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We report on the process for formal concurrency modelling at Arm. An initial formal consistency model of the Arm achitecture,

written in the cat language, was published and upstreamed to the herd+diy tool suite in 2017. Since then, we have extended the original

model with extra features, for example mixed-size accesses, and produced two provably equivalent alternative formulations.

In this paper, we present a comprehensive review of work done at Arm on the consistency model. Along the way, we also show

that our principle for handling mixed-size accesses applies to x86: we confirm this via vast experimental campaigns. We also show that

our alternative formulations are applicable to any model phrased in a style similar to the one chosen by Arm.
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1 INTRODUCTION

Arm has invested in formal modelling of the concurrency aspects of its architecture, which led to the publication of a

formal model in 2017 [23]. This model has since been maintained and enhanced in various ways, for example by adding

features such as mixed-size accesses [9]. The importance and necessity of that mixed-size extension can be seen in the

fact that without it, Linux’s lockref structure cannot be used soundly on Arm machines, as we detail in this paper.

Arm has also developed and released two alternative formulations [1]. All three models are written in the cat

language [19], a domain-specific language for writing formal consistency models in a concise and executable manner.

The original model [23] is written in idiomatic cat, as a set of constraints over relations, which essentially state the

existence of a partial order amongst memory accesses. That model’s formulation takes a whole-system view of program

executions. This is not an ideal view when designing a single core, because a hardware designer or verification engineer

would have to work out what those whole-system constraints mean per thread.
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This is where the alternative definitions come into play: they allow hardware designers and verification engineers to

reason about the validity of an execution from the point of view of one thread, not the whole system. This allows for

designs which are more easily built, and checked for soundness.

Additionally, those alternative formulations carry more hardware intuition: their cornerstone is the notion of store

forwarding, or in other words, when a local read can take a value early from a local write, before the rest of the system

is aware of the value written by that local write. On the other hand, those alternative formulations are less easily related

to the specification style used by Linux [15] or C++ [31].

This need for alternative formulations with different purposes and appeals echoes the following remark made by

Hoare and Lauer [26]:

a single formal definition is unlikely to be equally acceptable to both implementor and user, and [. . . ] at least

two definitions are required, a constructive one [. . . ] for the implementor, and an implicit one for the user.

We go slightly further in that we propose three alternative formulations: the original one appears better suited to

programmers, i.e. users; the second one seems better suited to hardware designers, i.e. implementors, and the third one

seems better suited to current verification practices.

We have done equivalence proofs between all three formulations; Arm intends to maintain those equivalences when

its concurrency model evolves with new features.

1.1 Outline of the paper

The purpose of this paper is three-fold:

(1) to present this new technical material, viz, the two alternative formulations of the original model, and the

mixed-size extensions for all three models, by giving the rationale and details of the models, their mixed-size

extensions, and accompanying equivalence proofs;

(2) to give the overarching principles applied by Arm to the design of its formal concurrency model, by listing the

criteria that Arm tries to follow and ensure its formal concurrency model respects;

(3) to contribute to the growing chorus of formally minded industrialists, by publicising the fact that Arm is investing

in formal methods, and as a consequence is distributing its formal concurrency models and accompanying

equivalence proofs.

The outline of this paper is as follows. We review related works in Section 3. In Section 4, we summarise the ideas

behind the cat language and the herd tool, using the original Armv8 model [23] as a running example. In Section 5, we

detail how we extend the model to handle mixed-size accesses. More precisely, we propose a principle to extend certain

existing concurrency models so that they apply to mixed-size accesses, and confirm that our principle applies to x86

and Arm, in ways that we detail in that section. In Section 6, we detail the alternative formulations of Armv8’s model,

including mixed-size accesses. Adding mixed-size accesses to those formulations was challenging due to the design

principles we needed to follow as they were established practice at Arm; we detail those challenges in that section. In

Section 7, we sketch the equivalence proofs between those models.

But first we give the list of the material that we distribute, and where to find it. We then give a preamble on our

design principles and the rationale behind Arm’s two alternative formulations of its consistency model.

