
Stability in Weak Memory Models

With Proofs

Jade Alglave1,2 and Luc Maranget2

1 University of Oxford 2 INRIA

Abstract. Concurrent programs running on weak memory models ex-
hibit relaxed behaviours, making them hard to understand and to debug.
We examine how to constrain the behaviour of such programs via syn-
chronisation to ensure what we call their stability, i.e. that they behave
as if they were running on a stronger model than the actual one, for ex-
ample Sequential Consistency (SC). First, we define sufficient conditions
ensuring stability to a program, and show that Power’s locks and read-
modify-write primitives meet them. Second, we minimise the amount of
required synchronisation by characterising which parts of a given execu-
tion should be synchronised. Third, we characterise the programs stable
from a weak architecture to SC. Finally, we present the offence tool im-
plementing our approach, by placing either lock-based or lock-free syn-
chronisation in a x86 or Power program to ensure its stability.

Concurrent programs running on modern multiprocessors exhibit subtle be-
haviours, making them hard to understand and to debug: modern architectures
(e.g. x86 or Power) provide weak memory models, allowing optimisations such as
instruction reordering, store buffering or write atomicity relaxation [2]. Thus an
execution of a program may not be an interleaving of its instructions, as it would
be on a Sequentially Consistent (SC) architecture [17]. Hence standard analyses
for concurrent programs might be unsound, as noted by M. Rinard in [21]. There
exist a few memory model aware verification tools [11, 15, 20, 26], but they often
focus on one model at a time, or cannot handle the write atomicity relaxation
exhibited for example by Power: generality remains a challenge.

Fortunately, we can force a program running on a weak architecture to behave
as if it were running on a stronger one (e.g. SC) by using synchronisation prim-
itives. Hence, as observed by S. Burckhart and M. Musuvathi in [12], “we can
sensibly verify the relaxed executions [. . . ] by solving the following two verifica-
tion problems separately: 1. Use standard verification methodology for concurrent
programs to show that the [SC] executions [. . . ] are correct. 2. Use specialized
methodology for memory model safety verification [. . . ]”. Here, memory model
safety means checking that the executions of a program, although running on
a weak architecture, are actually SC. To apply standard verification techniques
to concurrent programs running on weak memory models, we thus first need to
ensure that our programs have a SC behaviour. S. Burckhart and M. Musuvathi
focus in [12] on memory model safety for TSO [24]. We generalise their idea
to a wider class of models (the one defined in [5], and recalled in Sec. 1): we
examine how to force a program running on a weak architecture A1 to behave as
if running on a stronger one A2, a property that we call stability from A1 to A2.



To ensure stability to a program, we examine the problem of placing lock-
based or lock-free synchronisation primitives in a program. We call synchroni-
sation mapping an insertion of synchronisation primitives (either barriers (or
fences), read-modify-writes, or locks) in a program. We study whether a given
synchronisation mapping ensures stability to a program running on a weak mem-
ory model, e.g. that we placed enough primitives in the code to ensure that it
only has SC executions. D. Shasha and M. Snir proposed in [23] the delay set
analysis to insert barriers in a program, but their work does not provide any
semantics for weak memory models. Hence questions remain w .r .t . the adequacy
of their method in the context of such models. On the contrary, locks allow the
programmer to ignore the details of the memory model, thanks to the data race
free guarantee (DRF guarantee) proposed in [3] by S. Adve and M. Hill.

Yet, from a compilation point of view, locks are costly. As noted by S. Adve
and H.-J. Boehm in [4], “[o]n hardware that relaxes write atomicity [. . . , e.g.

Power], it is often unclear that more efficient mappings (than the use of locks)
are possible; even the fully fenced implementation may not be sequentially con-
sistent.” Hence not only do we need to examine the soundness of our synchro-
nisation mappings (i .e. that they actually ensure stability to a given program),
but also their cost. We present here several new contributions:

1. We define in Sec. 2 sufficient conditions on synchronisation to ensure stability
to a program. As an illustration, we provide in Sec. 3 semantics to the locks
and read-modify-writes (rmw) of the Power architecture [1] (i .e. to the lwarx
and stwcx. instructions) and show in Coq that they meet these conditions.

2. We propose along the way several synchronisation mappings, which we prove
in Coq to enforce a SC behaviour to an x86 or Power program.

3. We optimise these mappings by generalising in Sec. 4 the approach of [23] to
weak memory models and both lock-based and lock-free synchronisation, and
characterise in Coq the executions stable from a weak architecture to SC.

4. We describe in Sec. 5 our new offence tool, which places either lock-based or
lock-free synchronisation in a x86 or Power assembly program to ensure its
stability, following the aforementionned characterisation. We detail how we
used offence to test and measure the cost of our synchronisation mappings.

We formalised all our results in Coq. The Coq development2, the documentation
and sources of offence and all the experimental details can be found online1.

1 Context

We give here the technical background on which we build our results and proofs.
This section summarises the generic model [5] on which we build, which embraces
SC [17], Sun TSO, PSO and RMO [24], Alpha [7] and a fragment of Power [1].

Executions An event e is a read or a write, composed of a direction R (read) or
W (write), a location loc(e), the instruction from which it comes ins(e), a value

1 http://diy.inria.fr/offence 2 http://moscova.inria.fr/~alglave/stability

2



iriw

P0 P1 P2 P3

(a) r1← x (c) r3← y (e) x← 1 (f) y← 2

(b) r2← y (d) r4← x

Observed? r1=1; r2=0; r3=2; r4=0;

(a) Rx1(b) Ry0

(f) Wy2

(c) Ry2 (d) Rx0

(e) Wx1

po:0

fr

po:1

fr

rf

rf

Fig. 1. The iriw test and a non-SC execution

val(e), an originating processor proc(e), and a unique identifier. We represent
each instruction by the events it issues. In Fig. 1, we associate the store (e)
x ← 1 on P2 with the event (e)Wx1. We write E for the set of events, and W

(resp. R) for the subset of write (resp. read) events. We write w (resp. r) for a
write (resp. read), and m or e when the direction is irrelevant.

We associate a program with an event structure E , (E,
po
→), composed of

its events E and the program order
po
→, a per-processor total order over E. In

Fig. 1, the read (a) from x on P0 is in program order with the read (b) from y

on P0, i .e. (a)Rx1
po
→ (b)Ry0. The

dp
→ relation (included in

po
→, the source being a

read) models the dependencies between instructions, e.g. when we compute the
address of a load or store from the value of a preceding load.

Given an event structure E, we represent an execution X , (
ws
→,

rf
→) of the

corresponding program by two relations over E. The write serialisation
ws
→ is a

per-location total order on writes modeling the memory coherence assumed by
modern architectures [13], linking a write w to any write w′ to the same location

hitting the memory after w. The read-from map
rf
→ links a write w to a read r

from the same location that reads from w. We derive the from-read map
fr
→ from

ws
→ and

rf
→. A read r is in

fr
→ with a write w when the write w′ from which r

reads hit the memory before w did: r
fr
→ w , ∃w′, w′ rf

→ r ∧w′ ws
→ w. We write

com
→ ,

ws
→ ∪

fr
→ ∪

rf
→ for the union of our communication relations.

In Fig. 1, the specified outcome corresponds to the execution on the right, if
each location and register initially holds 0. If r1=1 in the end, the read (a) read

its value from the write (e) on P2, hence (e)
rf
→ (a). If r2=0, the read (b) read

its value from the initial state, thus before the write (f) on P3, hence (b)
fr
→ (f).

Similarly, we have (f)
rf
→ (c) from r3=2, and (d)

fr
→ (e) from r4=0.

Architectures In a shared-memory multiprocessor, a write may be committed
first into a store buffer, then into a cache, and finally into memory. Hence, while
a write transits in store buffers and caches, a processor may read a past value.

3



We model this by some subrelation of
rf
→ being non-global : they can be ig-

nored by some processors. We write
rfi
→ (resp.

rfe
→) for the internal (resp. external)

read-from map, i .e. a read-from map between two events from the same (resp.
distinct) processor(s). Hence we model a read r by a processor P0 reading from

a write w in P0’s store buffer by w
rfi
→ r being non-global. When r reads from a

write w by a distinct processor P1 into a cache shared by P0 and P1 only (a case

of write atomicity relaxation [2]), w
rfe
→ r is non-global, and w is said to be non-

atomic. TSO authorises e.g. store buffering (i .e.
rfi
→ is non-global) but considers

stores to be atomic (i .e.
rfe
→ is global). We write

grf
→ for the global subrelation of

rf
→. We consider

ws
→ and

fr
→ global, since

ws
→ is the order in which the writes to a

certain location hit the memory.

