w
ws
→;

ghb1→ m

Proof Since r is protected, there are r′ and w′ such that rmw(r′, w′, loc(r))

where r′ is r or a subsequent read in
po
→. In both cases, we have w

ws
→ w′. Moreover,

since there is a barrier between w′ and m (i .e. w′
ab1→ m), we know that w′

ghb1→ m.

We saw in Sec. 10.3 that covering the fragile pairs enforces stability. If
we protect the fragile reads, the only remaining fragile pairs are the ones
in

ppo2\1→ . For example in Fig. 10.12(a), we have (e)
ws
→ (a2). Moreover, we

have (b)
fr
→ (f) since (b) reads from the initial state, thus: (e)

ws
→ (a2)

po
→

(b)
fr
→ (f). Similarly on P1 we have (f)

ws
→ (c2)

po
→ (d)

fr
→ (e), hence a cycle

in
ws
→ ∪

fr
→ ∪

po
→. Since

ws
→ and

fr
→ are global, we know that to invalidate this

(a) Rx1(b) Ry1 po:0

(c) Ry1 (d) Rx1po:1

(e) Wx1

rf

rf

(f) Wy1

rf

rf

Figure 10.11: A SC execution of iriw

(a) fno[x]=1(b) Ry0 po:0

(c) fno[y]=2 (d) Rx0po:1

(e) Wx1

rf/ws

rf

(f) Wy2

rf

rf/ws

(a) fno[x]=1

(a1) R*x1

(a2) W*x1

fr

(b) Ry0

po:0

(e) Wx1

rf

ws

(f) Wy2

fr

(a) Synthetic execution witness (b) Opening FNO on P0

Figure 10.12: Study of iriw after FNO transformation

cycle, we only need to order globally (e.g . by a barrier) the accesses (a2)
and (b) on P0 and (c2) and (d) on P1.

Indeed, if a strong execution is protected, non-cumulative barriers placed
between the remaining fragile pairs in

ppo2\1→ ensure stability:

Lemma 17 (A protected execution is stable)

∀EX,A2. valid(E,X) ∧ protected(E,X)∧
(
ppo2\1→ ⊆

ab1→)⇒ stableA1,A2,(E,X)

Proof Barriers are by definition compatible with
ghb1→ . The A-cumulativity is

handled by the protection of the fragile reads as shown in Lem. 16. Finally, the
barriers order globally the remaining fragile pairs. Hence the barriers induce a
covering synchronisation relation by Lem. 11. Since it is trivially well-founded,
Cor. 9 applies. �

Discussion A mapping of the stores into RMW was proposed for x86 [BA]
(where there are no fragile reads) to provide a SC semantics to C++ atomics.
For models where reads may be fragile (e.g . Power) the existence of “more
efficient mappings (than the use of locks)” is unclear, as exposed in [AB].
Our study suggests that our mapping could be more efficient than locks,
since it removes the need for cumulative barriers, which are necessary for
locks. However, mapping reads to RMW introduces additional stores (issued
by stwcx.), which may impair the performance. The trade-off between these
two mappings is unclear.

Moreover, since there is no full non-cumulative barrier in Power, we have
to use cumulative barriers even though we do not need all their features. De-
pendencies (e.g . via register index) between read-read and read-write pairs
can be used to simulate non-cumulative barriers, hence spare the cost of
cumulativity on such pairs if the memory model ensures that such depen-
dencies are global, as does e.g . Power [AMSS]. The existence of such a
solution for write-read and write-write pairs is unclear.

All reads and writes could be mapped into RMW (using FNO for reads
and fetch-and-store [pow09, p. 719] for writes, so as to preserve the seman-
tics). The documentation stipulates indeed that “a processor has at most
one reservation at any time” [pow09, p. 663]. Hence two RMW on the
same processor in program order may be preserved in this order, because
the writes issued by their stwcx., though to different locations, would be or-
dered by a dependency over the reservation. In cases of hyperthreading for
example, it could mean that several threads running on the same processor
share a global dependency via the reservation of this processor. This has
not been invalidated by our experiments, but the documentation does not
state whether this dependency is global, or even exists.

Chapter 11

Stability

The data race free and lock-free guarantees may require more synchronisa-
tion than necessary. Consider e.g . the iriw example given in Fig. 7.1. If we
add a write (g) to a fresh variable z after (in program order) the write (e)
to x on P2, (e) and (g) may not be preserved in program order. Yet, there
is no need to maintain them, since they do not contribute to the cycle we
want to forbid.

Hence, in this section, we refine our study in the style of D. Shasha and
M. Snir [SS], in order to minimise the number of synchronisation mechanisms
used to enforce the behaviour of the stronger architecture. To do so, we
define the minimal cycles of an execution, which are the cycles we want to
prevent.

We then show that it is enough to synchronise the minimal cycles (instead
of all cycles previously) of an execution to ensure its stability. Finally, we
show that, given an event structure, all the associated executions are stable
if and only if the event structure does not contain any minimal cycle.

11.1 Minimal cycles

We consider that a relation
σ
→ is a cycle (written cycle(

σ
→)) when

σ
→ is non-

empty, symmetric and its transitive closure is total. We define a minimal

cycle as a cycle
σ
→ such that there is no other cycle

σ
→

′
distinct from

σ
→ and

included in
σ
→.

11.1.1 Violations

Given an event structure E, we consider a cycle to be a violation of A2

w .r .t . A1 when it is a cycle in (
cdrf↔ ∪

ppo2→)+ (i .e.
σ
→ ⊆ (

cdrf↔ ∪
ppo2→)+) which is

not a violation on A1 (i .e. acyclic
(

(
σ
→∩

cdrf↔) ∪
ppo1→

)

). A minimal violation

is a violation cycle which is minimal. We write A1.mvA2
(E,

σ
→) when

σ
→

149

is a minimal violation of A2 w .r .t . A1 (we omit A1 and A2 when they are
clear from the context). Formally, we have:

Definition 70 (Minimal violation of A2 w .r .t . A1)

A1.mvA2
(E,

σ
→) , cycle(

σ
→) ∧

(

σ
→ ⊆ (

cdrf↔ ∪
ppo2→)+

)

∧

acyclic
(

(
σ
→∩

cdrf↔) ∪
ppo1→

)

∧

¬
(

∃
σ
→

′
, (

σ
→

′
6=

σ
→) ∧ (

σ
→

′
⊆

σ
→) ∧ cycle(

σ
→

′
)
)

Consider the execution of the iriw test we give in Fig. 7.1: there is

a cycle (a)
po
→ (b)

fre
→ (f)

rfe
→ (c)

po
→ (d)

fre
→ (e)

po
→ (a), hence a cycle in

cdrf↔ ∪
po
→. Therefore, this execution exhibits a violation of SC w .r .t . Power

for example. The execution of iriw given in Fig. 10.11 also exhibits a
violation of SC w .r .t . Power: (a)

po
→ (b)

cdrf↔ (f)
cdrf↔ (c)

po
→ (d)

cdrf↔ (e)
po
→ (a).

Yet, this execution is valid on SC, whereas the execution of Fig. 7.1 is not.
Hence the presence of a violation of A2 w .r .t . A1 in a given event structure
is not sufficient to determine the validity of an associated execution on A2.

To address this issue, we define the oriented violations. Given an execu-
tion (E,X), we write

ocdrf→ for the oriented version of
cdrf↔ , i .e. x

ocdrf→ y , (x
com
→

y) ∧ (proc(x) 6= proc(y)) or equivalently (x, y) ∈ ws(X) ∪ rf(X) ∪ fr(X) ∧
(proc(x) 6= proc(y)). We consider a cycle to be an oriented violation of A2

w .r .t . A1 when it is a cycle in
ocdrf→ ∪

ppo2→ + (i .e.
σ
→ ⊆ (

ocdrf→ ∪
ppo2→)+) which

is not an oriented violation on A1 (i .e. acyclic
(

(
σ
→∩

ocdrf→) ∪
ppo1→

)

). We

write mov(E,X,
σ
→) when

σ
→ is a minimal oriented violation:

Definition 71 (Minimal oriented violation of A2 w .r .t . A1)

A1.movA2
(E,

σ
→) , cycle(

σ
→) ∧

(

σ
→ ⊆ (

ocdrf→ ∪
ppo2→)+

)

∧

acyclic
(

(
σ
→∩

ocdrf→) ∪
ppo1→

)

∧

¬
(

∃
σ
→

′
, (

σ
→

′
6=

σ
→) ∧ (

σ
→

′
⊆

σ
→) ∧ cycle(

σ
→

′
)
)

For example, the cycle in Fig. 10.11 is not an oriented violation, whereas
the cycle in Fig. 7.1 is. Thus, a minimal oriented violation is in particular a
minimal violation, but the converse is not true.

Indeed, a minimal oriented violation is defined w .r .t . an execution wit-
ness, whereas a minimal violation is independent of any execution witness.
This allows us to give in Thm. 12 a characterisation of all the stable execu-
tions associated with an event structure by reasoning on the event structure
only. Hence, we spare the cost of enumerating all the execution witnesses
to check their stability.

11.1.2 Covering the minimal violations

We show in the following that, given a conflict relation
c
→ and a synchroni-

sation relation
s
→, it is enough to synchronise by

s
→ the conflicting accesses

of
c
→ that belong to a minimal violation.
We call these conflicts minimal conflicts. Given an event structure E,

we write
cmin→ for the minimal conflicts of E, i .e.

c
→ restricted to the minimal

violations of E:

Definition 72 (Minimal conflicts)

m1
cmin→ m2 , m1

c
→ m2 ∧ (∃

σ
→,mv(E,

σ
→) ∧m1

σ
→ m2)

We first show that if all the conflicts of the minimal violations (of A2

w .r .t . A1) of an execution (E,X) valid on A1 are covered, there cannot be
any minimal oriented violations in (E,X). A minimal oriented violation is
what makes an execution invalid on A2. Hence forbidding them ensures that
(E,X) is valid on A2 as well. This means that synchronising the conflicting
accesses of the minimal violations of an execution ensures its stability:

Theorem 11 (Covering minimal cycles)

∀
c
→

s
→,
(

(
c
→,

s
→) = (

cdrf↔ ,
sdrf→) ∨ (

c
→,

s
→) = (

clf→,
slf→)
)

⇒

covering(
cmin→ ,

s
→)

Proof Let (E, X) be an execution valid on A1 where
cmin→ is arbitrated by

s
→.