1.2 Additional material and where to find it

The work presented in this paper resulted in the development of the following material, which we distribute online:
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• the official extension of the Armv8 model to handle mixed-size accesses, which can be found at https://github.

com/herd/herdtools7/blob/95785c747750be4a3b64adfab9d5f5ee0ead8240/herd/libdir/aarch64.cat;

• two alternative formulations of the Armv8 original model, which are also maintained by Arm; they can be found

at https://github.com/herd/herdtools7/blob/master/herd/libdir/arm-models;

• an extension of the x86 model to handle mixed-size accesses, which we validated experimentally; it can be found

at https://github.com/herd/herdtools7/blob/master/herd/libdir/x86tso-mixed.cat;

• the extension to all the tools in the herd+diy toolsuite to handle mixed-size accesses, which can be found

at http://diy.inria.fr and https://github.com/herd/herdtools7;

• our experimental results for mixed-size tests on both x86 and Arm hardware, which can be found at http:

//diy.inria.fr/mixed;

• our experimental results for non-mixed-sized Arm tests, which can be found at http://diy.inria.fr/aarch64.

2 DESIGN PRINCIPLES AND RATIONALE

Modelling the concurrency aspects of the Armv8 architecture entails developing a consistency model for Armv8.

Consistency models determine what values a read can take; weak consistency models such as the ones of Arm [4, 23],

IBM [37, 38], Intel [39, 40], Nvidia [10, 33], RISC-V [3], C++ [20, 31], Linux [15] and others allow more behaviours than

Sequential Consistency (SC) [32].

The original Armv8 consistency model [23] was developed following a number of design principles, which we list

here. We followed those same principles whenever we have extended the model, and some arose during this extension

work; we also list them below. We intend to follow them in future developments.

The Armv8 consistency model is written in the cat language [19]. The cat language is a domain-specific language

dedicated to describing consistency models in concise, formal and executable ways. The language drives a collection of

open-source tools [14]:

• the herd7 tool [19], given a cat model and a small program called a litmus test, outputs all possible executions

(up to a certain bound on loop unrolling if necessary) of that program under that model;

• the diy7 tool [16, 18] generates systematic families of litmus tests which are designed to highlight the discrepancies

between weak consistency models and Sequential Consistency;

• the litmus7 tool [17] runs such litmus tests on native hardware and collects the observed outcomes.

2.1 Open, formal and executable semantics

The remark about these tools being open-source is not accidental: we aim for the semantics of the cat language,

and hence of the various models written in cat, to be open, and for contributors to be able to investigate the code

implementing them. Thus the Armv8 model is distributed within the herd+diy tool suite [14]. The fact that the Armv8

model is written in cat makes it:

• formal, since the cat language has a formal semantics [12];

• machine-readable and more importantly executable, thanks to the herd7 tool [19].

If extensions to the cat language are required, the semantics of those extensions should be added to the existing

ones [12], and an executable version of those semantics implemented in the herd7 tool.
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2.2 Soundness with respect to hardware

The Armv8model and the extensions that we present in this paper have been extensively tested thanks to the diy7 [16, 18]

and litmus7 tools [17]. Soundness with respect to hardware is mandatory, modulo bugs that have been acknowledged

as such in the hardware design.

2.3 Incrementality of definitions

The model is built from definitions (detailed in Section 4.4.2) which can be read independently, and combine to form a

notion called Locally-ordered-before, which contributes to one of the main axioms of the model. Intuitively this notion

captures all possible instructions pairs which must not be reordered according to the architecture. Put another way,

two instructions in program order which are not included in Locally-ordered-before can be reordered: this is where

there is opportunity for hardware optimisations, and conversely where programmers need to place synchronisation if

those reorderings are undesirable.

Of course building definitions incrementally is useful to explain the model step-by-step and avoid mutual recursion

for example.

2.4 Per-thread reasoning

But the fact that we can build the axioms of the model in such a way, by combining independent definitions, is not an

accident: it stems from a design choice to make the model multi-copy-atomic (often abbreviated as “MCA”, and called

“Other-multi-copy-atomic” in the Arm documentation). Other-muti-copy-atomicity is defined as follows in the Arm

documentation—note that the Arm documentation uses the term “Observer” to designate what we call processor or

thread in this paper: :

In an Other-multi-copy atomic system, it is required that a write from an Observer, if observed by a different

Observer, is then observed by all other Observers that access the Location coherently. It is, however, permitted

for an Observer to observe its own writes prior to making them visible to other observers in the system.