Moreover, some pairs of events in the program order may be reordered. Thus

only a subset of the pairs of events in
po
→, gathered in a subrelation

ppo
→ (preserved

program order), is guaranteed to occur in this order. TSO for example authorises

write-read pairs to be reordered, but nothing else:
ppo
→ =

po
→\ (

po
→∩ (W× R)).

Finally, architectures provide barrier instructions to order certain pairs of

events. We gather the orderings induced by barriers in the global relation
ab
→.

Following [5], the relation
fence
→ ⊆

po
→ induced by a barrier fence is non-cumulative

when it orders certain pairs of events surrounding the barrier. For example, the
x86 mfence barrier is a non-cumulative barrier ordering write-read pairs only: we

have (w
mfence
→ r) ⇒ (w

ab
→ r). Power bne; isync sequence is a non-cumulative

barrier for read-read and read-write pairs: we have (r
bne;isync
→ m)⇒ (r

ab
→ m).

The relation
fence
→ is A-cumulative (resp. B-cumulative) when it makes the

writes atomic (e.g. by flushing the store buffers and caches). For example, Power
sync barrier is non-, A- and B-cumulative for all pairs: we have (m1

sync
→ m2)

(resp. (m1
rf
→ w

sync
→ m2), (m1

sync
→ w

rf
→ m2)) implies (m1

ab
→ m2). Power

lwsync is non-, A- and B-cumulative for all pairs except write-read ones; we

have (m1
lwsync
→ m2) (resp. (m1

rf
→ w

lwsync
→ m2), (m1

lwsync
→ w

rf
→ m2)) implies

(m1
ab
→ m2) except when (m1, m2) ∈ (W× R).

An architecture A , (ppo, grf, ab) specifies the function ppo (resp. grf, ab)

returning the relation
ppo
→ (resp.

grf
→,

ab
→) when given an execution.

Validity The uniproc(E, X) , acyclic(
com
→ ∪

po-loc
→ ) condition (where

po-loc
→ is the

program order restricted to events with the same location) forces a processor in a
multiprocessor context to respect the memory coherence [13]. The thin(E, X) ,

acyclic(
rf
→ ∪

dp
→) condition prevents executions where values seem to come out

of thin air [19]. We define the global happens-before relation A.ghb(E, X) of an
execution (E, X) on an architecture A as the union of the relations global on A:

A.ghb(E, X) ,
ws
→ ∪

fr
→ ∪

ppo
→ ∪

grf
→ ∪

ab
→

4



P0 P1

(a) x← 1 (b) x← 2

(c) r1← x

Allowed: r1=2; x=1

(a) Wx1

(b) Wx2

(c) Rx2ws

po:1 rf

fr

(a) Program (b) Execution Witness

Fig. 2. A program and an execution witness

An execution (E, X) is valid on an architecture A, written A.valid(E, X),
when the relation A.ghb(E, X) is acyclic (together with the two above checks):

A.valid(E, X) , uniproc(E, X) ∧ thin(E, X) ∧ acyclic(A.ghb(E, X))

A hierarchy of architectures We consider an architecture A1 to be weaker than an
architecture A2, written A1 ≤ A2, when A1 authorises at least all the executions
valid on A2 (writing

ri→ for the relation
r
→ w .r .t . Ai):

A1 ≤ A2 ,
ppo1→ ⊆

ppo2→ ∧
grf1→ ⊆

grf2→

For example, TSO authorises store buffering, which means the internal
rf
→

is not global. Hence for TSO,
grf
→ is restricted to the external one, i .e.

grf
→=

rfe
→.

Moreover, TSO authorises the reordering of write-read pairs, hence its
ppo
→ is

strictly included in
po
→. Therefore, TSO is weaker than SC.

As shown in [5], a weak execution (i .e. valid on a weak architecture A1) is
valid on a stronger one A2 if and only if:

Lem. 1 (Characterisation).

∀A1 ≤ A2, ∀EX, (A1.valid(E, X) ∧ acyclic(A2.ghb(E, X)))⇔ A2.valid(E, X)

For example, the execution (E, X) of Fig. 2(b) is valid on TSO and SC.ghb(E, X)
is acyclic, hence (E, X) is also valid on SC.

Building a valid execution from an order We consider two relations to be com-
patible when their union is acyclic. Consider an architecture A without barriers,
i .e.

abA→ = ∅. The characterisation above means in particular that, for any event
structure E, one can build an execution, associated with E and valid on A, from
a total order

o
→ on evts(E) compatible with A.ppo(E).

5



Init: x=0; y=0; z=0

P0 P1

(a) r1← x (c) r2← y

(b) y← 1 (d) x← 1

Observed? r1=1; r2=1;

(a) Rx1

(b) Wy1

(c) Ry1

(d) Wx1

po:0

rf
po:1

rf

(a) A program (b) A non-SC execution

Fig. 3. A program and a non-SC execution

(a) Rx1

(b) Wy1

(c) Ry0

(d) Wx1

po:0

fr
po:1

rf

(a) Rx0

(b) Wy1 (d) Wx1

(c) Ry1

po:0
fr

rf
po:1

(a) Rx0

(b) Wy1 (d) Wx1

(c) Ry0

po:0
fr

fr
po:1

(a) (b) (c)

Fig. 4. SC executions for the test of Fig. 3(a)

6



Consider e.g. the event structure ({(a), (b), (c), (d)}, {(a)
po
→ (b), (c)

po
→ (d)})

associated with the program of Fig. 3. On SC we have (a)
ppo
→ (b) and (c)

ppo
→ (d).

Hence we can build a valid SC execution from the order (a)
o
→ (b)

o
→ (c)

o
→ (d),

which is the one we give in Fig. 4(b). The first write in the order
o
→ is (b), a

write to y, which is immediately followed by the read (c) to y with the same

value, hence we have (b)
rf
→ (c). There is no write preceding the read (a) from x,

hence (a) reads from the initial state. Moreover, this initial write to x precedes

the write (d) in
ws
→, hence (a)

fr
→ (d).

We write rf(
o
→) (resp. ws(

o
→)) for the

rf
→ (resp.

ws
→) extracted from

o
→. We

have (x, y) ∈ rf(
o
→) when x is a write and y a read, both to the same location

ℓ, with the same value, and x is the maximal previous write to ℓ before y in
o
→,

i .e. ¬(∃z ∈ Wℓ, x
o
→ z

o
→ y). We have (x, y) ∈ ws(

o
→) when x and y are writes

to the same location and x
o
→ y. Formally, we have:

Lem. 2 (Extraction of a valid execution from an order).

∀EX
o
→, total-order(

o
→, evts(E)) ∧ acyclic(

o
→∪A.ppo(E))∧

X = (ws(
o
→), rf(

o
→))⇒ A.valid(E, X)

Proof Since
o
→ is a total order, ws(

o
→) is by definition a per-location total

order on writes. Moreover, rf(
o
→) trivially satisfies the definition of read-from

map.

We define the extracted from-read map fr(
o
→) as:

(r, w) ∈ fr(
o
→) , ∃wr , (wr, r) ∈ rf(

o
→) ∧ (wr, w) ∈ ws(

o
→)

We define the extracted communication com(
o
→) as:

com(
o
→) , ws(

o
→) ∪ rf(

o
→) ∪ fr(

o
→)

Since
abA→= ∅, we know that A.ghb(E, X) is included in com(

o
→)∪A.ppo(E).

By definition, ws(
o
→) and rf(

o
→) are included in

o
→. Let us show that fr(

o
→)

is included in
o
→: consider (r, w) ∈ fr(

o
→); since

o
→ is total, we have either r

o
→ w

or w
o
→ r. Suppose w

o
→ r; since (r, w) ∈ fr(

o
→), there exists wr such that

(wr , r) ∈ rf(
o
→), hence wr

o
→ r, and (wr , w) ∈ ws(

o
→), hence wr

o
→ w. Thus we

have wr
o
→ w

o
→ r. By definition of rf(

o
→), wr is the maximal previous write to

loc(r) before r in
o
→, hence a contradiction.