Consider by contradiction a cycle in A2. ghb(E, X). Hence, there exists a minimal

oriented violation
σ
→ of A2 w .r .t . A1 in (E, X).

We know that
σ
→ is a cycle in

ocdrf→ ∪
ppo2→ +. Therefore, we know that

σ
→ is

equal to (
σ
→ ∩

ocdrf→) ∪ (
σ
→ ∩

ppo2→). By hypothesis, since
σ
→ is a minimal oriented

violation, all the conflicts in
σ
→ are arbitrated by

s
→.

• Suppose (
c
→,

s
→) = (

cdrf↔ ,
sdrf→). Since

sdrf→ is compatible with
com
→ , all the pairs

in
ocdrf→ are in

sdrf→ . Hence
σ
→ = (

σ
→ ∩

sdrf→) ∪ (
σ
→ ∩

ppo2→). Since
ppo2→ ⊆

po
→, we

have
σ
→ ⊆ (

sdrf→ ∪
po
→)

+
. Since

sdrf→ is compatible with
po
→, there cannot be any

such cycle
σ
→.

• Suppose (
c
→,

s
→) = (

clf→,
slf→). Since

σ
→ is a cycle in (

ocdrf→ ∪
ppo2→)

+
, we know

that
σ
→ is included in (

ws
→ ∪

fr
→ ∪

rf
→ ∪

ppo2→)
+

. Since
ws
→ and

fr
→ are in

ghb1→ ,
σ
→ is included in (

ghb1→ ∪
ppo2\1→ ∪(

grf2\1→ ;
ppo2→))

+
, i .e. in (

ghb1→ ∪
clf→)

+
. Since

slf→

covers
clf→ and is compatible with

grf2→ and
ppo2→ ,

σ
→ is included in (

ghb1→ ∪
slf→)

+
.

Since
slf→ is compatible with

ghb1→ , there cannot be any such cycle
σ
→. �

11.1.3 Critical cycles

D. Shasha and M. Snir provide in [SS] an analysis to place barriers in a
program, in order to enforce a SC behaviour. They examine the critical

t
σ

σ

x y
σ

z

r σ

σ

σ

Figure 11.1: A Chord in a Cycle

cycles of an execution, and show that placing a barrier along each program
order arrow of such a cycle (each delay arrow) is enough to restore SC.
However, this work does not provide any semantics of weak memory models,
hence does not address memory models with store buffering, such as TSO
or x86, or the ones that relax store atomicity, such as Power. We generalise
this approach to the models embraced by our framework.

We adapt here the definition of critical cycles of [SS], and the character-
isation for finding these critical cycles defined in [SS] to our framework. We
show that the minimal cycles are the critical cycles, hence this characteri-
sation allows us to find the minimal cycles.

Intuitively, a cycle is minimal if there is not shortcut in it that could lead
to a smaller cycle. Consider the cycle depicted in Fig. 11.1. The relation

σ
→

forms a cycle. Yet, it is not minimal, since there is a shortcut
r
→ between x

and z.

The notion of shortcut is formalised by the notion of chord. Given a
cycle

σ
→ and a relation

r
→, we say that there is no chord in

σ
→ via

r
→ when

there is no shortcut in
σ
→ via

r
→, i .e.:

Definition 73 (Absence of chord in
σ
→ via

r
→)

no-chord(
σ
→,

r
→) , ∀xyzt, x

σ
→ y ∧ z

σ
→ t ∧ x

r
→ z ⇒ y = z

We define a critical cycle
σ
→ as a cycle in (

cdrf↔ ∪
ppo2→)+, such that:

• there is no chord in
σ
→ via (

ppo2→)+ nor via (
cdrf↔)+, and

•
σ
→ contains at least one occurrence of

ppo2\1→ , and

• (
σ
→∩

cdrf↔) is acyclic, and

• for all access x in
σ
→, there exists at least another access y in

σ
→

competing with x, i .e. (x, y) ∈ (
σ
→ ∩

cdrf↔).

Formally, we have (writing critical(
σ
→) when

σ
→ is a critical cycle):

Definition 74 (Critical Cycle)

critical(E,
σ
→) , cycle(

σ
→) ∧

(

σ
→⊆ (

cdrf↔ ∪
ppo2→)+

)

∧

no-chord(
σ
→,

ppo2→) ∧ no-chord(
σ
→,

cdrf↔) ∧

∃x 6= y, (x, y) ∈ (
σ
→∩

ppo2\1→) ∧ acyclic(
σ
→∩

cdrf↔) ∧

∀m1 ∈
σ
→,∃m2,m2 ∈

σ
→∧m1

cdrf↔ m2

For example, consider the execution of iriw in Fig. 10.11. The cycle
σ
→

exhibited by this execution is a critical cycle of SC (i .e. a minimal violation

of SC). Indeed, this is a cycle in (
cdrf↔ ∪

po
→) which restriction to

cdrf↔ is acyclic.

There is no chord in (
σ
→)

+
via (

cdrf↔)+ nor via
po
→. Moreover, there is one

occurrence of
po
→, e.g . (a)

po
→ (b), and each access in

σ
→ is competing with

another one, e.g . (f)
cdrf↔ (c).

We show formally that a cycle is critical if and only if it is minimal.

Lemma 18 (A critical cycle is a minimal violation)

∀E
σ
→, critical(E,

σ
→)⇒ mv(E,

σ
→)

Proof Let E be an event structure and
σ
→ be a critical cycle for E. We know

by hypothesis that
σ
→ is a cycle in (

cdrf↔ ∪
ppo2→)

+
.

Let us show that acyclic((
σ
→ ∩

cdrf↔) ∪
ppo1→). Suppose by contradiction that there

is a cycle in ((
σ
→ ∩

cdrf↔) ∪
ppo1→). This cycle is either

σ
→ or a cycle included in

σ
→.

Since there cannot be any chords in
σ
→ via (

ppo2→)
+

nor via
cdrf↔ , this cycle cannot be

included in
σ
→. Hence it is

σ
→; but since there is at least one occurrence of

ppo2\1→ in
σ
→, this cycle cannot be

σ
→.

Finally, there is no cycle
σ
→

′

distinct of
σ
→ and included in

σ
→, otherwise there

would be chords in
σ
→ via (

ppo2→)+ or via
cdrf↔ .

Lemma 19 (A minimal violation is critical)

∀E
σ
→,mv(E,

σ
→)⇒ critical(E,

σ
→)

Proof Let E be an event structure and
σ
→ be a minimal violation for E. We

know by hypothesis that
σ
→ is a cycle in (

cdrf↔ ∪
ppo2→)

+
.

There cannot be any chord in
ppo2→ nor

cdrf↔ in
σ
→, otherwise

σ
→ would not be

minimal. For the same reason, we have acyclic(
σ
→∩

cdrf↔).

There is at least one occurrence of
ppo2\1→ in

σ
→, otherwise we would contradict

the hypothesis that acyclic((
σ
→ ∩

cdrf↔) ∪
ppo1→).

Finally, consider an event m1 in
σ
→, and suppose that there is no m2 competing

with m1 in
σ
→. In particular, this means that all the arrows having m1 as either

source or target are
ppo2→ arrows, otherwise we would trivially contradict our hy-

pothesis that no event of
σ
→ competes with m1. Hence there exist x

σ
→ y such that

x
ppo2→ m1

ppo2→ y. But then we have a chord in
ppo2→ in

σ
→, since (x, y) ∈ (

σ
→ ∩

ppo2→).

11.1.4 A characterisation of the minimal cycles

The critical cycles are the minimal cycles, hence it is enough to adapt the
characterisation of [SS] to our framework to find the minimal cycles of a
given event structure. Consider a pair (x, y) in a minimal cycle

σ
→. The

characterisation of [SS] adapted to our framework ensures that if proc(x) =
proc(y), then:

• x
ppo2→ y (since

σ
→ ⊆ (

cdrf↔ ∪
ppo2→)+),

• and there is no other access z in
σ
→ such that (x, z) ∈ (

σ
→ ∩

ppo2→)
and (z, y) ∈ (

σ
→ ∩

ppo2→) (otherwise there would be a chord in
σ
→ via

(
ppo2→)+),

• and loc(x) 6= loc(y) (otherwise there would be a chord in
σ
→ via (

cdrf↔)+).

For a pair x
σ
→ y such that proc(x) 6= proc(y), the characterisation

ensures that x and y have the same location, and either:

• at least one of them is a write (i .e. x
cdrf↔ y), and there is no other

access z such that (x, z) ∈ ((
σ
→)

+
∩ (

cdrf↔)+) or (z, y) ∈ ((
σ
→)

+
∩ (

cdrf↔)+)
(otherwise there would be a chord in

σ
→ via (

cdrf↔)+);

• or x and y are both reads, and there exists a unique write z in
σ
→,

such that (x, z) ∈ ((
σ
→)

+
∩ (

cdrf↔)+) and (z, y) ∈ ((
σ
→)

+
∩ (

cdrf↔)+). The
unicity of z is ensured by the absence of chord in

σ
→ via (

cdrf↔)+.

Hence a minimal cycle is a cycle in (
cdrf↔ ∪

ppo2→)+, such that:

• per processor, there is only one pair (x, y) of accesses on this processor,
such that x

ppo2→ y and loc(x) 6= loc(y), and

• per memory location, there are at most three accesses relative to this
location, and these accesses are from distinct processors. For a given
location x, the only possible configurations are (Wx,Wx), (Wx,Rx),
(Rx,Wx) or (Rx,Wx,Rx).

Consider again the cycle exhibited by the execution of iriw in Fig. 10.11.
This cycle would be captured by our characterisation. Indeed the only ac-
cesses on the same processor are (a)

po
→ (b) on P0 and (c)

po
→ (d) on P1: these

events are relative to distinct locations, and there is no access in between
them in

po
→. Moreover, for each memory location involved, there are at most

three accesses relative to this location, all of them being from distinct pro-
cessors, and one of them at least is a write; e.g . for x there are the read (a)
on P0, the read (d) on P1 and the write (e) on P2.