This term essentially means that one can reason locally about which synchronisation to use, instead of having to

analyse the entirety of a multi-threaded program, including the interaction between its threads. To make this principle

less abstract, consider the two tests given in Figure 1.

The first test MP is a message passing example: thread P0 updates the data x and sets up flag y to signal that the

new data is ready to thread P1. The question asked by the test is whether there is a scenario under which the reading

thread P1 can see the new flag but not the new data. The second test WRC is a distributed version of the same test,

extended over three threads: now P0 only updates the data x, which is observed by P1, and P1 is in charge of updating

the flag to signal the readiness of the new data to the reading thread P2.

In the scenario described by the exists clause of the MP litmus test, the read c of flag y by P1 takes its value from

the write b of flag y by P0. The read d of the data x by P1 takes its value from the initial state. Finally, the write a of the

data x on P0 overwrites the value read by the read d .

In the execution of WRC, the scenario is very similar; the only difference being that the write a of the data x is not on

the same thread as the write d of the flag y. Instead a first thread (header “Thread 0”) updates x to 1, and this update is

then read by Thread 1. The rest of the execution is as in the MP scenario.
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AArch64 MP
{0:X1=x; 0:X3=y; 1:X1=y; 1:X3=x;}
P0 | P1 ;
MOV W0,#1 | LDR W0,[X1] ;
STR W0,[X1] | LDR W2,[X3] ;
MOV W2,#1 | ;
STR W2,[X3] | ;
exists (1:X0=1 /\ 1:X2=0)

AArch64 WRC
{0:X1=x; 1:X1=x; 1:X3=y; 2:X1=y; 2:X3=x;}
P0 | P1 | P2 ;
MOV W0,#1 | LDR W0,[X1] | LDR W0,[X1] ;
STR W0,[X1] | MOV W2,#1 | LDR W2,[X3] ;

| STR W2,[X3] | ;
exists (1:X0=1 /\ 2:X0=1 /\ 2:X2=0)

Fig. 1. Two litmus tests to illustrate locality

Our locality principle ensures that from a programming point of view, one can both synchronise MP and WRC

by reasoning about synchronisation on each thread and not across the whole program. This is not the case on all

architectures, as for example WRC requires an extra notion called “cumulativity” to be synchronised on IBM Power [37, 38].

The reason for this is as follows: due to MCA, in the WRC example, when Thread 1 sees the write of x, that write

is also made visible to Thread 2. Therefore the only synchronisation required to forbid the behaviour of WRC is to

preserve the order in which instructions are written on each thread. This can be achieved using dependencies on Thread

1 and Thread 2, for example address dependencies. Without MCA, forbidding WRC requires to ensure visibility of the

write of x by Thread 0 to both Thread 1 and Thread 2. Dependencies will not provide cumulativity, therefore a way to

forbid WRC’s behaviour in a non-MCA system would be to use a cumulative fence, for example IBM Power’s lwsync.

From a hardware implementation point of view, MCA requires more constrained mechanisms to ensure that WRC

does not exhibit additional behaviours. Whilst this might be an extra burden on the hardware, this has the benefit of

enabling a somewhat easier consistency model.

As a corollary of this principle, the alternative formulations too must stay local. Formally, those alternative formu-

lations differ from the original one in that the constraints are now stated over a total order over memory events, as

opposed to a partial order in the original formulation. By “staying local” in the context of the alternative formulations,

we mean that the total order prescribed by those models must remain a linearisation of the Locally-ordered-before

relation, or an extension thereof, as long as that extension can be determined by analysing a single thread.
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2.5 Higher levels of the stack must be upheld

The model was developed in the light of ordering guarantees necessary to languages such as C++ or operating systems

such as Linux. Overall the architectural intent behind the Armv8 model is to be as weak as possible, whilst upholding

the guarantees needed by higher levels of the stack.

An example of application of this principle is the introduction of load Acquire (LDAR) and store Release (STLR) in

the Arm ISA, to enable direct compilation of the sequentially consistent C++ atomic types. Another example is the

introduction of the special load instruction (LDAPR), which in tandem with store Release instructions, enables efficient

emulation of x86-TSO. Efficient emulation of x86-TSO might come into consideration when transitioning from x86

hardware to Arm hardware for example, if there is a need to support legacy x86 code running on top of the newly

deployed Arm hardware.