Hence A.ghb(E, X) is included in
o
→∪A.ppo(E). Moreover,

o
→ is compatible

with A.ppo(E) by hypothesis (i .e. their union is acyclic). Hence there cannot
be any cycle in A.ghb(E, X). �

In the following, we consider A2 to be without barriers, i .e.
ab2→= ∅. We write

ghb2→ for A2.ghb(E, X).

7



2 Covering relations

We examine now how to force the executions of a program running on a weak
architecture A1 to be valid on a stronger one A2, which we call stability from A1

to A2, i .e. we examine when the following property holds for all (E, X):

stableA1,A2
(E, X) , A1.valid(E, X)⇒ A2.valid(E, X)

The execution of iriw in Fig. 1 is not stable from Power to SC, for it is valid
on Power yet not on SC. We can stabilise an execution by using synchronisation
idioms, e.g. barriers or locks. Synchronisation idioms arbitrate conflicts between
accesses, i .e. ensure that one out of two conflicting accesses occurs before the
other. We formalise this with an irreflexive conflict relation

c
→ over events, such

that ∀xy, x
c
→ y ⇒ ¬(y

po
→ x) and a synchronisation relation

s
→ over events. An

execution (E, X) is covered when
c
→ is arbitrated by

s
→:

coveredc,s(E, X) , ∀xy, x
c
→ y ⇒ x

s
→ y ∨ y

s
→ x

We consider a relation
s
→ to be covering when ordering by

s
→ the conflicting

accesses of an execution (E, X) valid on A1 guarantees its validity on A2, i .e.

the synchronisation
s
→ arbitrates enough conflicts to enforce a strong behaviour:

covering(
c
→,

s
→) , ∀EX, (A1.valid(E, X) ∧ coveredc,s(E, X))⇒ A2.valid(E, X)

Lock-based synchronisation For example, the DRF guarantee [3] ensures that
if the competing accesses, defined below, of an execution are ordered by locks,
then this execution is SC. Hence locks are covering w .r .t . the competing accesses.
Following [3], two events are competing if they are from two distinct processors,
relative to the same location, and one of them at least is a write (e.g. in Fig. 1,
the read (a) from x on P0 and the write (e) to x on P2):

m1
cmp
↔ m2 , proc(m1) 6= proc(m2) ∧ loc(m1) = loc(m2) ∧ (m1 ∈W ∨m2 ∈W)

We describe the ordering induced by locks by a relation
lock
→ (instantiated in

Sec. 3.1) over E compatible with
com
→ (i .e. acyclic(

lock
→ ∪

com
→ )), corresponding in

Fig. 1 to placing locks to a variable ℓ1 on the accesses (a), (d) and (e) relative to
x, and locks to a different variable ℓ2 on the accesses (b), (c) and (f) relative to y.

Thus we have a cycle in
lock
→ ∪

po
→: (a)

po
→ (b)

lock
→ (f)

lock
→ (c)

po
→ (d)

lock
→ (e)

lock
→ (a).

If
lock
→ ∪

po
→ is acyclic, then the execution of Fig. 1 is forbidden. Formally, we have:

Lem. 3. acyclic(
lock
→ ∪

po
→)⇒ covering(

cmp
↔ , (

lock
→ ∪

po
→)

+
)

Proof Let (E, X) be valid on A1 and covered. Suppose by contradiction that

there is a cycle in
ghb2→ , which is by definition a cycle in

ws
→∪

fr
→∪

grf2→ ∪
ppo2→ . The

events in
ws
→,

fr
→ or

rf
→ and from distinct processors are competing. Since (E, X)

is covered,
sync
→ orders the competing accesses according to

com
→ . The remaining

events in
com
→ belong to the same processor, hence are in

po
→ by uniproc. Moreover,

we know
ppo2→ ⊆

po
→. Hence a cycle in

ws
→∪

fr
→∪

grf2→ ∪
ppo2→ is a cycle in

sync
→ ∪

po
→,

which contradicts the irreflexivity of
sdrf→ . �

8



This lemma leads to a mapping which we call L (for locks), which simply
places a lock by the same lock variable on each side of a given conflict edge;
following Lem. 3, it gives a SC behaviour to a program.

Lock-free synchronisation We give here an example of a covering lock-free syn-
chronisation relation. A program can distinguish between two architectures A1 ≤
A2 for one of two reasons. First, if the program involves a pair (x, y) maintained
in program order on A2 (i .e. x

ppo2→ y) but not on A1 (i .e. ¬(x
ppo1→ y)). In

Fig. 1, we have (a)
po
→ (b). Hence on a strong architecture A2 such as SC where

ppo2→ =
po
→, we have (a)

ppo2→ (b). On a weak architecture A1 such as Power, where
the read-read pairs in program order are not maintained, we have ¬((a)

ppo1→ (b)).

Second, if the program reads from a write atomic on A2 but not on A1. In

Fig. 1, we have (e)
rfe
→ (a). On a strong architecture A2 such as SC where the

writes are atomic, i .e.
grf
→=

rf
→, we have (e)

grf
→ (a). On a weak architecture A1

such as Power, which relaxes write atomicity, we have ¬((e)
grf
→ (a)). We call such

reads fragile reads and define them as (
r2\1→ ,

r2→ \
r1→ being the set difference):

fragile(r) , ∃w, w
grf2\1→ r

We consider such differences between architectures as conflicts, and formalise
this notion as follows. We consider that two events form a fragile pair (written
frag
→ ) if they are maintained in the program order on A2, and either they are not
maintained in the program order on A1, or the first event is a fragile read:

m1
frag
→ m2 , m1

ppo2→ m2 ∧
(

¬(m1
ppo1→ m2) ∨ fragile(m1)

)

An execution is covered if the barrier relation
ab1→ arbitrates the fragile pairs.

In Fig. 1, this corresponds to placing a barrier between (c) and (d) on P1, i .e.

(c)
ab1→ (d), and another barrier between (a) and (b) on P0, i .e. (a)

ab1→ (b). Hence

we have a cycle in
ab1→ ∪

rf
→: (d)

rfe
→ (a)

ab1→ (b)
rfe
→ (c)

ab1→ (d). If
ab1→ is A-cumulative

w .r .t .
grf2\1→ (i .e. ∀xyz, (x

grf2\1→ y∧y
ab1→ z)⇒ x

ghb1→ z), we create a cycle in
ghb1→ ,

which forbids the execution: (d)
ghb1→ (b)

ghb1→ (d). Indeed, we show that if
ab1→ is

A-cumulative w .r .t .
grf2\1→ then

ab1→ is covering:

Lem. 4. (∀xyz, (x
grf2\1→ y ∧ y

ab1→ z)⇒ x
ghb1→ z)⇒ covering(

frag
→ ,

ab1→)

Proof Consider an execution (E, X) valid on A1 and covered. Suppose by
contradiction that there is a cycle in

ghb2→ , which is by definition a cycle in
ws
→∪

fr
→∪

grf2→ ∪
ppo2→ . Since

ws
→,

fr
→ and

ppo1→ are included in
ghb1→ , this cycle is a cycle

in
ghb1→ ∪

ppo2\1→ ∪ (
grf2\1→ ;

ppo2→ ). Since
slf→ orders all fragile pairs, and is compatible

with
ppo2→ , we know that

ppo2\1→ is included in
slf→ and (

grf2\1→ ;
ppo2→ ) ⊆ (

grf2\1→ ;
slf→).

Since
slf→ is A-cumulative, (

grf2→ ;
slf→) is in

ab1→ , hence in
ghb1→ . Thus there is a cycle

in
slf→∪

ghb1→ , which contradicts their compatibility. �

9



Arch. Fragile pair Barriers (mapping F)

Power r
po
→ r r

sync
→ r (need A-cumulativity)

r
po
→ w r

lwsync
→ w (A-cumulativity OK)

w
po
→ w w

lwsync
→ w (no need for A-cumulativity)

w
po
→ r w

sync
→ r (need for write-read non-cumulativity)

x86 w
po
→ r w

mfence
→ r (need for write-read non-cumulativity)

Fig. 5. Mapping F: barriers

This lemma leads to a mapping which we call F (for fences), given in Fig. 5.
This mapping places a barrier between each fragile pair of a program; following
Lem. 4, it gives a SC behaviour to this program. Recall that we give the semantics
of the barriers that we use in the mapping F in Sec. 1, § Architectures, on p. 4.