This gives a simple characterisation for computing minimal cycles.

11.2 Stability from any architecture to SC

We show here our final result: we give a characterisation of the execu-
tions (E,X) that are stable from any architecture A to SC (i .e. we con-
sider here that mv(E,

σ
→) , A.mvSC (E,

σ
→) and that mov(E,X,

σ
→) ,

A.movSC (E,X,
σ
→)).

We show indeed that an execution is stable from A to SC if and only if
there is no minimal violation of SC w .r .t . A in E.

The intuition for the direct way is the following. Let (E,X) be an
execution valid on A. Suppose by contradiction that there is a minimal
violation of SC w .r .t . A in E, e.g . the execution of the iriw test given
in Fig. 10.11. This execution exhibits a minimal violation of SC w .r .t .
Power, i .e. (a)

po
→ (b)

cdrf↔ (f)
cdrf↔ (c)

po
→ (d)

cdrf↔ (e)
cdrf↔ (a). Again, a

minimal violation does not forbid the execution, and indeed the execution
of Fig. 10.11 is authorised on SC (since there is no cycle in

com
→ ∪

po
→).

Yet, even if a minimal violation of SC is not necessarily an actual vio-
lation of SC (i .e. a cycle in

ghb2→), it is possible to build an execution Y (by
transforming X) associated with the same event structure, which contains

an actual violation of SC. In Fig. 10.11, if the
rf
→ relations (f)

rf
→ (b) and

(e)
rf
→ (d) become

fr
→ ones (i .e. (b)

fr
→ (f) and (d)

fr
→ (e)), then we build

the execution of iriw depicted in Fig. 7.1. This execution is forbidden on

SC, because it contains a minimal oriented violation: (a)
po
→ (b)

fr
→ (f)

rf
→

(c)
po
→ (d)

fr
→ (e)

rf
→ (a). Hence we build an execution violating SC (the one

in Fig. 7.1), from an execution which does not violate SC, but exhibits a
minimal violation of SC (the one in Fig. 10.11).

We formalise this idea in the following lemma. It states that for any
execution (E,X) valid on A such that E contains a minimal violation cycle
σ
→ (such as the one of Fig. 10.11), we can build another execution Y , valid on
A and associated with E as well, in which

σ
→ is a minimal oriented violation

(such as the one of Fig. 7.1):

Lemma 20 (Existence of an execution with oriented violation)

∀EX
σ
→, A. valid(E,X) ∧mv(E,

σ
→)⇒

(∃Y,A. valid(E,Y) ∧mov(E,Y,
σ
→))

Proof Let (E, X) be an execution valid on A. Let
σ
→ be a minimal violation of

SC w .r .t . A in E. By definition of violation, we know that acyclic((
σ
→∩

cdrf↔)∪
ppoA→).

Hence we know by Lem. 8 that we can build an execution Y associated with E and

valid on A from any linear extension
le
→ of the order ((

σ
→∩

cdrf↔) ∪
ppoA→)

+
.

Let us show that
σ
→ is a minimal oriented violation of SC w .r .t . A in (E, Y).

Since
σ
→ is a minimal cycle in E, we know it is a minimal cycle in (E, Y). Since the

strong architecture is SC here, we have
ppo2→ =

po
→. Hence, we need to show that

σ
→ is

included in (
ocdrf→ ∪

po
→)

+
in (E, Y). Thus, for all x and y such that x

σ
→ y, we need to

show that (x, y) ∈ (
r
→)

+
, where m1

r
→ m2 , ((m1, m2) ∈ (ws(Y) ∪ rf(Y) ∪ fr(Y)) ∧ (proc(m1) 6= proc(m2)))

(m1
po
→ m2).

Consider two events x
σ
→ y. Since

σ
→ is a violation of SC, we have (x, y) ∈

(
cdrf↔ ∪

po
→)

+
. Let us reason by induction over this statement. In the base case, let

us do a case disjunction.

• When (x, y) ∈
cdrf↔ , we do case disjunction over the directions of x and y.

Since they are in
cdrf↔ , we know that they cannot be both reads.

– If x and y are both writes, we know since they are in
cdrf↔ that they are

to the same location and from distinct processors. Moreover, we know
that x

σ
→ y. Therefore by definition of extracted write serialisation (see

Lem. 8), they are in ws(
le
→), i .e. in ws(Y).

– If x is a read and y a write, we know since (E, Y) is valid on A that
there exists a write wx such that (wx, x) ∈ rf(Y). Hence, by definition of

rf(Y), we know that wx
le
→ x. Moreover, we know that (x, y) ∈ (

σ
→∩

cdrf↔)

by hypothesis, hence x
le
→ y. Thus by transitivity we have wx

le
→ y.

Since wx and y are both writes, and to the same location, we know
by definition that (wx, y) ∈ ws(Y). Hence, since (wx, x) ∈ rf(Y) and
(wx, y) ∈ ws(Y), we have (x, y) ∈ fr(Y).

– If x is a write and y a read, we know since (E, Y) is valid on A that
there exists a write wy such that (wy , y) ∈ rf(Y). Suppose x = wy; in
this case, we have (x, y) ∈ rf(Y), hence the result. Suppose x 6= wy. In
this case, since x and wy are both writes to the same location, we have
(x, wy) ∈ ws(Y) ∨ (wy , x) ∈ ws(Y).

∗ When (x, wy) ∈ ws(Y), suppose proc(x) = proc(wy). In this case,

we know that x
po
→ wy (since in

ws
→ and from the same processor).

Otherwise (i .e. if proc(x) 6= proc(wy)), (x, wy) is in ws(Y) and
the two events are from distinct processors. The same reasoning

applies to (wy , y): we have either wy
po
→ y if they are on the same

processor, or (wy, y) ∈ rf(Y) if not.

∗ When (wy, x) ∈ ws(Y), since (wy, y) ∈ rf(Y), we know that wy is

the maximal previous write to loc(y) before y in
le
→. Since (x, y) ∈

(
σ
→ ∩

cdrf↔) by hypothesis, we have x
le
→ y. Since (wy, x) ∈ ws(Y),

we have wy
le
→ x. Hence x occurs in between wy and y in

le
→, a

contradiction.

• When x
po
→ y, we trivially have (x, y) ∈ ((

σ
→∩

ocdrf→) ∪
po
→)

+
.

The transitive case follows by immediate induction.

Finally, we show that an execution (E,X) is stable from A to SC if and
only if there is no minimal violation of SC w .r .t . A in E:

Theorem 12 (Characterisation of stability from A to SC)

∀E, (∀X, stableA,SC(E,X)) ⇔ ¬(∃
σ
→,mv(E,

σ
→))

Proof Let E be an event structure.

⇒ Let X be an associated execution witness; (E, X) is stable by hypothesis.

Suppose by contradiction the existence of a minimal violation
σ
→ of SC w .r .t .

A. In this case, by Lem. 20, we know that there exists another execution
witness Y , such that (E, Y) is valid on A, in which

σ
→ is a minimal oriented

violation of SC w .r .t . A. Since all the executions associated with E are stable,
(E, Y) is stable. Since (E, Y) is valid on A and stable, we know by definition
of stable that (E, Y) is valid on SC. But since (E, Y) contains a minimal
oriented violation of SC w .r .t . A, (E, Y) cannot be valid on SC.

⇐ Suppose (
c
→,

s
→) = (

cdrf↔ ,
sdrf→) or (

c
→,

s
→) = (

clf↔,
slf→). Let (E, X) be an associ-

ated execution valid on A. We know that there is always such a X since any
execution valid on SC is valid on a weaker architecture by Thm. 1: take for

instance any linear extension of
po
→. Suppose there is no minimal violation

of SC w .r .t . A in E. Thus,
cmin→ is empty, hence we know that

cmin→ is triv-
ially covered by

s
→ in (E, X). Moreover,

s
→ is covering for

cmin→ by Thm. 11.
Therefore, we know by definition of covering that (E, X) is valid on SC. �

This criterion means that to ensure the stability of the executions asso-
ciated with an event structure E, we only need to check that E contains no
minimal violation cycle. Since we gave a simple characterisation to compute
the minimal cycles of a given event structure, we believe this criterion to be
practicable.

Chapter 12

Related Work

DRF guarantee The DRF guarantee was initially proposed by S. Adve
and M. Hill [AH, Adv93], as a simple model for programmers. It has been
extensively studied since then, in high- and low-level models [BA, BPa, FFS,
BPb]. V. Saraswat et al. [SJMvP] call it the ”fundamental property” of such
models: they consider that a weak memory model should provide at least
this guarantee, otherwise it is unpracticable. This is a common requirement
amongst programmers dealing with weak memory models: correctly syn-
chronised programs should provide a strong semantics [MPA]. Providing
such a requirement without impairing the performance is a major difficulty
[AB].

Barriers placement Synchronisation using locks is costly indeed, and
often not scalable [FH]. To spare this cost, lock-free and wait-free synchro-
nisation techniques were developed [Her], but they do not provide guarantees
as strong as the DRF guarantee. Hence programs using lock-free techniques
are often hard to understand and to debug in the context of weak memory
models, in particular w .r .t . the placement of the barriers used in the RMW
primitives.

The work of D. Shasha and M. Snir [SS] provide an analysis to place
barriers in a program, in order to enforce a SC behaviour. We have already
discussed this approach in Sec. 11.1.3, which we generalise to the models
embraced by our framework, and to the synchronisations we studied.

Recently, tools have been developed to check the placement of barriers in
a given piece of code. The Checkfence tool [BAM] for example exhaustively
checks the executions of a given program on a weak memory model, and
verifies that all these executions are observationally equivalent to sequential
ones. If so, there is no need for barriers. However, this tool does not apply to
models with features à la Power, such as the lack of store atomicity and the
cumulativity of barriers. Moreover, even if we give an over-approximation
of the executions, we show that there is no need to check all the executions,

159

but only the strong ones. We believe that our approach could be refined to
a precise simulation of the executions, hence help improving such a tool.