Finally, we present in Section 5.2 the case of Linux’s lockref primitive. This primitive requires certain ordering

properties over mixed-size accesses, which the Arm architecture did not provide: we retrospectively strengthened the

consistency model of the Arm architecture as we detail in this paper, to ensure that the guarantees needed by Linux

were in place.

2.6 Equivalence of formulations

Arm intends to maintain all three formulations of the model, and the equivalence between them. Therefore, extensions

of one of the formulations of the model must be reflected, in a provably equivalent way, in the other two formulations.

A putative extension might be rejected if we cannot integrate it in the alternative formulations, or if we can only

integrate it in a way that betrays the per-thread reasoning principle. An example of this situation happened when

developing our mixed-size extension, which involves augmenting the Observed-by (ob) relation.

The Observed-by relation describes interactions between threads. Therefore modifying it intuitively endangers

the per-thread reasoning principle of Section 2.4. The per-thread reasoning principle is instrumental in ensuring

that the three formulations are equivalent. To tackle this challenge, of reconciling our mixed-size extension with the

per-thread principle, thereby ensuring the equivalence of our formulations, we found a formal trick which we detail

in Section 6.5, which consists in ordering not just sole memory events, but equivalence classes of events in the two

alternative formulations.

3 RELATEDWORKS

This work is a descendant and sibling of several previous works, amongst which the original definition of the cat

language [19] and works on attempting to define a consistency model for various aspects of the Arm architecture. We

give a timeline of those models, starting in 2008, in Table 1.

Those previous works have contributed to our community’s understanding and knowledge of the Arm consistency

model. However even those that have been written in the context of a relationship with Arm have not been integrated

into the Arm memory model. The exception to this is the cat model written by Deacon [23], presented as part of a

paper by Pulte et al [34]. That paper introduces the original Armv8 model of [23], but the focus of the paper is on an

equivalent operational formulation.
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On the contrary in this paper we try to give a detailed explanation and motivation of the original cat model of [23].

Moreover our work on extending the original cat model to mixed-size accesses, as well as the introduction of new

instructions into the ARM ISA, led us to make a few changes to the original model, which we detail in Section 4.

Two existing works are concerned with mixed-size accesses in the context of Arm’s consistency model [25, 43].

The work of Flur et al [25] predates the original Arm model, hence cannot extend the cat model to handle mixed-size,

unlike the approach in this paper. Instead the work of Flur et al [25] extends an obsolete operational formulation

(given in a previous paper by Flur et al [24] and based upon a previous desire from Arm to specify a more relaxed,

non-multi-copy-atomic architecture), which is an ancestor of the one presented by Pulte et al in [34]. Our experiments

(detailed online at [28]) demonstrate that the mixed-size model of [25] is unsound with respect to the architecture. For

example, the test given in Figure 21 is allowed by the architecture and observed on hardware, but forbidden by the

model of [25].

The work of Watt et al [43] does not predate the original Arm model, nor the upstreaming of the Armv8 mixed-size

model introduced in the present paper [6]. It does however set out to build “a novel mixed-size ARMv8 axiomatic model,

as a generalisation of ARM’s axiomatic reference model, and validate it with respect to [. . . ] [25, 34], a well-tested mixed-size

operational model for ARMv8”. Therefore the model proposed by Watt et al [43] exposes itself to being unsound, much

like the one of Flur et al [25]. Interestingly, the choice made Watt et al in [43] was to use a much weaker model than

the one of [25], and in fact seems to coincide with the original guarantees made by the Arm specification, which we

formalise in Figure 18.

Therefore, the results of Watt et al [43] are likely sound with respect to the architecture; however given that a much

weaker model is used, those results may be quite a bit stricter than necessary. The reason for this is that a weaker model

will not account for all the orderings that are occurring naturally, and therefore will require superfluous synchronisation.

Quoting from [43]:

We invest significant effort into defining and validating a mixed-size relaxed memory model for ARMv8. We

benefit from the extensive body of existing work on the ARMv8 (and the related Power) memory model. To

investigate compilation to other architectures, more work is needed to define their mixed-size behaviours.

Most glaringly, we lack a formal model of mixed-size x86, one of the most common target platforms for

JavaScript. Moreover, our ARMv8 model sidesteps some outstanding questions about the architecture’s mixed-

size behaviour, by, in doubt, choosing a reasonable weak option.