In x86, stores are atomic, and only the write-read pairs in program order are

not preserved, i .e. the fragile pairs are the write-read pairs w
po
→ r. We do not

need cumulativity in x86, i .e. we only need a non-cumulative write-read barrier,
the mfence barrier: w

mfence
→ r.

In Power, no pair is preserved in program order except the read-read and
read-write pairs with a dependency between the accesses [5]. But since stores
are not atomic, even the dependent read-read and read-write pairs are fragile.

For a read-read pair r1
po
→ r2, since r1 can read from a non-atomic write w, we

need a cumulative barrier between r1 and r2. But lwsync does not order write
to read chains, i .e. lwsync between r1 and r2 will not order w and r2. Therefore

we need a sync: r1
sync
→ r2. For a read-write pair r

po
→ w, we need a cumulative

barrier as well, but lwsync is sufficient here, for it will order the read w′ from
which r may read and w. In the write-write and write-read cases, there is no
need for cumulativity. In the write-write case, a lwsync is enough, for it orders
write-write pairs; but in the write-read case, we need a sync.

3 Synchronisation idioms

As an illustration to Sec. 2, we now study the semantics of Power’s locks and
rmw [1]. As noted by S. Adve and H.-J. Boehm in [4] “[o]n hardware that relaxes
write atomicity [. . . , such as Power] even the fully fenced implementation may
not be sequentially consistent.” Thus it is unclear whether the synchronisation
primitives provided by the architecture actually restore SC: it could perfectly
be the architect’s intent (e.g. lwsync is not strong enough to restore SC, but
is faster than sync, as we show in Sec. 5), or a bug in the implementation [5].
Hence we need to define the semantics of the synchronisation primitives given
in the documentation, and study whether they allow us to restore SC, i .e. that
we can use them to build covering relations, as defined in Sec. 2.

We first define atomic pairs, which are the stepping stone to build locks, stud-
ied in Sec. 3.1 and rmw, studied in Sec. 3.2. We show how to use these primitives

10



Initially r3 = ℓ, r4 = 0 and r5 = 1

loop:

(a1) lwarx r1,0,r5

[...]

(a2) stwcx. r2,0,r5

(b) bne loop

loop:

(a1) lwarx r6,0,r3

(b) cmpw r4,r6

(c) bne loop

(a2) stwcx. r5,0,r3

(d) bne loop

(e) isync
[...]

[...]

(f) lwsync
(g) stw r4,0,r3

(a) rmw (b) Lock (c) Unlock

Fig. 6. Read-modify-write, lock and unlock in Power

to build covering relations. Second, because cumulativity might be too costly in
practice, or its implementation challenging, we propose in Sec. 3.2 two lock-free
mappings restoring a strong architecture from Power without using cumulativity,
as an alternative to the mapping F (see Sec. 2) which uses cumulativity.

Atomicity Fig. 6(a) gives a generic Power rmw. The lwarx (a1) loads from its
source address (in register r5) and reserves it. Any subsequent store to the re-
served address from another processor and any subsequent lwarx from the same
processor invalidates the reservation. The stwcx. (a2) checks if the reservation is
valid; if so, it is said to be successful : it stores into the reserved address and the
code exits the loop. Otherwise, the stwcx. does not store and the code loops.
Thus these instructions ensure atomicity to the code they surround (provided
this code does not contain any lwarx nor stwcx.), as no other processor can
write to the reserved location between the lwarx and the successful stwcx..

We distinguish the read and write events issued by such instructions from
the plain ones: we write R

∗ (resp. W
∗) for the subset of R (resp. W) issued by

a lwarx (resp. a successful stwcx.), and define two events r and w to form an
atomic pair w .r .t . a location ℓ if (a) w was issued by a successful stwcx. to ℓ,

(b) r was issued by the last lwarx (in
po
→) from ℓ before the stwcx. that issued

w, and (c) no other processor wrote to ℓ between r and w:

atom(r, w, ℓ) , r ∈ R
∗ ∧ w ∈W

∗ ∧ loc(r) = loc(w) = ℓ ∧ (a)

r = maxpo
→

({m | m ∈ (R∗ ∪W
∗) ∧m

po
→ w}) ∧ (b)

¬(∃w′ ∈W, proc(w′) 6= proc(r) ∧ loc(w′) = ℓ ∧ r
fr
→ w′

ws
→ w) (c)

3.1 Locks

Atomic pairs are used e.g. in lock and unlock primitives [1, App. B]. The id-
iomatic Power lock (resp. unlock) is shown in Fig. 6(b) (resp. Fig. 6(c)).

11



ghb1

ghb1

ghb1

po:0 po:1

po:1

po:1

rf

Unlock2(l)(g) Wl0

Unlock1(l)

Lock1(l) Lock2(l)

(a1) R*l0

(a2) W*l1m1

m2

Fig. 7. Opening lock and unlock

Critical sections A lock reads the lock variable ℓ to see if it is free; an unlock
writes to ℓ to free it. The instructions between a lock and an unlock form a
critical section. Thus, a critical section consists of a lock Lock(ℓ, r) and an unlock
Unlock(ℓ, r, w) (we define these two predicates in the next §) with the same

variable ℓ, and the events in
po
→ between the lock’s read and the unlock’s write:

cs(E , ℓ, r, w) , Lock(ℓ, r) ∧ E = {e | r
po
→ e

po
→ w} ∧Unlock(ℓ, r, w)

We write loc(cs) for the location of a critical section cs. Two critical sections
cs1 and cs2 with the same location ℓ are serialised if cs2 reads from cs1, as
depicted in Fig. 7: the left-hand side of the picture is cs1, composed of a lock
Lock1(ℓ), an event m1 and an unlock Unlock1(ℓ), which writes into ℓ via the
write (g). The second critical section cs2 is on the right: the read (a1) of its
lock Lock2(ℓ) reads from (g). Thus, cs1 and cs2 are serialised if cs2 Lock’s read
(written R(cs2)) reads from cs1 Unlock’s write (written W(cs1)):

cs1
cssℓ→ cs2 , loc(cs1) = loc(cs2) = ℓ ∧W(cs1)

rf
→ R(cs2)

Given a location ℓ, two events m1 and m2 are in
lockℓ→ if they are in two

serialised critical sections (as in Fig. 7), or m1 is in
lockℓ→ with an event itself in

lockℓ→ with m2 (m ∈ cs ensures m is between cs import and export barriers in
po
→):

m1
lockℓ→ m2 , (∃cs1

cssℓ→ cs2, m1 ∈ cs1 ∧m2 ∈ cs2) ∨ (∃m, m1
lockℓ→ m

lockℓ→ m2)

Finally, two events m1 and m2 are in
lock
→ if there exists ℓ such that m1

lockℓ→ m2.

Lock and unlock In the Power lock of Fig. 6(b), the lines (a1) to (a2) form an
atomic pair, as in Fig. 6(a); this sequence loops until it acquires the lock. Here,
acquiring the lock means that the lwarx read the lock variable ℓ, and that ℓ was
later written to by a successful stwcx.. Thus, the read r of the lwarx takes a
lock ℓ if it forms an atomic pair with the write w from the successful stwcx.:

taken(ℓ, r) , ∃w, atom(r, w, ℓ)

The acquisition is followed by a sequence bne;isync (lines (d) and (e)),
forming an import barrier [1, p. 721]. An import barrier prevents any event to

12



float above a read issued by a lwarx: in Fig. 7, the event m2 in cs2 is in
ghb1→ with

the read (a1) from its Lock’s lwarx. Hence the read r of a lock’s lwarx satisfies
the import predicate when no access m after r can be speculated before r:

import(r) , ∀rm, (r ∈ R
∗ ∧ r

po
→ m)⇒ (r

ab1→ m)

Fig. 6(c) shows Power’s unlock. It starts (line (f)) with an export barrier [1,
p. 722] (here a lwsync). The export barrier forces the accesses before the write
w of the unlock to be committed to memory before the next lock primitive takes
the lock: in Fig. 7, the event m1 in cs1 is in

ghb1→ with the read (a1) of cs2’s Lock.
This means that we define an export barrier to be B-cumulative, but only w .r .t .
reads issued by the lwarx of an atomic pair:

export(w) , ∀rm, (r ∈ R
∗ ∧ (m

po
→ w

rf
→ r))⇒ (m

ab1→ r)