Stability Several recent works have addressed the question of whether
two models can be distinguished or not. For example, S. Burckhardt and
M. Musuvathi examine in [BMa] whether a program running on a TSO
machine can be simulated by enumerating only its SC executions. They
distinguish a certain class of programs, the TSO-safe ones, which have this
property. We believe that these programs are an instance of our stable
ones, i .e. the stable programs from TSO to SC. They develop the notion
of borderline execution and show that a program is TSO-safe if and only
if it has no borderline execution. We believe that the notion of borderline
execution is closely related to our minimal cycles. Yet, our characterisation
of the stable programs in the general case is, to the best of our knowledge,
a novel contribution.

Finally, S. Mador-Haim et al. [MHAM] have developed a tool that ex-
amines whether two memory models can be distinguished. The tool system-
atically computes tests from cycles, and run them against the models. We
believe that our work could benefit to the design of such a tool, by making
the computation of tests more efficient. Indeed we prove that an architec-
ture is exactly distinguished from SC by the minimal violations, hence to
distinguish a model from SC, we know that the tests to be run are exactly
those corresponding to the minimal violations. The same optimisation ap-
plies to our diy testing tool [AMSS], which exhibits the weakenings of SC
exhibited by a given machine by running tests which proceed from cycles.

Perspectives Writing programs that run on weak memory models is hard,
since such programs endure non-trivial relaxations, which may be inhibited
by synchronisation. We provide a formal study of stability in such models,
leading to a characterisation of the stable programs.

We believe that this work could have direct applications for program ver-
ification. Indeed, S. Burckhardt and M. Musuvathi have exposed in [BMa]
the idea that a given verification problem for concurrent programs in the
context of weak memory models could be solved in two steps. First, by solv-
ing the problem for SC via standard verification methodologies. Second, by
proving that all the traces of the program are SC. In our terms, the second
step amounts to proving the program to be stable.

Moreover, the efficient enumeration of executions is a well-known issue of
weak memory models [HVM+, BMa]. The existing tools address models with
store buffering only (such as Sparc TSO). We believe that our work could
help extending these methodologies to models that relax store atomicity. In
addition, since a program that is not stable is arguably erroneous, we would
only have to examine the stable programs, i .e. only the strong executions.

Hence, we believe that our work could help improving the scalability of these
tools, by sparing them the cost of checking the additional non-determinism
induced by weak memory models, as exposed in [BMa].

Finally, we believe that this work could be of interest to several other
communities, in particular hardware architects, compiler writers and lan-
guage designers.

From a hardware design point of view, we have highlighted some precise
points in the semantics of Power’s synchronisation primitives that could be
relaxed. This could lead to optimisations, for example if the vendors give the
programmers access to weaker barriers than the existing ones. Moreover, we
have highlighted some lack of details in this documentation which worsen the
difficulty of writing both correct and efficient programs, and which should
be clarified to help programmers write concurrent programs.

From a compilation point of view, we believe that our work can help prov-
ing that program transformations, e.g . performed by compilers, are sound
in the context of weak memory models. If a transformation of a given pro-
gram is proved to be stable, then the transformation does not introduce
additional, potentially erroneous behaviours. The correctness of program
transformations has already been studied in the context of high-level mem-
ory models [Boea, Sev08], and recently for low-level ones, with a limited
store atomicity relaxation [BMS]. These previous works examine the cor-
rectness of a transformation in a given model. Our work could lead to proofs
of transformations from one model to another, via backward compatibility
proofs, such as our stability ones.

From a language design point of view, we believe that our study could be
a foundation for the design of high-level memory models. Following S. Adve
and H.-J. Boehm in [AB], we believe indeed that software and hardware
memory models should be co-designed. This means that the development of
a hardware memory model should not be oblivious to the software it might
interfere with, and conversely. Hence parallel languages should enforce a
strong programming discipline, e.g . the DRF guarantee. We believe that
our stability is a good candidate as a basis for such a discipline.

Part V

Conclusion and Perspectives

163

Chapter 13

Conclusion

We’re Sgt. Pepper’s Lonely
Hearts Club Band,
We hope you have enjoyed the
show,
Sgt. Pepper’s Lonely Hearts
Club Band,
We’re sorry but it’s time to go.

The Beatles—Sgt. Pepper’s
Lonely Hearts Club Band

(Reprise) [LM67b]

13.1 Divining Chicken Entrails

13.1.1 Reading the Documentations

As I mentioned several times, reading the documentations may be an in-
credible effort. See for example one of the reviews we had:

I remember spending quite a bit of time myself trying to formal-
ize the PPC model, and in particular pondering the meaning of
the informal prose in the PPC manuals, a process I recall being
likened to ”divining chicken entrails” by Doug Lea.

And indeed, some documentations, especially the Power one, are vague
and ambiguous. I strongly advocate the idea that the documentations should
be written in a clear language, even if it is not mathematics. For example,
the Power documentation contains confusing subjunctive and conditional
forms [pow09, p. 654, last bullet]:

A load [. . .] by a processor or mechanism (P1) is performed with
respect to any processor or mechanism (P2) when the value to be

165

returned by the load or instruction fetch can no longer be changed
by a store by P2. A store by P1 is performed with respect to P2
when a load by P2 from the location accessed by the store will
return the value store (or a value stored subsequently). [. . .]

In this excerpt, the existence of a ”store by P2” (for the performance of a
load definition) or a ”load by P2” (for the performance of a store definition)
is hypothetical. Hence, according to this definition, the performance of an
access depends on the existence of another hypothetical access.

One can also find puzzling forms to a non-native speaker [pow09, p. 661,
1st col, 1st §]:

The same [as in Sec. 6.1.4.1] applies if whether the Store in-
struction is executed depends on a conditional Branch instruc-
tion that in turn depends on the value returned by a preceding
Load instruction.

The ”if whether” expression seems to me rather ambiguous. I believe
that a documentation should be accessible to non-native speakers, because
they could be, as myself, unable to understand correctly subtle linguistics
issues. A solution to such problems is to design formal models.

13.1.2 Abstract Models

I believe that there are two main reasons for the documentation being vague.
The first one lies in the fact that the vendors do not want to reveal too much
of the implementation’s secrets; on the one hand because these are industrial
secrets, and on the other hand because the vendors want to give themselves
some liberty in the implementation. The second one lies in the fact that
some vendors do not have enough time to design formal models.

Hence the memory model of a given architecture has to be loose. How-
ever, I disbelieve that this means it has to be vague. For example, Sun and
Alpha provide formal and precise models, and because they provide abstract
models, they precisely do not reveal much of the implementation.

13.1.3 Simple Formal Models

I believe that the specifications should be formal indeed, but intelligible to
any programmer. Hence, I believe that relaxed memory models should be
simple (if not intuitive). As pointed out by H.-J. Boehm [Boe07]:

If we want more programmers to be able to write reasonably cor-
rect multithreaded code, we need a consistent story that’s easy
to teach. Based on what I’ve seen so far, many programmers
are hopelessly confused when it comes to threads, in large part
because they’ve been taught rules that either don’t make sense or

are too complicated. I’m not yet convinced that’s fixable with the
non-SC approach.

I do not know whether we should restrict the memory models to SC. It
seems to me that TSO and PSO models are understandable, an observation
already made by M. Hill in [Hil98]. However, I believe that memory models
should not be much weaker than these models, mainly because the weak-
nesses exhibited by more relaxed models are highly counter intuitive, which
leads to bugs due to a misunderstanding of the model.

13.1.4 The Preserved Program Order Quest

For example the notion of dependency, as in RMO or Power, seems to me
quite subtle and debatable. Moreover, as pointed out by S. Burckhardt and
M. Musuvathi [BMb], decidability and verification issues are increased by
a preserved program order which is too weak. For example, in the case of
RMO or Power, the fact that a load-store pair may not preserved in the
program order leads to such problems. In recent work by M. F. Atig et
al. [ABBM], the state reachability problem is shown to be undecidable for
memory models that relax the read-read and read-write pairs.

In addition, I believe that programmers, when facing a very weak pre-
served program order, may be tempted to exploit its weakness to increase
performance. But then again, this might lead to subtle concurrency bugs
due to a misunderstanding of the specification.

13.1.5 Strong Programming Disciplines

A solution, suggested by S. Adve and H.-J. Boehm [AB], could be to impose
a very strong programming discipline, such as in the C++ model, where
racy programs do not have any semantics. Hence the programmers are
forced to respect this discipline if they want to guarantee the behaviour of
their programs.

I like that idea, because I believe that programmers should not be
smarter than they want to be. But I believe that they should have some
liberty in the design of their code if they want to. I believe that the following
suggestion by M. Hill [Hil98] is a promising approach:

[. . .] one can provide a first-class SC implementation and add
optional relaxed support.

In the C++ model for example, programmers have access to low-level
atomics that have a weaker semantics, yet provide some guarantee. Hence
the programmers can perfectly well use these constructions to increase the
performance of their code, provided that they are careful.

13.2 A Reading Frame For Weak Memory Models

13.2.1 A Common Prism

If memory models are simple, and accept more or less the same broad rules,
the design of a common reading frame should be enough to formalise them.
Thus, the programmers would only have to understand a few rules to make
sense out of a given model, and adapt their code to a few parameters’ vari-
ations, in the spirit of our generic framework.

I believe that this is a promising approach. Compiler programmers for
example often have to understand several very different memory models:
the high-level source one(s), and the several target ones. If such models can
be broadly understood in the same terms, it could ease the writing of the
non-trivial pieces of code that compilers are.

13.2.2 Tests as Specifications

Moreover, I believe that memory models should be definable in terms of a
few litmus tests which would highlight their specificities. This is feasible
if there is a common framework that covers many possible models, and if
the variations between these models can be separated by testing. The main
advantage that I see in that approach is that, once the main rules of the
common framework are understood, it only takes a quick glance at a small
set of tests to understand what the novelties of a new memory model are.

I do not know what exact characteristics a memory model should have in
order to be definable in terms of a few tests. However, I am certain that it
requires memory models to tend towards much more simplicity than several
existing ones.

Chapter 14

Perspectives

Sgt. Pepper’s Lonely Hearts
Club Band,
We’d like to thank you once
again,
Sgt. Pepper’s one and only
lonely hearts club band,
It’s getting very near the end...