The model of Watt et al is in fact not a “reasonable [. . . ] option” since it is not strong enough to uphold guarantees

necessary to Linux running soundly as we demonstrate in this paper.

Additionally, the present paper should spare the need to “invest significant effort” in defining putative mixed-size

extensions of the Armv8 model, and risking for them to be either too weak or too strong. We would like to take this lost

opportunity as an example and a plea for the academic community to reach out to Arm if needing official extensions

to the Arm memory model, rather than building theorems, compiler mappings, or verified software stacks, on top of

models which are either too weak or too strong. Additionally, the present paper also provides a mixed-size model for

x86, which the authors of [43] explicitly ask for in the quote above.

The work of Pulte et al [35] presents another operational model of Armv8, alongside an operational model of RISC-V,

this time using the “Promising Semantics” approach of Kang et al [30]. The model presented in that paper does not

handle mixed-size accesses. Indeed the authors write:
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We do not yet model mixed-size accesses [. . . ] since their architecturally intended semantics is still being

clarified for ARM [. . . ].

Therefore the work we present in this paper should enable further development of this Promising Semantics-based

model.

The work of Simner et al [41] tackles the semantics of instruction fetch in the context of the Arm architecture. It

presents an extension of the operational model of [34], and interestingly, a draft extension of the Arm cat model. It

does not, however, give a formal semantics to the new cat constructs needed (for example, wco, scl or CU), nor does it

provide an implementation thereof within the herd tool.

The works presented in Chong et al [22] and Raad et al [36] propose putative extensions of the Armv8 model to

handle transactional and persistent memory respectively. Those formalisations have been expressed in Alloy [27], and

they are not implemented within the herd tool. Those models have not been tested against hardware.

The work presented in Jagadeesan et al [29] presents an alternative formulation of the Armv8 model in terms of

pomsets. Interestingly, it appears related in style with the alternative formulations that we present in this paper.

Year Ref. Comments

2008 [21] An account of the pre-v8 Arm consistencymodel, mostly discussing litmus tests. The architecture

was not multi-copy-atomic then.

2009 [13] A paper focussing mostly on IBM Power—Arm was thought to be similar, in that neither

architecture was multi-copy-atomic.

2014 [19] A cat model of the pre-v8 Arm consistency model, based on extensive experiments.

2016 [24] Two operational models, which are unsound w.r.t. hardware and have been obsoleted by the

model of [23].

2017 [23] The original Armv8 cat model.

2017 [25] An extension of the models of [24] to mixed-size accesses.

2018 [34] A presentation the original model of [23], focussing on an equivalent operational model, itself a

descendant of the models of [24].

2018 [22] Paper presenting a putative extension of the Armv8 model to handle transactional memory—the

formalisation is done in Alloy, and not implemented within the herd tool.The model has not

been tested due to lack of hardware.

2019 [36] Paper presenting a putative extension of the Armv8 model to handle persistent memory—the

formalisation is done in Alloy, and not implemented within the herd tool.The model has not

been tested.

2019 [35] Another operational model of Armv8, presented together with an operational model of RISC-V,

using the “Promising Semantics” approach of [30].

2020 [41] A putative extension of the Armv8 model to handle instruction fetches—proposes an extension

of the operational model of [34], as well as a draft extension of the cat model. No semantics nor

implementation is given to those new cat constructs.

2020 [43] A mixed-size extension of the Armv8 model to handle mixed-size accesses, in Alloy and Coq.

Appears to coincide with the original Arm guarantees given in Figure 18, which are too weak

to program with—therefore the results in [43] might be quite a bit stricter than necessary.

2020 [29] captures Arm-style MCA execution at the language level (including compiler optimizations).

Table 1. Timeline of Arm models. Only [23] has been adopted by the architecture.

Manuscript submitted to ACM



Armed cats: formal concurrency modelling at Arm 9

4 THE CAT LANGUAGE AND THE ORIGINAL ARMV8 MODEL

Concurrent programs may communicate via shared locations (e.g., symbolic addresses x, y, z), use private locations

(e.g., registers X1, X2) for logic or arithmetic, and control their execution flow with conditionals and loops. Use of

shared accesses may result in weak behaviours. Figure 3 shows a concurrent program in A64 assembly code where two

threads (called “observers” in Arm terminology) communicate via shared locations x and y, initialised to 0. P0 updates x,

executes a DMB ST barrier instruction, and sets y to 1. P1 reads y, executes a DMB LD instruction, and reads x. This is a

message passing idiom: with enough synchronisation, after P1 sees that the flag y is set, it must see the updated data.