Then a store to the lock variable (line (g)), or more precisely the next write
event to ℓ in program order after a lock acquisition, frees the lock:

free(ℓ, r, w) , w ∈W ∧ loc(w) = ℓ ∧ r
po
→ w ∧ taken(ℓ, r)∧

¬(∃w′ ∈W, loc(w′) = ℓ ∧ r
po
→ w′

po
→ w)

A lock primitive thus consists of a taken operation (see Fig. 6(b), lines (a1)
to (a2)) followed by an import barrier. An unlock consists of an export barrier
(line (f)) followed by a write freeing the lock (line (g)):

Lock(ℓ, r) , taken(ℓ, r) ∧ import(r)

Unlock(ℓ, r, w) , free(ℓ, r, w) ∧ export(w)

We show that this semantics ensures the acyclicity of
lock
→ ∪

po
→, i .e. following

Lem. 3, (
lock
→ ∪

po
→)

+
is covering for the competing accesses. Hence locks on the

competing accesses ensures a SC behaviour to Power programs:

Lem. 5. ∀EX, A1.valid(E, X)⇒ acyclic(
lock
→ ∪

po
→)

Proof Suppose by contradiction a cycle in
lock
→ ∪

po
→. This cycle is a cycle in

((
lock
→ )

+
;
po
→) since

po
→ is transitive. Let us show by induction that any path of

(
lock
→ )+;

po
→ from an event x to an event y is a path in (

ghb1→ )+. Hence, a cycle is in

(
lock
→ )

+
;
po
→ is a cycle in (

ghb1→ )
+
, which contradicts the validity of (E, X) on A1.

Consider the base case with three events m1
lock
→ m2

po
→ m3. Let us do an

induction over m1
lock
→ m2. Consider the base case where m1 and m2 belong

respectively to the critical sections cs1 and cs2, such that cs1
css
→ cs2.

In this case, m3 is in
po
→ after cs2’s import barrier, which prevents any event

to float above the read issued by cs2’s lwarx. Thus we have R(cs2)
ab1→ m3, hence

R(cs2)
ghb1→ m3. Moreover, m1 is in

po
→ before cs1’s export barrier (i .e. m1

ab1→

W(cs1)) hence m1
ghb1→ W(cs1). Since W(cs1)

rfe
→ R(cs2), by B-cumulativity

of cs1’s export barrier, we have m1
ab1→ R(cs2), hence m1

ghb1→ R(cs2). Thus
m1 (

ghb1→ )
+

m3.
The transitive cases follows by induction. �

13



(a) fno[x]=1(b) Ry0

(f) Wy2

(c) fno[y]=2 (d) Rx0

(e) Wx1

po:0

fr

po:1

fr

rf/ws

rf/ws

(a) fno[x]=1

(a1) R*x1

(a2) W*x1

(b) Ry0

(e) Wx1

(f ) Wy2

fr

po:0

rf

ws

fr

Fig. 8. (a) iriw after P mapping 5.(b) Opening fno on P0

Our import barrier allows events to be delayed so that they are performed
inside the critical section. Our export barrier allows the events after the unlock
to be speculated before the lock is released. Such relaxed semantics already exist
for high-level lock and unlock primitives [8, 22].

In the documentation [1, p. 721], the import barrier is a sequence bne;isync
(i .e. a read-read, read-write non-cumulative barrier) or a lwsync, i .e. cumula-
tive [1, p.721]. Lem. 5 shows that the first one is enough, for our import barrier
does not need cumulativity. The export barrier is a sync (i .e. cumulative for all
pairs) or a lwsync [1, p. 722]. Lem. 5 shows that we only need a B-cumulative
barrier towards reads issued by a lwarx, i .e. a sync is unnecessarily costly.
Moreover, although a lwsync is not B-cumulative towards plain reads, its im-
plementations appear experimentally to treat the reads issued by the lwarx of
an atomic pair specially. We tested this semantics of lwsync with our diy tool
[5], and ran our automatically generated tests up to 109 times each (see the logs
online1). Hence our semantics for the export barrier is experimentally sound.

3.2 Read-modify-write primitives

By Lem. 4, we can restore SC in the iriw test of Fig. 1 using A-cumulative
barriers between the fragile pairs (a) and (b) on P0, and (c) and (d) on P1. Yet,
cumulativity may be challenging to implement or too costly in practice [5]. We
propose a mapping of certain reads to rmw (as in Fig. 6(a)), and show that this
restores a strong architecture from a weaker one without using cumulativity.

In Fig. 8(a), we replaced the fragile reads (a) and (c) of iriw by rmw: we
say these fragile reads are protected (a notion defined below). In the example we
use fetch and no-op (fno) primitives [1, p.719] to implement atomic reads. Yet,
our results hold for any kind of rmw. We show that when the fragile reads are

14



protected, we do not need cumulative barriers, but just non-cumulative ones. If a
read is protected by a rmw, then the rmw compensates the need for cumulativity
by enforcing enough order to the write from which the protected read reads.

Protecting the fragile reads with rmw We consider that two events r and w form
a rmw w .r .t . a location ℓ if they form an atomic pair w .r .t . ℓ (i .e. the code
in Fig. 6(a) does not loop), or there is a read r′ after r in the program order
forming an atomic pair w .r .t . ℓ with w, such that r′ is the last read issued by
the loop before the stwcx. succeeds (i .e. the code in Fig. 6(a) loops). We do
not consider the case where the loop never terminates:

rmw(r, w, ℓ) , atom(r, w, ℓ) ∨ (∃r′, r
po
→ r′ ∧ loc(r) = loc(r′) ∧ atom(r′, w, ℓ))

In Fig. 8(b), we open up the fno box protecting the read (a) from x on P0.
We suppose that the fno is immediately successful, i .e. the code in Fig. 6(a)
does not loop. Hence we expand the fno event (a) on P0 to the r∗ (a1) (from
the lwarx) in program order with the w∗ (a2) (from the successful stwcx.).

We define a read to be protected when it is issued by the lwarx of a rmw
immediately followed in program order by a non-cumulative barrier; an execution
(E, X) is protected when its fragile reads are:

protected(r) , ∃w, rmw(r, w, loc(r)) ∧ (∀m, w
po
→ m⇒ w

ab1→ m)

protected(E, X) , ∀r, fragile(r)⇒ protected(r)

In Fig. 8(b), the write (e) from which (a1) reads hits the memory before (a2),

i .e. (e)
ws
→ (a2). Hence there are two paths from (e) to (b): (e)

rf
→ (a1)

po
→ (b) and

(e)
ws
→ (a2)

po
→ (b). Thus we can trade the fragile pair (a1), (b) for the pair (a2), (b):

we compensate the lack of write atomicity of (e) (i .e. (e)
rfe
→ (a) not global) by

using the write serialisation between (e) and (a2) (thanks to the rmw) instead of
cumulativity before. Formally, we prove that a sequence w

grf2\1→ r
ppo2→ m with r

protected is in
ws
→;

ghb1→ , i .e. globally ordered on A1:

Lem. 6. ∀wrm, (protected(r) ∧ w
grf2\1→ r

ppo2→ m)⇒ w
ws
→;

ghb1→ m

Proof Since r is protected, there are r′ and w′ such that rmw(r′, w′, loc(r))

where r′ is r or a subsequent read in
po
→. In both cases, we have w

ws
→ w′.