The Beatles—Sgt. Pepper’s
Lonely Hearts Club Band

(Reprise) [LM67b]

14.1 Automatisation

I would like to see if the stability results presented in Chap. 11 could lead
to the design and writing of automatic tools. These could be inspired of
S. Burckhardt’s et al. [BAM, BMa], which are able to automatically insert
fences in a piece of code [BAM], and to enumerate efficiently the executions
of a given program on a weak memory model [BMa]. I believe that the
ideas I presented in Chap. 11 are closely related to the ones used by S.
Burckhardt’s et al. , and that my results could help extending these tools
to very weak models such as Power.

14.2 Formalisation of Diy

I would like to formalise the behaviour of our diy tool (see Chap. 7). In
particular, I would like to see to what extent diy is complete w .r .t . our
generic framework (see Chap. 3). I believe that our study of critical cycles
(see Sec. 11.1) could be a promising lead towards this goal.

169

Moreover, I believe that it could be interesting to formalise our diy

approach using ideas from black box checking [PVY99] or adaptive model
checking [GPY06]. In these approaches, the structure of the system that is
checked or tested is unknown, or not up to date. Therefore, one needs to
iterate the testing or checking in order to learn more about the system, and
feed the checker or the tester back with that information. I believe that such
ideas are quite close from what we did with our Phat Experiment: we had
an incomplete and incorrect model in mind, and without knowing the exact
specificities of the Power architecture, we had to test our machines as black
boxes, and modify our preliminary model in consequence. However, both
the black box and adaptive model checking suppose deterministic systems,
which is not our case.

Finally, I would like to explore the formalisation of diy by reusing ideas
from D. Longuet et al. [LAG09]: they are able to generate tests from ax-
iomatic specifications. Since we generate tests from violations of SC, which
can be expressed as the negation of a simple property, I believe that this
approach could be promising.

14.3 Other Models And Paradigms

I also would like to extend my framework to the study of high-level memory
models, such as C++. I believe that it is more complicated to deal with
software memory models than hardware ones. However, several ideas and
principles seem to be roughly the same: therefore I believe that we could
provide some insights on software models as well.

Moreover, this approach could provide a common reasoning framework
for high- and low-level memory models, which I believe is lacking. Indeed,
a memory model is meant to be a contract between a low-level layer and a
higher one. Hence, it should be easy to relate high- and low-level models, but
it is not, whereas the design of high-level models, e.g . C++ [BA], depends
on a good comprehension of the underlying low-level models.

Finally, I also would like to see to what extent other paradigms, such as
transactional memory or message passing, could also be described in terms
that are common to weak memory models. Hence we could examine the
relations (e.g . trade-offs or equivalences) between weak memory models as
we studied and such paradigms.

14.4 Testing Semantics For Weak Memory Models

I believe that an interesting perspective could be the study of program trans-
formations in the context of weak memory models, for example transforma-
tions induced by compilers.

The correction of program transformations has already been studied in
the context of high-level memory models [Sev08], and recently for low-level
ones, with a limited store atomicity relaxation [BMS]. These previous works
examine the correctness of a transformation in a given model. We believe
that our work could lead to proofs of transformations from one model to
another, via backward compatibility proofs, such as our stability ones.

Testing semantics could be an appropriate formalism to study such trans-
formations. In such a context, we could define the behaviour of a program
as the set of its answers to a given observation, i .e. a set of tests.

It could lead to results on equivalence of programs, defining two programs
to be equivalent when their behaviours—w .r .t . a given observation—are the
same. We would define a transformation to be safe w .r .t . a given obser-
vation, e.g . an architecture, when it does not increase the behaviour of a
program w .r .t . that observation. We could study such equivalences in a
given model, for example trying to decide whether two PowerPC programs
are equivalent, or if one implements the other safely.

But we could also study such equivalences from one memory model to
another: does a certain PowerPC read-modify-write implements x86’s INC

instruction and conversely? Taking such a reasoning a step forward, we
could also try for example to determine when it is safe to compile a given
program towards a lock-free implementation.

14.5 Logics For Weak Memory Models

Another interesting perspective could be the design of a Hoare logic to study
weak memory models. Logics to reason about concurrent programs already
exist, e.g . Concurrent Separation Logic (CSL) [O’H]. However, they only
address a restricted class of programs, e.g . the data-race free ones for CSL.
We would like to study the design of a logic inspired of CSL but addressing
racy programs as well. The main concern that I see yet is the meaning
of the ⋆ operator in the context of racy programs. One interesting lead
could be trying to restore the separation induced by ⋆ by using enough
synchronisation.

The development of a target for certified compilers, such as X. Leroy’s
Compcert [Ler], or A. Appel and A. Hobor’s Concurrent C Minor compiler
[HAZN] could be a neat application of such a logic. Indeed these two com-
pilers assume SC as the execution model of their target languages. We know
that it is a safe assumption for data-race free programs, thanks to the DRF
guarantee [FFS]. However, that does not allow us to reason about racy
programs.

14.6 Partial Orders As a Model of Concurrency

Our framework could be the target of a soundness proof for this logic, in-
spired of S. Brookes’ for CSL [Bro]. We believe our results on stability (see
Chap. 11) could help design such a proof. S. Brookes defines in his CSL
soundness proof a way to interleave the traces of two distinct parts of a
program to build its executions. I believe that it will be very interesting to
find a way to compose two of my orders to build an execution of a program
from its distinct components. Moreover, this raises the question of fairness
in weak memory models, i .e. if the way we compose those orders guarantees
some fairness, or progress, in the execution of a program.

Bibliography

[AAS03] A. Adir, H. Attiya, and G. Shurek. Information-Flow Mod-
els for Shared Memory with an Application to the PowerPC
Architecture. In TPDS, 2003.

[AB] S.V. Adve and H.-J. Boehm. Memory Models: A Case for
Rethinking Parallel Languages and Hardware. To appear in
CACM.

[ABBM] M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi.
On the verification problem for weak memory models. In POPL
2010.

[ABJ+] M. Ahamad, R. A. Bazzi, R. John, P. Kohli, and G. Neiger.
The Power of Processor Consistency. In SPAA 1993.

[Adv93] S. V. Adve. Designing Memory Consistency Models for Shared-
Memory Multiprocessors. PhD thesis, December 1993.

[AFI+] J. Alglave, A. Fox, S. Ishtiaq, M. O. Myreen, S. Sarkar,
P. Sewell, and F. Zappa Nardelli. The Semantics of Power
and ARM Multiprocessor Machine Code. In DAMP 2009.

[AG95] S. V. Adve and K. Gharachorloo. Shared Memory Consistency
Models: A Tutorial. IEEE Computer, 29:66–76, 1995.

[AH] S. V. Adve and M. D. Hill. Weak Ordering - A New Definition.
In ISCA 1990.

[alp02] Alpha Architecture Reference Manual, Fourth Edition, 2002.

[AM] Arvind and J.-W. Maessen. Memory Model = Instruction Re-
ordering + Store Atomicity. In ISCA 2006.

[AMSS] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in
Weak Memory Models. In CAV 2010.

[APR99] S. V. Adve, V. S. Pai, and P. Ranganathan. Recent Advances
In Memory Consistency Models For Hardware Shared Memory
Systems. Proceedings of the IEEE, 87(3):445–455, 1999.

173

[ARM08a] ARM. ARM Barrier Litmus Tests and Cookbook, February
2008.

[ARM08b] ARM Architecture Reference Manual (ARMv7-A and ARMv7-
R), April 2008.

[ASa] D. Aspinall and J. Sevcik. Formalizing Java’s data race free
guarantee. In TPHOL 2007.

[ASb] D. Aspinall and J. Sevcik. Java Memory Model Examples:
Good, Bad and Ugly.

[AS02] A. Adir and G. Shurek. Generating Concurrent Test-Programs
with Collisions for Multi-Processor Verification. In HLDVT,
2002.

[BA] H.-J. Boehm and S.V. Adve. Foundations of the C++ Con-
currency Memory Model. In PLDI 2008.

[BAM] S. Burckhardt, R. Alur, and M. K. Martin. Checkfence: Check-
ing Consistency of Concurrent Data Types on Relaxed Memory
Models. In PLDI 2007.

[BC] Y. Bertot and P. Casteran. Coq’Art. Springer Verlag, EATCS
Texts in Theoretical Computer Science.

[BMa] S. Burckhardt and M. Musuvathi. Effective Program Verifica-
tion for Relaxed Memory Models. In CAV 2008.

[BMb] S. Burckhardt and M. Musuvathi. Memory Model Safety of
Programs. In EC2 2008.

[BMS] S. Burckhardt, M. Musuvathi, and V. Singh. Verifying Local
Transformations of Concurrent Programs. In CC 2010.

[Boea] H.-J. Boehm. Reordering Constraints for Pthread-Style Locks.
In PPoPP 2007.

[Boeb] H.-J. Boehm. Threads Cannot Be Implemented As a Library.
In PLDI 2005.

[Boe07] H.-J. Boehm. Alternatives to SC. Message to
the C++ standardisation list, January 2007.
http://www.decadentplace.org.uk/pipermail/

cpp-threads/2007-January/001312.html.

[BPa] G. Boudol and G. Petri. Relaxed Memory Models: An Oper-
ational Approach. In POPL 2009.

[BPb] G. Boudol and G. Petri. A Theory of Speculative Computation.
In ESOP 2010.

[Bro] S. Brookes. A Semantics for Concurrent Separation Logic. In
TCS 2007.

[CI] N. Chong and S. Ishtiaq. Reasoning About the ARM Weakly
Consistent Memory Model. In MSPC 2008.

[CKS] P. Cenciarelli, A. Knapp, and E. Sibilio. The Java Memory
Model: Operationally, Denotationally, Axiomatically. In ESOP
2007.

[CLS] J. Cantin, M. Lipasti, and J. Smith. The Complexity of Veri-
fying Memory Coherence. In SPAA 2003.

[Col92] W. W. Collier. Reasoning About Parallel Architectures.
Prentice-Hall, 1992.

[CSB] F. Corella, J. M. Stone, and C. M. Barton. A Formal Specifica-
tion of the PowerPC Shared Memory Architecture. Technical
Report RC18638, IBM.