Here DMB ST and DMB LD are enough.

AArch64 MP+DMB.ST+DMB.LD.litmus
{0:X1=x; 0:X3=y; 1:X1=x; 1:X3=y;}
P0 | P1 ;
MOV W0,#1 | LDR W0,[X3] ;
STR W0,[X1] | DMB LD ;
DMB ST | LDR W2,[X1] ;
MOV W2,#1 | ;
STR W2,[X3] | ;
exists (1:X0=1 /\ 1:X2=0)

Fig. 2. The MP+DMB.ST+DMB.LD litmus test

For a given program, a consistency model determines which values can be returned from shared memory by load

instructions. An axiomatic model—the style chosen by Arm—does so by determining whether candidate executions of a

program are allowed. Candidate executions are graphs:

• nodes are events (or “effects”, in Arm terminology) modeling the effect of instructions. For example, a memory

read is an effect of a load instruction.

• edges form relations over events. For example, the program order relation (po) represents the order in which a

Von Neuman computer would execute the instructions of a thread. The read-from relation (rf) specifies where a

read takes its value from.

Thread 0

a: Wx=1

b: Wy=1

c: Ry=1

Thread 1

d: Rx=0

dmb.st
rf

ca dmb.ld

rf

Fig. 3. A candidate execution of the MP+DMB.ST+DMB.LD litmus test

Figure 3 shows a candidate execution of the test in Figure 2. The nodes aligned vertically correspond to the semantics

of a thread: P0 on the left and P1 on the right. The writer P0 writes the value 1 into memory location x (event a in
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10 Alglave, et al.

Figure 3), and sets the flag y to 1 (event b in Figure 3). The two corresponding instructions in Figure 2 are separated

by a fence DMB ST, which gives rise in the candidate execution of Figure 3 to an arrow (dmb.st) between events a

and b, with a label eponymous to the fence. The reader P1 reads the updated flag y (event c in Figure 3) and reads the

data x (event d). The corresponding instructions are separated by a fence DMB LD in Figure 3, which gives rise to an

eponymous arrow between events c and d (arrow dmb.ld).

In the specific execution we are interested in, the read c of variable y on P1 takes its value from the write of y on P0.

The read-from (rf) arrow between b and c represents this. The read of x on P1 reads from the initial value of x; we

depict this with a read-from arrow (rf) with a circle at its source. The initial write of x is by convention written to

memory before any update of x in the program; we therefore say that the update a is coherence-after the read d , which

takes its value from the initial write. We depict this with a coherence-after (ca) arrow between d and a.

4.1 Notions fundamental to cat models, and basic Arm definitions

4.1.1 Events. Events model the effects of instructions. Reads (R) take the value from a shared location, writes (W)

to a shared location update said location with a given value, and fences (F) may prevent undesirable behaviours.

Read-modify-write instructions generate a read and a write for the same shared location. Events bear annotations

reflecting the corresponding instructions: plain, Acq or AcqPC (for reads); plain or Rel (for writes); and isb, dmb {sy, st,

ld} or dsb {sy, st, ld} (for fences). For example, executing a load acquire instruction generates a read event annotated

Acq, a plain store generates a write with no annotation, and dmb st generates a fence annotated dmb st. Table 2 lists

the events for each instruction, omitting locations for brevity. Note that fence events are often omitted from drawings,

and instead we use arrows labelled with the fence name.

Instruction Events cat set or relation

LDR R R
LDAR RAcq A
LDAPR RAcqPc Q
STR W W
STLR W

Rel
L

DMB Type FDMB Type dmb.type
DSB Type FDSB Type dsb.type
ISB FISB isb
LDXR R domain(lxsx)
STXR W range(lxsx)
CAS R,W amo

Table 2. AArch64 instructions and their corresponding events and cat sets

4.1.2 Candidate executions. Candidate executions consist of abstract executions, representing the semantics of each

thread, and execution witnesses, representing communications between threads. More precisely, independent symbolic

execution of program threads first results in a set of candidate executions (detailed hereafter), each of which extends to a

set of witnesses, which supplement the candidates with communication relations between threads.