Moreover, since there is a barrier between w′ and m (i .e. w′
ab1→ m), we know

that w′
ghb1→ m. �

Thus, if we protect the fragile reads, the only remaining fragile pairs are the

ones in
ppo2\1→ . In Fig. 8(a), we have (e)

ws
→ (a2)

po
→ (b)

fr
→ (f) and (f)

ws
→ (c2)

po
→

(d)
fr
→ (e), hence a cycle in

ws
→ ∪

fr
→ ∪

po
→. Since

ws
→ and

fr
→ are global, to invalidate

this cycle, we need to order globally (e.g. by a barrier) the accesses (a2) and (b)
on P0 and (c2) and (d) on P1. Indeed, if an execution is protected, non-cumulative
barriers placed between the remaining fragile pairs in

ppo2\1→ ensure stability:

Lem. 7. A1.valid(E, X) ∧ protected(E, X) ∧ (
ppo2\1→ ⊆

ab1→)⇒ A2.valid(E, X)

15



Arch. Fragile pair rmw (mapping A) rmw (mapping P)

Power r
po
→ r fno

po
→ fno fno

sync
→ r

r
po
→ w fno

po
→ sta fno

lwsync
→ w

w
po
→ w sta

po
→ sta w

lwsync
→ w

w
po
→ r sta

po
→ fno w

sync
→ r

x86 w
po
→ r xchg

po
→ r na

Fig. 9. Mappings A and P: rmw

Proof Barriers are by definition compatible with
ghb1→ . The A-cumulativity is

handled by the protection of the fragile reads as shown in Lem. 6. Finally, the
barriers order globally the remaining fragile pairs. Hence the barriers induce a
covering synchronisation relation by Lem. 4. �

This lemma leads to a mapping which we call P (for protected reads), given
in Fig. 9. This mapping places a fno on the first read of a fragile pair, and a
barrier between this fno and the second access of the fragile pair of a given piece
of code. If the first access of the fragile pair is a write, it remains unchanged and
we only place a barrier between the two accesses, following the mapping F. For
the read-read (resp. read-write) case, since replacing a read by a fno amounts
to replacing the read by a sequence of events ending with a write, we choose
a barrier ordering write-read (resp. write-write) pairs, i .e. Power sync (resp.
lwsync). Following Lem. 7, the mapping P gives a SC behaviour to a program.

H.-J. Boehm and S. Adve propose in [10] a mapping of all stores into rmw
(i .e. xchg) on x86 (which has no fragile reads), to provide a SC semantics to
C++ atomics. We call this mapping A-x86 (for atomics), and give it in Fig. 9.
For models with fragile reads, e.g. Power, they question in [4] the existence
of “more efficient mappings (than the use of locks)”. The mapping P could be
more efficient, since it removes the need for cumulativity. Yet, mapping reads
to rmw introduces additional stores (issued by stwcx.), which may impair the
performance. Moreover, we have to use cumulative barriers in the mapping P,
for Power does not provide non-cumulative barriers. Yet, we show in Sec. 5 that
the mapping P is more efficient than locks on Power machines.

We propose another mapping, given in Fig. 9, which we call A-Power. All
reads and writes are mapped into rmw (using fno for reads and fetch-and-store
(sta) [1, p. 719] for writes). The documentation stipulates indeed that “a proces-
sor has at most one reservation at any time” [1, p. 663]. Hence two rmw on the
same processor in program order may be preserved in this order, because the
writes issued by their stwcx., though to different locations, would be ordered by
a dependency over the reservation. Although the documentation does not state
whether this dependency even exists, we show (see Sec. 5) that the mapping
A-Power restores SC experimentally and is more efficient than locks as well.

16



4 Stability from a weak architecture to SC

We now want to minimise the synchronisation that we use, i .e. we would like
to synchronise only the conflicting accesses (either competing accesses or fragile
pairs) that are actually necessary. For example, if in the iriw test of Fig. 1, we
add a write (g) to a fresh variable z after (in program order) the write (e) to x

on P2, (e) and (g) may not be preserved in program order, i .e. (e) and (g) may
form a fragile pair. Yet, there is no need to maintain them, since they do not
contribute to the cycle we want to forbid.

Critical cycles D. Shasha and M. Snir provide in [23] an analysis to place barriers
in a program, in order to enforce a SC behaviour. They examine in [23, Thm.
3.9 p. 297] the critical cycles of an execution, and show that placing a barrier
along each program order arrow of such a cycle (each delay arrow) is enough
to restore SC. Yet, this work does not provide any semantics of weak memory
models. We show in Coq that their technique applies to the models embraced
by our framework, e.g. models with store buffering, like TSO or relaxing store
atomicity, like Power.

Given an event structure E, a cycle
σ
→ ⊆ (

cmp
↔ ∪

po
→)

+
(where

cmp
↔ is the

competing relation of Sec. 2) is critical, written critical(E,
σ
→), when it satisfies

the two following properties: (i) Per processor, there are at most two memory

accesses (x, y) on this processor, such that x
po
→ y and loc(x) 6= loc(y). (ii)

For a given memory location x, there are at most three accesses relative to x,
and these accesses are from distinct processors (w

cmp
↔ w, w

cmp
↔ r, r

cmp
↔ w or

r
cmp
↔ w

cmp
↔ r). For example, the execution of iriw in Fig. 1 has a critical cycle.

Note that a critical cycle does not forbid an execution on SC: the execution

of iriw in Fig. 10(a) exhibits a critical cycle, i .e. (a)
po
→ (b)

cmp
↔ (f)

cmp
↔ (c)

po
→

(d)
cmp
↔ (e)

cmp
↔ (a), but is authorised on SC (since there is no cycle in

com
→ ∪

po
→).

Yet, a critical cycle does not require any information about the execution witness.
A critical cycle becomes a violation of SC w .r .t . A (w .r .t . an execution witness

X , written violA,SC(E, X,
σ
→)) when it is oriented, i .e. when it is included in

com
→ ∪

po
→ (but not in

ghbA→ , otherwise it would violate A). For example, the

execution of iriw in Fig. 1 exhibits a violation of SC w .r .t . Power: (a)
po
→ (b)

fre
→

(f)
rfe
→ (c)

po
→ (d)

fre
→ (e)

po
→ (a).

Covering the critical cycles We show in the following that, given a conflict rela-
tion

c
→ and a synchronisation relation

s
→, it is enough to synchronise by

s
→ the

conflicting accesses of
c
→ that belong to a critical cycle.

We call these conflicts critical conflicts. Given an event structure E, we write
cmin→ for the critical conflicts of E, i .e.

c
→ restricted to the critical cycles of E:

Definition 1 (Critical conflicts).

m1
cmin→ m2 , m1

c
→ m2 ∧ (∃

σ
→, mv(E,

σ
→) ∧m1

σ
→ m2)

17



(a) Rx1(b) Ry1

(c) Ry1 (d) Rx1

(e) Wx1(f) Wy1

po:0

po:1

rf

rf

rf

rf

Fig. 10. A SC execution of iriw

We show that if all the critical conflicts of an execution (E, X) valid on A

are covered, there cannot be any violations in (E, X). A violation is what makes
an execution invalid on SC. Hence forbidding them ensures that (E, X) is valid
on SC as well:

Lem. 8 (Covering critical conflicts).

∀
c
→

s
→,

(

(
c
→,

s
→) = (

cdrf↔ ,
sdrf→ ) ∨ (

c
→,

s
→) = (

clf→,
slf→)

)

⇒ covering(
cmin→ ,

s
→)

Proof Let (E, X) be an execution valid on A where
cmin→ is arbitrated by

s
→. Consider by contradiction a cycle in SC.ghb(E, X). Hence, there exists a

violation
σ
→ in (E, X).

We know that
σ
→ is a cycle in (

ocdrf→ ∪
po
→)

+
. Therefore, we know that

σ
→ is

equal to (
σ
→ ∩

ocdrf→ ) ∪ (
σ
→ ∩

po
→). By hypothesis, since

σ
→ is a violation, all the

conflicts in
σ
→ are arbitrated by

s
→.

– Suppose (
c
→,

s
→) = (

cdrf↔ ,
sdrf→ ). Since

sdrf→ is compatible with
com
→ , all the pairs

in
ocdrf→ are in

sdrf→ . Hence
σ
→ = (

σ
→ ∩

sdrf→ ) ∪ (
σ
→ ∩

po
→). Thus, we have

σ
→ ⊆

(
sdrf→ ∪

po
→)

+
. Since

sdrf→ is compatible with
po
→, there cannot be any such cycle

σ
→.