[DS90] M. Dubois and C. Scheurich. Memory Access Dependencies in
Shared-Memory Multiprocessors. IEEE Transactions on Soft-
ware Engineering, 16(6), June 1990.

[FFS] R. Ferreira, X. Feng, and Z. Shao. Parameterized Memory
Models and Concurrent Separation Logic. In ESOP 2010.

[FH] K. Fraser and T. L. Harris. Concurrent Programming Without
Locks.

[FL] M. Frigo and V. Luchangco. Computation-Centric Memory
Models. In SPAA 1998.

[Fri97] M. Frigo. The Weakest Reasonable Memory Model. Master’s
thesis, MIT, October 1997.

[Gha95] K. Gharachorloo. Memory Consistency Models for Shared-
Memory Multiprocessors. WRL Research Report, 95(9), 1995.

[GK97] P. B. Gibbons and E. Korach. Testing Shared Memories. SIAM
Journal on Computing, 26(4):1208–1244, 1997.

[GLL+] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory Consistency and Event
Ordering in Scalable Shared-Memory Multiprocessors. In ISCA
1990.

[GPY06] A. Groce, D. Peled, and M. Yannakakis. Adaptive Model
Checking. 2006.

[HAZN] A. Hobor, A. Appel, and F. Zappa Nardelli. Oracle Semantics
For Concurrent Separation Logic. In ESOP 2008.

[Her] M. Herlihy. Wait-Free Synchronisation. In TOPLAS 1991.

[Hil98] M. Hill. Multiprocessors Should Support Simple Memory Con-
sistency Models. In IEEE Computer, 1998.

[HJK07] L. Higham, L. Jackson, and J. Kawash. What is Itanium Mem-
ory Consistency From the Programmer’s Point of View? Elec-
tronic Notes in Theoretical Computer Science, 174(9):63–84,
2007. Proceedings of the Thread Verification Workshop (TV
2006).

[HKV98] L. Higham, J. Kawash, and N. Verwaal. Weak Memory Consis-
tency Models Part i: Definitions and Comparisons. Technical
Report98/612/03, Department of Computer Science, The Uni-
versity of Calgary, January, 1998.

[HP] M. Huisman and G. Petri. The Java Memory Model: A Formal
Explanation.

[HS08] M. Herlihy and N. Shavit. The Art of Multiprocessor Program-
ming. Morgan and Kaufmann, Burlington, 2008.

[HVM+] S. Hangal, D. Vahia, C. Manovit, J.-Y. J. Lu, and
S. Narayanan. TSOTool: A Program for Verifying Memory
Systems Using the Memory Consistency Model. In ISCA 2004.

[IBM02] IBM. Book E - Enhanced PowerPC Architecture. May 2002.

[int07] Intel 64 Architecture Memory Ordering White Paper, August
2007.

[int09] Intel 64 and IA-32 Architectures Software Developer’s Manual,
vol. 3A, rev. 30, March 2009.

[ita02] A Formal Specification of Intel Itanium Processor Family Mem-
ory Ordering. October 2002. Intel Document 251429-001.

[LAG09] D. Longuet, M. Aiguier, and P. Le Gall. Proof-Guided Test
Selection From First-Order Specifications With Equality. In
Journal of Automated Reasoning, 2009.

[Lam79] L. Lamport. How to Make a Correct Multiprocess Program
Execute Correctly on a Multiprocessor. IEEE Trans. Comput.,
46(7):779–782, 1979.

[Lea06] D. Lea. The JSR-133 Cookbook for Compiler Writers. Septem-
ber 2006.

[Lea07] D. Lea. Alternatives to SC. Message to
the C++ standardisation list, January 2007.
http://www.decadentplace.org.uk/pipermail/

cpp-threads/2007-January/001287.html.

[Ler] X. Leroy. Formal Certification of a Compiler Back-End, or:
Programming a Compiler With a Proof Assistant. In POPL
2006.

[LHF05] M. Lyons, B. Hay, and B. Frey. PowerPC Storage Model and
AIX Programming, November 2005.

[LHH91] A. Landin, E. Hagersten, and S. Haridi. Race-Free Intercon-
nection Networks and Multiprocessor Consistency. SIGARCH
Comput. Archit. News, 19(3):106–115, 1991.

[LM67a] John Lennon and Paul McCartney. Magical mystery tour. In
Magical Mystery Tour, 1967.

[LM67b] John Lennon and Paul McCartney. Sgt. peppers lonely hearts
club band (reprise). In Sgt. Peppers Lonely Hearts Club Band,
1967.

[LM67c] John Lennon and Paul McCartney. With a little help from my
friends. In Sgt. Peppers Lonely Hearts Club Band, 1967.

[mac] http://www.hpcx.ac.uk/ and http://www.idris.fr/.

[MHAM] S. Mador-Haim, R. Alur, and M. K. Martin. Generating Litmus
Tests For Contrasting Memory Consistency Models. In CAV
2010.

[MPA] J. Manson, W. Pugh, and S. V. Adve. The Java Memory
Model. In POPL 2005.

[O’H] P. W. O’Hearn. Resources, Concurrency, and Local Reasoning.
In TCS 2007.

[OSS] S. Owens, S. Sarkar, and P. Sewell. A Better x86 Memory
Model: x86-TSO. In TPHOL 2009.

[pow09] Power ISA Version 2.06. 2009.

[ppc] PowerPC Implementation Features - Book IV.

http://www.hpcx.ac.uk/
http://www.idris.fr/

[ppc07] Power ISA Version 2.05. October 2007.
http://www.power.org/resources/reading/

PowerISA V2.05.pdf.

[PVY99] D. Peled, M. Vardi, and M. Yannakakis. Black Box Checking.
In PSTV XIX, 1999.

[SD87] C. Scheurich and M. Dubois. Correct Memory Operation of
Cache-Based Multiprocessors. In ISCA, 1987.

[Sev08] J. Sevcik. Program Transformations in Weak Memory Models.
PhD thesis, University of Edinburgh, 2008.

[SF95] J. M. Stone and R. P. Fitzgerald. Storage in the PowerPC.
1995.

[SJMvP] V. Saraswat, R. Jagadeesan, M. Michael, and C. von Praun.
A Theory of Memory Models. In PPoPP 2007.

[spa92] Sparc Architecture Manual Version 8, 1992.

[spa94a] Sparc Architecture Manual Versions 8 and 9, 1992 and 1994.

[spa94b] Sparc Architecture Manual Version 9, 1994.

[SS] D. Shasha and M. Snir. Efficient and Correct Execution of
Parallel Programs that Share Memory. In TOPLAS 1988.

[SSZN+] S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge,
T. Braibant, M. Myreen, and J. Alglave. The Semantics of
x86-CC Multiprocessor Machine Code. In POPL 2009.

[WSMF03a] J. Wetzel, E. Silha, C. May, and B. Frey. PowerPC Operating
Environment Architecture - Book III - Version 2.01. December
2003.

[WSMF03b] J. Wetzel, E. Silha, C. May, and B. Frey. PowerPC Virtual
Environment Architecture - Book II - Version 2.01. December
2003.

[WSMF03c] J. Wetzel, E. Silha, C. May, and B. Frey. PowerPC User In-
struction Set Architecture - Book I - Version 2.01. September
2003.

[YGL] Y. Yang, G. Gopalakrishnan, and G. Lindstrom. UMM: an
Operational Memory Model Specification Framework with In-
tegrated Model Checking Capability. In CCPE 2007.

[YGLS03] Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind. An-
alyzing the Intel Itanium Memory Ordering Rules Using Logic
Programming And SAT. pages 81–95, 2003.

[YGLS04] Y. Yang, G. Gopalakrishnan, G. Linstrom, and K. Slind.
Nemos: A Framework for Axiomatic and Executable Speci-
fications of Memory Consistency Models. IPDPS, 2004.

Part VI

Appendix

181

Appendix A

Uniprocessor Equivalences

We detail here the proofs of equivalence of the three formulations of the
uniproc check we gave in Sec. 3.4.1.

We show easily that the transitive closure of
com
→ , written (

com
→)+ is equal

to (
com
→ ∪ (

ws
→;

rf
→) ∪ (

fr
→;

rf
→)).

We write x
hat
↔ y for ∃w,w

rf
→ x ∧ w

rf
→ y, i .e. when x and y are both

reads, reading from the same write.

Let us consider these three formulations of uniproc:

(Uni1) acyclic(
com
→ ∪

po-loc
→)

(Uni2) ∀xy, x
po-loc
→ y ⇒ ¬(y (

com
→)+ x)

(Uni3)
po-loc
→ ⊆ ((

com
→)+ ∪

hat
↔)

A.1 Some Handy Lemmas

We first show a few handy lemmas. We omit their proofs since they are
easy:

Lemma 21 (
com
→)+ is transitive

Lemma 22 (
com
→)+ is irreflexive

Lemma 23 (
com
→)+ is acyclic

Lemma 24 ∀xy, x ∈ R ∧ y ∈ R ∧ x (
com
→)+ y ⇒ x(

fr
→;

rf
→)y

Lemma 25 ((
com
→)+;

hat
↔) ⊆ (

com
→)+

Proof Suppose x (
com
→)

+
r

hat
↔ y and do a disjunction on the direction of x.

• x ∈ R: by Lem. 24 we know x(
fr
→;

rf
→)r. Let us write wr for the rf write of r,

we have by hat: wr
rf
→ y. Thus x

fr
→ wr

rf
→ y, hence x (

com
→)

+
y.

183

• x ∈ W: let us write wr for the rf write of y. If x = wr, then x
rf
→ y by hat.

Otherwise, either x
ws
→ wr, thus x(

ws
→;

rf
→)y, or wr

ws
→ x, thus r

fr
→ x, which

leads to a cycle in (
com
→)

+
, a contradiction of Lem. 23. �

Lemma 26 ∃x, x (
com
→ ∪

po-loc
→)+ x⇒ ∃y, y ((

com
→)+;

po-loc
→)

+
y

Proof Since
com
→ ⊆ (

com
→)

+
, and (

com
→)

+
and

po-loc
→ are transitive and irreflexive,

Lem. 1 applies.