Abstract executions (E, po, addr, data, ctrl, lxsx, amo) contain:

• E, the set of events;

• po, the program order, specifies instruction order in a thread after evaluating conditionals and unrolling loops;
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• addr, data, and ctrl are the address, data, and control dependency relations—they are included in po, and

always start from a read.

• lxsx links the read of a load exclusive to the corresponding write of a successful store exclusive. Note that a

store exclusive may not be successful if its location has been tampered with by another thread, between the

corresponding load exclusive and that store exclusive. In this case there is no lxsx relation, because there is no

write event to link to.

• amo links the read of an atomic operation to its write.

Execution witnesses (rf, co) contain:

• the reads-from relation rf, which determines where reads take their value from. For each read r there is a unique

write w to the same location s.t. r takes its value from w.

• the coherence order relation co, representing the history of writes to each location. It is a total order over writes

to the same location, starting with the initialising write.

The notions constitutive of an execution witness are reflected in the Arm documentation [5], and we reproduce them

verbatim in Figure 39.

4.1.3 The cat language. The cat language [12, 19] formalises consistency models as sets of constraints over candidate

executions. In other words, a cat model states constraints over relations over events.

Sets and relations over events. The language provides the user with predefined sets of events (W contains all write

events, R all reads, M all writes and reads and _ all events) and the relations forming candidate executions (po, addr,

data, ctrl, lxsx, amo, rf, and co), as well as the identity relation id, the loc relation, which contains all pairs of events

that access the same location, and the int relation, which contains all pairs of events that belong to the same thread.

We also distinguish the initial writes IW (those which have no predecessor in coherence order) and the final writes FW

(those which have no successor in coherence order).

Users can build new relations (declared with let or let rec for recursive definitions) via several operations: union

(|), intersection (&), difference (\), complement (~), inverse (r^-1), reflexive closure (r?), transitive closure (r+), reflexive

transitive closure (r*), sequence (r1; r2, defined as {(x, z) | ∃y | [(x,y) ∈ r1 ∧ (y, z) ∈ r2]}) and Cartesian product of

sets of events (S1 * S2). One can thus build the following relations, which often appear in cat models (and in particular

in the Arm model):

• the program order relation restricted to accesses of the same location: po-loc = po & loc;

• the from-read relation makes one step of reads-from backwards, then one step of coherence: fr = rf^-1;co. In

the Arm model, fr is presented as part of the wider coherence-after ca notion, which comprises both fr and co;

• the external relation ext, containing pairs of events that belong to different threads: ext = ~ int;

• the external reads-from, coherence and from-reads: rfe = rf & ext, coe = co & ext, and fre = fr & ext.

Finally, the cat language allows a user to define functions and procedures to be used later. One such example is the

function intervening-write, which builds the subset of a transitive relation r which exhibits intervening writes:

let intervening-write(r) = r; [W]; r

More precisely, the cat expression above defines, for a given relation r a new relation as follows: take one step of r

which lands on a write, then another step of r. The notation r; [W] is syntactic sugar for the restriction of the relation r

to its range (its right extremity) being in the set W, viz, being a write.
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(* Local read successor *)
let lrs = [W]; (po-loc \ intervening-write(po-loc)); [R]

(* Local write successor *)
let lws = po-loc; [W]

(* Coherence-after *)
let ca = fr | co

(* Observed-by *)
let obs = rfe | fre | coe

Fig. 4. Formal definitions of basic Arm terminology

Building on those notions, the Arm model defines a handful of basic notions: we give their cat code in Figure 4,

and the verbatim copy of their English transliteration as it appears in the Arm documentation [5] in Figure 40. Those

notions are building blocks used in the statements of the constraints which constitute the Arm model:

• The Local read successor r of a write w is the first read to the same location as w occurring later in program

order; thus we build it as the program order between events to the same location po-loc, between a write and a

read, such that there is no intervening write in between those events.

• The Local write successors of a writew are all the writes to the same location afterw in program order; thus we

build those as the restriction of program order between writes to the same location.

• The Coherence-after relation (ca) gathers the from-read relation (fr) and the coherence order (co); intuitively a

writew is coherence-after another event e (whether read or write) ifw overwrites the value of e .