– Suppose (
c
→,

s
→) = (

clf→,
slf→). Since

σ
→ is a cycle in (

ocdrf→ ∪
po
→)

+
, we know

that
σ
→ is included in (

ws
→ ∪

fr
→ ∪

rf
→ ∪

po
→)

+

. Since
ws
→ and

fr
→ are in

ghb1→ ,
σ
→ is

included in (
ghb1→ ∪

ppo2\1→ ∪(
grf2\1→ ;

po
→))

+
, i .e. in (

ghb1→ ∪
clf→)

+
. Since

slf→ covers
clf→ and is compatible with

rf
→ and

po
→,

σ
→ is included in (

ghb1→ ∪
slf→)

+
. Since

slf→ is compatible with
ghb1→ , there cannot be any such cycle

σ
→. �

Yet, even if a critical cycles is not necessarily an actual violation of SC,
we can build an execution Y (by transforming X) associated with the same

event structure, which contains an actual violation of SC. In Fig. 10(a), if the
rf
→

18



relations (f)
rf
→ (b) and (e)

rf
→ (d) become

fr
→ ones (i .e. (b)

fr
→ (f) and (d)

fr
→ (e)),

then we build the execution of iriw depicted in Fig. 1, which is forbidden on SC.
Hence we build an execution violating SC (the one in Fig. 1), from an execution
which does not violate SC, but exhibits a critical cycle (the one in Fig. 10(a)).
We formalise this idea in the following lemma:

Lem. 9. ∀E
σ
→, critical(E,

σ
→)⇒ (∃X, A.valid(E, X) ∧ violA,SC(E, X,

σ
→))

Proof Let (E, X) be an execution valid on A. Let
σ
→ be a critical cycle in E.

By definition of critical cycle, we know that acyclic((
σ
→∩

cdrf↔ )∪
ppoA→ ). Hence we

know by Lem. 2 that we can build an execution Y associated with E and valid

on A from any linear extension
le
→ of the order ((

σ
→∩

cdrf↔ ) ∪
ppoA→ )

+
.

Let us show that
σ
→ is a violation of SC w .r .t . A in (E, Y ). Since

σ
→ is a

criticall cycle in E, we know it is a critical cycle in (E, Y ). Hence, we need to

show that
σ
→ is included in (

ocdrf→ ∪
po
→)

+
in (E, Y ). Thus, for all x and y such

that x
σ
→ y, we need to show that (x, y) ∈ (

r
→)

+
, where:

m1
r
→ m2 , ((m1, m2) ∈ com(Y ) ∧ (proc(m1) 6= proc(m2))) ∨ (m1

po
→ m2)

Consider two events x
σ
→ y. Since

σ
→ is a critical cycle, we have (x, y) ∈

(
cdrf↔ ∪

po
→)

+
. Let us reason by induction over this statement. In the base case, let

us do a case disjunction.

– When (x, y) ∈
cdrf↔ , we do case disjunction over the directions of x and y.

Since they are in
cdrf↔ , we know that they cannot be both reads.

• If x and y are both writes, we know since they are in
cdrf↔ that they are

to the same location and from distinct processors. Moreover, we know
that x

σ
→ y. Therefore by definition of extracted write serialisation (see

Lem. 2), they are in ws(
le
→), i .e. in ws(Y ).

• If x is a read and y a write, we know since (E, Y ) is valid on A that there
exists a write wx such that (wx, x) ∈ rf(Y ). Hence, by definition of rf(Y ),

we know that wx
le
→ x. Moreover, we know that (x, y) ∈ (

σ
→ ∩

cdrf↔ ) by

hypothesis, hence x
le
→ y. Thus by transitivity we have wx

le
→ y. Since wx

and y are both writes, and to the same location, we know by definition
that (wx, y) ∈ ws(Y ). Hence, since (wx, x) ∈ rf(Y ) and (wx, y) ∈ ws(Y ),
we have (x, y) ∈ fr(Y ).
• If x is a write and y a read, we know since (E, Y ) is valid on A that

there exists a write wy such that (wy , y) ∈ rf(Y ). Suppose x = wy ; in
this case, we have (x, y) ∈ rf(Y ), hence the result. Suppose x 6= wy. In
this case, since x and wy are both writes to the same location, we have
(x, wy) ∈ ws(Y ) ∨ (wy , x) ∈ ws(Y ).
∗ When (x, wy) ∈ ws(Y ), suppose proc(x) = proc(wy). In this case,

we know that x
po
→ wy (since in

ws
→ and from the same processor).

Otherwise (i .e. if proc(x) 6= proc(wy)), (x, wy) is in ws(Y ) and the
two events are from distinct processors. The same reasoning applies

19



to (wy, y): we have either wy
po
→ y if they are on the same processor,

or (wy , y) ∈ rf(Y ) if not.
∗ When (wy , x) ∈ ws(Y ), since (wy , y) ∈ rf(Y ), we know that wy is

the maximal previous write to loc(y) before y in
le
→. Since (x, y) ∈

(
σ
→ ∩

cdrf↔ ) by hypothesis, we have x
le
→ y. Since (wy , x) ∈ ws(Y ),

we have wy
le
→ x. Hence x occurs in between wy and y in

le
→, a

contradiction.

– When x
po
→ y, we trivially have (x, y) ∈ ((

σ
→∩

ocdrf→ ) ∪
po
→)

+
.

The transitive case follows by immediate induction. �

In our framework, we show that the execution witnesses X of an event struc-
ture E are stable from A to SC if and only if there is no critical cycle in E, i .e.

that an execution valid on A is SC if and only if there is no critical cycle in E:

Thm. 1. ∀E, (∀X, stableA,SC(E, X))⇔ ¬(∃
σ
→, critical(E,

σ
→))

Proof Let E be an event structure.

⇒ Let X be an associated execution witness; (E, X) is stable by hypothesis.

Suppose by contradiction the existence of a critical cycle
σ
→ in E. In this

case, by Lem. 9, we know that there exists another execution witness Y , such
that (E, Y ) is valid on A, in which

σ
→ is a violation of SC w .r .t . A. Since all

the executions associated with E are stable, (E, Y ) is stable. Since (E, Y ) is
valid on A and stable, we know by definition of stable that (E, Y ) is valid
on SC. But since (E, Y ) contains a violation of SC w .r .t . A, (E, Y ) cannot
be valid on SC.

⇐ Suppose (
c
→,

s
→) = (

cdrf↔ ,
sdrf→ ) or (

c
→,

s
→) = (

clf↔,
slf→). Let (E, X) be an asso-

ciated execution valid on A. We know that there is always such a X since
any execution valid on SC is valid on a weaker architecture by Thm. 1: take

for instance any linear extension of
po
→. Suppose there is no critical ctcle in

E. Thus,
cmin→ is empty, hence we know that

cmin→ is trivially covered by
s
→ in

(E, X). Moreover,
s
→ is covering for

cmin→ by Lem. 8. Therefore, we know by
definition of covering that (E, X) is valid on SC. �

This theorem means that it is enough to arbitrate (with a covering relation)
the conflicting accesses (either competing accesses or fragile pairs) occurring in
the critical cycles of a given event structure to give it a SC behaviour. Hence
we do not have to synchronise all the conflicts to ensure stability from a weak
architecture to SC, but only those occurring in critical cycles.

5 Offence: a synchronisation tool

We implemented our study in our new offence tool, illustrating techniques that
can be included in a compiler. Given a program in x86 or Power assembly, offence

places either lock-based or lock-free synchronisation along the critical cycles of
its input, following the mapping A, P, L or F, to enforce a SC behaviour.

20



5.1 Control flow graphs and critical cycles

Offence builds one control flow graph (cfg) per thread of the input program,
containing static events (i .e. nodes representing memory accesses), and control
flow instructions. A static memory event f has a direction, a location, originating
instruction and processor, as events do, but no value component.

Given an event structure and two events e1
po
→ e2, mapping to static events

f1 and f2, we compute the static program order relation
pos
→ , such that e1

po
→ e2

entails f1
pos
→ f2, using a standard forward data flow analysis. If memory locations

accessed by a given instruction are constant, we have loc(e1) = loc(f1) and
loc(e2) = loc(f2). Hence static conflicts computed from the cfg, written

cmps
↔ ,

abstract the conflicts of the event structures. When locations are not constant,
we need alias analysis to compute an over-approximation of the locations of each
static event. One can safely consider that all pairs of memory accesses by distinct
processors conflict, as soon as one of the accesses is a write.

With F the set of static events, we call the triple (F,
pos
→ ,

cmps
↔ ) static event

structure. Following Sec. 4, we enumerate the cycles of F that have properties (i)
and (ii), i .e. we build an over-approximation of the runtime critical cycles.

5.2 Placing synchronisation primitives

We then collect the fragile pairs (i.e. the write-read pairs in x86 and all pairs
in Power) occurring in the critical cycles of F. By Thm. 1 it is necessary and
sufficient to maintain these fragile pairs to reach stability, i .e. to restore SC.