A.2 (Uni2) and (Uni3) Are Equivalent

Lemma 27 (Uni3)⇒ (Uni2)

Proof Suppose (Uni3), that is: ∀xy, x
po-loc
→ y ⇒ x((

com
→)

+ ∪
hat
↔)y. We have

to prove: ¬(y (
com
→)+ x). Let us suppose as a contradiction y (

com
→)+ x. Let us do a

case disjunction over x((
com
→)

+ ∪
hat
↔)y:

• if x (
com
→)+ y, we create a cycle in (

com
→)+, thus a contradiction of Lem. 23.

• if x
hat
↔ y: there is w s.t. w

rf
→ x and w

rf
→ y by hat. As x and y are both

reads and y (
com
→)

+
x, we know by Lem. 24 that: y(

fr
→;

rf
→)x. As the rf write

of x is unique, we actually have: y
fr
→ w

rf
→ x thus y

fr
→ w and w

rf
→ y, which

leads to a cycle in (
com
→)+, a contradiction of Lem. 23. �

Lemma 28 (Uni2)⇒ (Uni3)

Proof Suppose (Uni2), that is: ∀xy, x
po-loc
→ y ⇒ ¬(y (

com
→)

+
x). We have to

prove: x((
com
→)

+ ∪
hat
↔)y. Let us do a case disjunction over the directions of x and

y:

• (x, y) ∈ R×R: let us write wx and wy the rf writes for x and y. If wx = wy,

we have x
hat
↔ y. If not, either wx

ws
→ wy or wy

ws
→ wx. If wx

ws
→ wy, then

x
fr
→ wy, thus: x(

fr
→;

rf
→)y. If wy

ws
→ wx, then y

fr
→ wx, thus y(

fr
→;

rf
→)x which

contradicts (Uni2).

• (x, y) ∈W×R: let us write wy the rf write for y. If x = wy, then x
rf
→ y. If

not, then either x
ws
→ wy or wy

ws
→ x. If x

ws
→ wy, then x(

ws
→;

rf
→)y. If wy

ws
→ x,

then y
fr
→ x, which contradicts (Uni2).

• (x, y) ∈ R×W: symmetric of W× R case.

• (x, y) ∈W×W: we know x 6= y as x
po-loc
→ y. Thus either x

ws
→ y, which leads

to the result, or y
ws
→ x which contradicts (Uni2). �

A.3 (Uni1) and (Uni2) Are Equivalent

Lemma 29 (Uni1)⇒ (Uni2)

Proof Suppose (Uni1), i .e. acyclic(
com
→ ∪

po-loc
→). We want: ∀xy, x

po-loc
→ y ⇒

¬(y (
com
→)

+
x). Suppose x

po-loc
→ y and y (

com
→)

+
x. By induction on y (

com
→)

+
x, we

build a cycle in
com
→ ∪

po-loc
→ , contradicting (Uni1). �

Lemma 30 (Uni2)⇒ ((
com
→)+ ∪

po-loc
→) ⊆ (

com
→)+

Proof Let us suppose x((
com
→)+;

po-loc
→)y, i .e. x (

com
→)+ z

po-loc
→ y. We have (Uni2)

as an hypothesis; moreover we know that (Uni2) implies (Uni3), thus z((
com
→)+ ∪

hat
↔

)y. Therefore: x((
com
→)

+
; ((

com
→)

+ ∪
hat
↔))y, i .e. x(((

com
→)

+
; (

com
→)

+
) ∪ ((

com
→)

+
;
hat
↔))y.

By Lem. 21, we have ((
com
→)

+
; (

com
→)

+
) ⊆ (

com
→)

+
. By Lem. 25, we have ((

com
→)

+
;
hat
↔)

included in (
com
→)

+
. Thus x (

com
→)

+
y.

Lemma 31 (Uni2)⇒ (Uni1)

Proof Suppose (Uni2), i .e.: ∀xy, x
po-loc
→ y ⇒ ¬(y (

com
→)+ x). We have to prove

that there is no cycle in
com
→ ∪

po-loc
→ . Suppose there is one, ie ∃a, a (

com
→ ∪

po-loc
→)

+
a.

Thus by Lem. 26 we have: ∃e, e ((
com
→)

+
;
po-loc
→)

+
e. By Lem. 30, we know that

e ((
com
→)+)

+
e, i .e. e (

com
→)+ e, a contradiction of Lem. 23. �

Appendix B

A Word on the Coq
Development

187

We give here some insights on the Coq development.

B.1 Overview of the Development

We give in Fig. B.1 a graphic representation of the development, and in
Fig. B.2 the numbers of specification and proof lines per module. The
whole development counts about 24000 lines of code. It is available at
http://moscova.inria.fr/~alglave/wmm.

The module util contains the definitions relative to relations and or-
ders, and the associated lemmas, in particular the key lemma presented in
Chap. 2.

The module wmm contains the definitions relative to the objects of our
model, as described in Sec. 3.1. It contains the definition of an architecture
as a Module Type and of a weak memory model as a Module.

The module basic contains basic lemmas over the objects of our frame-
work. The module uniproc contains the proofs of equivalence of the three
formulations of the uniproc check, as described in App. A.

The hierarchy module contains the definitions of the weaker predicate
(see Sec. 3.5), and the theorems relative to validity presented in Sec. 1 and
Sec. 2. The module valid contains the proof presented in Sec. 8, that any
order compatible with

ppo
→ and satisfying uniproc builds a valid execution.

The modules sc, tso, pso, rmo and alpha contain the definitions and proofs
of equivalence relative to the eponymous models.

The stable module contains the definitions of covering and well-founded
synchronisation relation, and the associated lemmas presented in Chap. 11.
The modules drf and racy contain an instantiation of stable recovering
respectively the DRF guarantee of Sec. 10.2 and the lock-free guarantee of
Sec. 10.3. The shasha module contains our study of critical cycles, presented
in Chap. 11. The modules locks and rmw contain the lock-based (Sec. 10.4.2)
and lock-free synchronisation (see Sec. 10.4.3) studies.

B.2 Basic Objects

We describe here how we represent the basic objects presented in Sec. 3.1.

B.2.1 Basic Types

We use set as a shortcut for Ensemble, i .e. fun U : Type -> U -> Prop.
We define the type Rln of our relations as:

Definition Rln (A:Type) := A -> A -> Prop.

See the module util for more details.

http://moscova.inria.fr/~alglave/wmm

util

wmm

basic

hierarchy

valid

stable

drf

racy

shasha

locks

rmw

sc

sparc

alpha

uniproc

Figure B.1: Overview Of The Development

Module Specification Proof Comments

util 466 1085 95
wmm 250 24 115
basic 856 2319 55

hierarchy 336 1182 22
uniproc 163 762 21

sc 330 672 34
tso 643 1892 57
pso 368 878 30
rmo 685 2022 48
alpha 573 1958 45
valid 260 599 30
stable 157 292 19
drf 166 174 3
racy 179 316 9

shasha 617 1111 14
locks 412 817 65
rmw 176 331 10

total 6637 16434 672

Figure B.2: Numbers Of Lines Per Module

B.2.2 Events and Program Order

We consider a Word to be a nat; an Address and a Value are both of type
Word. We describe a processor by a type Proc which is nat. Similarly, the
program order index (i .e. an index indicating when the event was issued in
the program order) is described by a type Poi which is nat. An instruction
identifier of type Iiid gives the processor and the program order index of
an event.

An event is described as a Record, given in Fig. B.3. It is composed of
an Eiid (which is a unique identifier of type nat), an Iiid (which gives the
processor and the program order index of the event), and an Action.

The type Dirn of directions is an inductive with two cases, one for read,
the other for write. An Action is an inductive with one case, composed of
a Dirn, a Location and a Value, as depicted in Fig. B.3.

We describe the program order as a relation over a set of events, given in
Fig. B.4. Two events are in program order if the processors given by their
Iiid are equal, and if the Poi of the first is less than or equal to the Poi of
the second. See the module wmm for more details.

(*Proc, Poi, Location, Value, Eiid are equal to nat*)

Record Iiid : Set := mkiiid {

proc : Proc;

poi: Poi}.

Inductive Dirn : Set :=

| R : Dirn

| W : Dirn.

Inductive Action : Set :=

| Access : Dirn -> Location -> Value -> Action.

Record Event : Set := mkev {

eiid : Eiid;

iiid : Iiid;

action : Action}.

Figure B.3: Code For Event Type

Definition po (es: set Event) : set (Event*Event) :=

fun c => match c with (e1,e2) =>

(*both events have same processor*)

(e1.(iiid).(proc) = e2.(iiid).(proc)) /\

(*the program order index of e1 is less than e2’s*)

(le e1.(iiid).(poi) e2.(iiid).(poi)) /\

(*both e1 and e2 are in the set of events*)

(In _ es e1) /\ (In _ es e2)

end.

Figure B.4: Program Order Code

B.2.3 Execution Witnesses

We define an event structure as a Record composed of two fields, the first
one being the set of events, the second the intra-instruction causality, if any,
written iico:

Record Event_struct : Type := mkes {

events : set Event;

iico : Rln Event}.

We define the union of po and iico, written po iico.
We define the read-from map, the write serialisation and the from-read

map as Rln over Event. We define the associated well-formedness predicates
following the definition given in Sec. 3.2.1 and 3.2.2.

An execution witness is described as a Record with two fields, one for
the read-from map, one for the write serialisation:

(*Write_serialisation and Rfmap are Rln Event*)

Record Execution_witness : Type := mkew {

ws : Write_serialisation;

rf : Rfmap}.

See the module wmm for more details.

B.3 Architectures and Weak Memory Models

An architecture is a module following the module type given in Fig. B.5.
Given an event structure and an associated execution witness, a module of
type Archi produces:

• a preserved program order ppo as described in Sec. 3.3.2,

• the global read-from map grf as described in Sec. 3.3.1,

• the ordering induced by barriers ab as described in Sec. 3.3.3 and
Chap. 8, and

• the stars events for synchronisation, as described in Chap. 10.

A weak memory model is a module which takes two arguments. The

first one is an architecture of type Archi. The second one is the
dp
→ relation,

defined as a module type following Sec. 3.4.1.3: this module constructs a
relation over events, included in the program order, transitive, and with a
read as its source. The code of that module is given at Fig. B.6.

A weak memory model will produce, given an architecture and a depen-
dency relation:

• a global happens-before relation, following the definition in Sec. 3.3.4,

Module Type Archi.

Parameter ppo : Event_struct -> Rln Event.

Hypothesis ppo_valid : forall (E:Event_struct),

rel_incl (ppo E) (po_iico E).

Parameter grf : Execution_witness -> Rln Event.

Hypothesis grf_valid : forall (X:Execution_witness),

rel_incl (grf X) (rf X).

Parameter ab : Event_struct -> Execution_witness -> Rln Event.

Hypothesis ab_evts :

forall (E:Event_struct) (X:Execution_witness),

forall x y, well_formed_event_structure E ->

ab E X x y -> In _ (events E) x /\ In _ (events E) y.

Parameter stars : Event_struct -> set Event.

End Archi.

Figure B.5: Module Type For Architectures

Module Type Dp.

Parameter dp : Event_struct -> Rln Event.

Hypothesis dp_valid : forall (E:Event_struct),

rel_incl (dp E) (po_iico E) /\ trans (dp E) /\

forall x y, dp E x y -> reads E x.

End Dp.

Figure B.6: Code For The Dp Module

Module Wmm (A : Archi) (dp : Dp).

Import A.

Import dp.

Definition ghb (E:Event_struct) (X:Execution_witness) :

Rln Event :=

rel_union (grf X) (rel_union (ab E X)

(rel_union (rel_union (ws X) (fr E X)) (ppo E))).

Definition valid_execution

(E:Event_struct) (X:Execution_witness) : Prop :=

write_serialisation_well_formed (events E) (ws X) /\

rfmaps_well_formed (events E) (rf X) /\

acyclic (rel_union (com E X) (po-loc-llh E)) /\ (*uniproc*)

acyclic (rel_union (rf X) (dp E)) /\ (*thin*)

acyclic (ghb E X).

End Wmm.

Figure B.7: Code For Wmm Module

• a validity check for any execution, following the definition in Sec. 3.4.

For the uniproc check (see Sec. 3.4.1), we define the load-load hasard
po-loc
→ relation as follows, where loc extracts the location of an event and

reads E is the subset of E which are reads, i .e. having R as direction:

Definition pio_llh (E:Event_struct) : Rln Event :=

fun e1 => fun e2 =>

loc e1 = loc e2 /\ po_iico E e1 e2 /\

~(reads E e1 /\ reads E e2).

We give in Fig. B.7 the code for the module Wmm. See the module wmm

for more details.

B.4 Proofs

There is not much to say about the proofs themselves. The code is not
very smart, and our proof techniques are standard from a paper proof point
of view. I most of the time use proofs by contradiction, as one can see
along this manuscript. One can read the proof of Lem. 1 to see the kind
of reasoning that I use. I find it convenient to deal with the most common
proof pattern that I met, i .e. ”if there is a cycle in this relation, then there
is a cycle in that other one, which is known to be acyclic by definition, hence

a contradiction”. One thing that can be noted is that I make a heavy use
of excluded middle, added as an axiom to my development.

However, I believe that this is precisely because I did my proofs in Coq
that I have been able to reduce the number of axioms involved in my frame-
work (see Chap. 3). Similarly, the observations that an A-cumulative barrier
is enough to restore SC (see Sec. 10.3.3), or that we do not need all the fea-
tures of the PowerPC barriers to build correct locks (see Chap. 10), come
from my formal development.

Index

Alpha

Check, 66

Implementation, 49, 66

Native Definition, 66

Preserved Program Order, 49, 66

Barriers

A-Cumulative, 43

B-Cumulative, 43

Constraints, 42

Dynamic Property, 135

Non-Cumulative, 42

Static Property, 135

Candidate Relaxations, 79

Barriers

Cumulativity Ordering, 83

Definition, 86

Plain Ordering, 82

Coherence, 80

Communication, 85

Composite, 88

Control Dependencies

Definition, 88

Load-Store Quotation, 82

Data Dependencies

Definition, 87

Load-Load Quotation, 81

Load-Store Quotation, 81

Global, 79

Non-Global, 79

Program Order, 85

Relaxed, 79

Safe, 79

Store Buffering, 80

Communication Relation, 39

Competing Accesses, 130

Configuration File, 95
Conflict Relation, 127
Covered

Execution, 127
Covering Relation, 128
Critical

Cycle, 153

Data-Race-Free
Covered, 130

Guarantee (Generalised), 131
Dependencies, 47

Events
Barrier, 108
Commit, 108

Direction, 35
Location, 35
Memory, 35

Processor, 35
Register, 106

Execution Witness

Definition, 40
Well-Formedness, 40

Fragile
Pairs, 132
Reads, 133

From-Read Map, 39
Fully Barriered Execution, 134

Global Happens-Before, 40
Definition, 44

Globally Performed, 40

Hat Relation, 46

196

Intra-Instruction Causality, 107

Litmus Tests, 92
Load-Load Hasard, 47

Lock-Based Synchronisation, 130
Lock-Free

Covered, 133
Guarantee, 137

Model

Architecture, 43
Thin Air Check, 49

Uniprocessor Check, 45
Validity of an Execution, 49
Weaker Predicate, 50

Orders
Linear Extension, 25

Partial, 24
Total or Linear Strict, 24

Preserved Program Order, 42

Program Order, 35

Read Others’ Writes Early, 41

Read Own Writes Early, 41
Read-From Map

Definition, 38

Global, 42
Internal and External, 41

Well-Formedness, 38
Relations

Acyclicity, 24

Domain and Range, 23
Hexa, 26

Irreflexivity, 23
Reflexive Closure, 26
Sequence, 25

Totality, 24
Transitive Closure, 23

Transitivity, 23

Sequential Consistency
Check, 60

Implementation, 44, 60

Native Definition, 60
Sequential Execution Model, 80
Sparc

PSO
Check, 63
Implementation, 63
Native Definition, 63
Preserved Program Order, 63

RMO
Check, 65
Implementation, 47, 64
Native Definition, 64
Preserved Program Order, 47,

64
TSO

Check, 62
Implementation, 62
Native Definition, 44, 62
Preserved Program Order, 44,

62
Value Axiom, 61

Store Atomicity Relaxation, 41
Store Buffering, 41
Synchronisation Relation, 127

Well-Founded Synchronisation, 128
Write Serialisation

Definition, 38
Well-Formedness, 38

	I Preamble
	Introduction
	Context
	Early Days (1979 -- 1995)
	Recent Days (2002 -- 2010)

	Contribution
	A Generic Framework
	A Testing Tool
	Synchronisation
	Remainder

	Preliminaries
	Relations
	Basic Definitions
	Orders

	Linear Extension
	A Key Lemma
	Hexa Relation
	Proof of the Result

	II A Generic Framework For Weak Memory Models
	A Generic Framework
	Basic Objects
	Events and Program Order

	Execution Witnesses
	Read-From Map
	Write Serialisation
	From-Read Map
	All Together

	Global Happens-Before
	Globality
	Preserved Program Order
	Barriers Constraints
	Architectures
	Examples

	Validity of an Execution
	Uniprocessor Behaviour
	Thin Air
	Validity

	Comparing Architectures
	Validity Is Decreasing
	Monotonicity of Validity

	Classical Models
	Implementing an Architecture
	Building an Execution Witness From an Order
	Sketch of Proof

	A Hierarchy of Classical Models
	Sequential Consistency (SC)
	The Sparc Hierarchy
	Alpha
	RMO and Alpha Are Incomparable

	Related Work
	Generic Models
	Global-Time vs. View Orders
	Axiomatic vs. Operational
	Characterisation of Behaviours
	Memory Models As Program Transformations

	III Testing Weak Memory Models
	Relaxations
	A Brief Glance at the Power Documentation
	Axioms of Our Model
	Store Buffering
	Load-Load Pairs
	Load-Store Pairs
	Barriers

	Candidate Relaxations
	Communication Candidate Relaxations
	Program Order Candidate Relaxations
	Barriers Candidate Relaxations
	Dependencies Candidate Relaxations
	Composite Candidate Relaxations

	A Preliminary Power Model

	Diy, A Testing Tool
	Litmus Tests
	Highlighting Relaxations
	Exercising One Relaxation at a Time

	Cycles as Specifications of Litmus Tests
	Automatic Test Generation
	Cycles Generation

	Code Generation
	Algorithm
	Example

	A First Testing Example: x86-TSO
	A Guided Diy Run
	Configuration Files

	A Power Model
	The Phat Experiment
	Relaxations Observed on squale, vargas and hpcx
	Safe Relaxations

	Overview of Our Model
	Additional Formalism
	Description of the Model

	Discussion of Our Model

	Related Work

	IV Synchronisation in Weak Memory Models
	Synchronisation
	Covering and well-founded relations
	Covering relations
	Well-founded relations

	DRF guarantee
	Competing accesses
	Synchronising competing accesses in a weak execution
	DRF guarantee

	Lock-free guarantee
	Fragile pairs
	Synchronising fragile pairs in a weak execution
	Application to the Semantics of Barriers
	Lock-free guarantee

	Synchronisation idioms
	Atomicity
	Locks
	Lock-free synchronisation

	Stability
	Minimal cycles
	Violations
	Covering the minimal violations
	Critical cycles
	A characterisation of the minimal cycles

	Stability from any architecture to SC

	Related Work

	V Conclusion and Perspectives
	Conclusion
	Divining Chicken Entrails
	Reading the Documentations
	Abstract Models
	Simple Formal Models
	The Preserved Program Order Quest
	Strong Programming Disciplines

	A Reading Frame For Weak Memory Models
	A Common Prism
	Tests as Specifications

	Perspectives
	Automatisation
	Formalisation of Diy
	Other Models And Paradigms
	Testing Semantics For Weak Memory Models
	Logics For Weak Memory Models
	Partial Orders As a Model of Concurrency

	VI Appendix
	Uniprocessor Equivalences
	Some Handy Lemmas
	(Uni2) and (Uni3) Are Equivalent
	(Uni1) and (Uni2) Are Equivalent

	A Word on the Coq Development
	Overview of the Development
	Basic Objects
	Basic Types
	Events and Program Order
	Execution Witnesses

	Architectures and Weak Memory Models
	Proofs