Barriers Then, offence follows the mapping F on these fragile pairs. Given a
pair (f1, f2), offence issues the barrier request (i1, i2, b) where i1 = ins(f1), i2 =
ins(f2) and b is the required barrier. Every path from i1 to i2 in the cfg should
pass through a barrier instruction b. We use the global barrier placement of [18],
which maximises the number of pairs maintained by a given barrier.

Alternative to barriers Offence can also follow the mappings A and P. For A-x86,
the xchg instruction has an implicit write-read barrier semantics [10]. Thus, we
use the global barrier placement of [18] for xchg. For locks, offence follows the
mapping L on the conflict edges of the cfg. Sec. 3.1 describes the lock and unlock
idioms that we use for Power. For x86, lock uses the xchg instruction to build a
compare-and-swap loop, while unlock uses a single store instruction.

5.3 Experiments

Generating tests We generated two kinds of tests to exercise offence, using our
previous diy tool [5], which computes tests in x86 or Power assembly from a
given cycle of relations. First, we generate tests built from critical cycles, e.g.

iriw in Fig. 1. Second, using a new tool, we mix such tests: given two tests built
from critical cycles, we randomly permute processors of one of the given tests,
alpha-convert its memory locations and registers to fresh ones, and interleave
the codes of the programs. The process yields two series of tests, written X in
the following, each series consisting of 209 tests for Power and 58 tests for x86.

21



L
P
A
F
X

saumurchiantivargasabducenspower7

x86 machinesPower machines

m
il
li
o
n

o
u
tc

o
m

es
/
se

c 5

4

3

2

1

0

Fig. 11. Productivity observed during soundness experiments.

Experimental soundness We run these tests against hardware using our litmus

tool [6]. We observed that all tests from the initial X series exhibit violations of
SC and that the tests transformed by offence (following the mappings F, A, P and
L) do not exhibit violations of SC, running each test at least 109 times. Thus we
confirmed experimentally that our mappings enforce SC, which we established
formally for the mappings F (Lem. 4), P (Lem. 7) and L (Lem. 3 and 5).

Measures of synchronisation cost We also estimate the cost of synchronisation
constructs. We show in Fig. 11 the productivity, i .e. the number of outcomes
collected per second, for the initial series of tests X, and for the tests transformed
by offence following the mappings F, A, P and L. We ran tests on three Power
machines: power7 (Power7, 8 cores 4-ways SMT), abducens (Power6, 4 cores
2-ways SMT) and vargas (Power6, 32 cores 2-ways SMT); and on two AMD64
machines chianti (Intel Xeon, 8 cores, 2-ways HT) and saumur (Intel Xeon, 4
cores, 2-ways HT). Our mappings F, P and A outperform the L one, i .e. provide
“more efficient mappings (than the use of locks)”, answering the question of [4].

To compare the barriers and rmw more precisely, we consider 8 specific tests
from 1 to 8 threads, where we add synchronisation with offence so that there
is only one synchronisation primitive per thread, and insert the code for each
thread inside a tight loop. We then measure running times on our two 8 core
machines, power7 and chianti, substract the time of the original test from the
time of synchronised tests and divide the result by loop size. We give the results in
Fig. 12. While fences and rmw are fast in isolation (10–20 ns on one thread), their
cost raises to hundreds of ns when communication by shared memory occurs.

6 Related Work and Conclusion

Related work The DRF guarantee [3, 10], the semantics of synchronisation idioms
[9, 8], and the insertion of barriers [23, 14, 11, 16] have been extensively studied,

22



sta/fno
lwsync

sync

power7

nprocs=

ti
m

e
(µ

s)

87654321

1

0.8

0.6

0.4

0.2

0

xchg
mfence

chianti

87654321

0.2

0.1

0

Fig. 12. Time of synchronisation constructs, in microseconds.

but most of these works focus on one kind of synchronisation, and none of them
addresses Power features such as cumulativity or the lack of write atomicity.

S. Burckhardt and M. Musuvathi examine in [12] whether we can simulate a
program running on TSO by enumerating only its SC executions. They distin-
guish a class of such executions, the TSO-safe ones. We believe these executions
to be an instance of our stable ones, i .e. the stable executions from TSO to SC.
Yet, our characterisation of stability in the general case is a novel contribution.

J. Lee and D. Padua examine in [18] the issue of restoring SC at the compiler
level. We have re-used their global fence placement algorithm. Yet, our work
improves on [18] w .r .t . semantical fundations: as a result, we use Power lwsync
when possible and we do not use the x86 barriers lfence and sfence that are
irrelevant to user-level code. We believe that our mappings could be included in
their Java compiler [25], i .e. using lwsync for Power, and xchg for x86.

Conclusion We propose a formal study of stability in weak memory models.
This allows us to define several mappings of Power or x86 assembly code, which,
as we prove in Coq, give a SC behaviour to a given program. Along the way,
we give a semantics to Power’s lwarx and stwcx. instructions and show how
to use the lightweight Power barrier lwsync, which are novel contributions. In
addition, we characterise the executions stable from a weak architecture to SC,
hence generalise the result of [23] to weak memory models. Finally, we implement
our study in our offence tool, to measure the cost of these mappings: our lock-
free mappings outperform locks. Our work could benefit to compiler writers,
for we propose several mappings ensuring that an assembly program is SC: for
example, the problem of ensuring a SC semantics to C++ atomics is of great
interest. Moreover, our work could benefit to the verification community because
it allows to separate the verification of a program running on a weak architecture
into two steps: first, check the stability of a program from a weak architecture
to SC; second, apply SC-sound verification techniques on this program.

23



References

1. Power ISA Version 2.06. 2009.
2. S. V. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorial.

IEEE Computer, 29:66–76, 1995.
3. S. V. Adve and M. D. Hill. Weak Ordering - A New Definition. In ISCA 1990.
4. S.V. Adve and H.-J. Boehm. Memory Models: A Case for Rethinking Parallel

Languages and Hardware. To appear in CACM.
5. J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in Weak Memory Models.

In CAV 2010.
6. J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Litmus: Running Tests Against

Hardware. In TACAS 2011.
7. Alpha Architecture Reference Manual, Fourth Edition, 2002.
8. H.-J. Boehm. Reordering Constraints for Pthread-Style Locks. In PPoPP 2007.
9. H.-J. Boehm. Threads Cannot Be Implemented As a Library. In PLDI 2005.

10. H.-J. Boehm and S. V. Adve. Foundations of the C++ Concurrency Memory
Model. In PLDI 2008.

11. S. Burckhardt, R. Alur, and M. K. Martin. Checkfence: Checking consistency of
concurrent data types on relaxed memory models. In PLDI 2007.

12. S. Burckhardt and M. Musuvathi. Effective Program Verification for Relaxed
Memory Models. In CAV 2008.

13. J. Cantin, M. Lipasti, and J. Smith. The Complexity of Verifying Memory Coher-
ence. In SPAA 2003.

14. X. Fang, J. Lee, and S. Midkiff. Automatic fence insertion for shared memory
multiprocessing. In ICS 2003.

15. T. Huynh and A. Roychoudhury. A memory model sensitive checker for C#. In
FM 2006.

16. M. Kuperstein, M. Vechev, and E. Yahav. Automatic inference of memory fences.
In FMCAD 2010.

17. L. Lamport. How to Make a Correct Multiprocess Program Execute Correctly on
a Multiprocessor. IEEE Trans. Comput., 46(7):779–782, 1979.

18. J. Lee and D.A. Padua. Hiding relaxed memory consistency with a compiler. IEEE

Transactions on Computers, 50:824–833, 2001.
19. J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In POPL 2005.
20. S. Park and D. L. Dill. An executable specification, analyzer and verifier for RMO.

In SPAA 1995.
21. M. Rinard. Analysis of Multithreaded Programs. In SAS 2001.
22. J. Sevcik. Program Transformations in Weak Memory Models. PhD thesis, Uni-

versity of Edinburgh, 2008.
23. D. Shasha and M. Snir. Efficient and Correct Execution of Parallel Programs that

Share Memory. In TOPLAS 1988.
24. Sparc Architecture Manual Version 9, 1994.
25. Z. Sura, X. Fang, C.-L. Wong, S.P. Midkiff, J. Lee, and D.A. Padua. Compiler

techniques for high performance SC Java programs. In PPoPP’05. ACM, 2005.
26. Y. Yang, G. Gopalakrishnan, and G. Lindstrom. Memory model sensitive data

race analysis. In ICFEM 2004.

24