• The Observed-by relation gathers the external read-from (rfe) and external from-read (fre) relations and

the external coherence order (coe); intuitively this represents the interactions between distinct threads over

shared-memory.

Constraints over candidate executions. A cat model can constrain a relation r to be irreflexive, acyclic, or empty.

Consider for instance the candidate execution depicted in Figure 3: read c takes its value from write b, hence the reads-

from (rf) arrow between them. Read d takes the initial value, which is overwritten by write a, hence the coherence-after

(ca) arrow between them.

This candidate execution is forbidden by the Arm model: the synchronisation enforced by the DMB ST instruction

ensures that the updated data x is visible to P1 when P1 reads the flag y. This is because this execution exhibits a certain

cycle, and such a cycle is forbidden by the Arm model. More precisely, the Arm model states three constraints over

relations, which we will examine in the following sections:

• the Internal Visibility requirement in Section 4.2;

• the Atomicity requirement in Section 4.3;

• the External Visibility requirement in Section 4.4.

Interestingly, the x86-TSO model can be stated following the same outline. One can formulate the x86-TSO model as

a conjunction of three constraints: the first two being identical as the Arm ones (viz, Internal visibility in Section 4.2

and Atomicity in Section 4.3), and the third (External visibility in Section 4.4 being the same in spirit. More precisely

the External visibility constraint has the exact same shape for both Arm and x86-TSO: both architectures require
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(* Internal visibility requirement *)
acyclic po-loc | ca | rf as internal

Fig. 5. Internal visibility requirement

the acyclicity of the union of an intra-thread, local, ordering relation, and the communications between threads. The

architecture only differs in the definition of the intra-thread local ordering relation. We detail this in Sections 4.4.2

and 5.4.3.

4.2 Internal Visibility Requirement

The Internal Visibility requirement can be understood as a sanity check on the communications, or interferences,

between threads. It helps prevent unsettling behaviours commonly described as “lack of coherence”, “reading from the

future” or “dropping certain writes”.

This requirement has been called “uniproc” [8], “SC per location” [19], or “SC per variable” [11]. Formally it states

that there cannot be a cycle in the union of the following three relations:

• the program order restricted to events with the same location (po-loc);

• the Coherence-after relation (ca), defined in Figure 40; and

• the Read-from relation (rf).

We give the corresponding formalisation in cat in Figure 5.

The transliteration of this requirement into English in the Arm documentation [5, B2.3] is interesting. Rather than

going for the succinct, literal transliteration of the requirement as it is given above, Arm has chosen to use an alternative,

provably equivalent, phrasing. It has been proved before that the Internal visibility requirement forbids exactly the five

patterns of Figure 6, as shown in [8, A.3 p. 184]).

In Figure 6, recall that read-from arrow (rf) with a circle at their source indicate that the target read takes its value

from the initial state. The pattern coWW forces two writes to the same memory location x in program order to be in the

same order in the coherence-after relation ca. The pattern coRW1 forbids a read from x to read from a po-subsequent

write. The pattern coRW2 forbids the read a to read from a write c which is coherence-after a write b, if b is after a in

program order. The pattern coWR forbids a read b to read from a write c which is coherence-before a previous write a in

program order. The pattern coRR imposes that if a read a reads from a write c , all subsequent reads in program order

from the same location (e.g. the read b) read from c or a coherence-successor write.

A last equivalent phrasing is given in [8]; it differs stylistically from the other two in that it is phrased positively. It

says that two events e1 and e2 which are related by po-loc (i.e. which are related by the program order po and refer to

the same location) are also related by one of the following relations: co, rf, co;rf (viz, co followed by rf), fr;rf (viz,

fr followed by rf) or rf^-1;rf (viz, one step of rf backwards followed by one step of rf forwards; intuitively this

relation links reads which read from the same write).

Thus the English transliteration of the Internal visibility requirement enumerates those cases: in Figure 7 the first

bullet corresponds to e1 and e2 being in co; the second bullet corresponds to them being in rf or co;rf; and the third

bullet corresponds to them being in fr;rf.
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Thread 0

a: Wx=1

b: Wx=2

ca
po-loc

Thread 0

a: Wx=1

b: Rx=0

ca
po-loc

rf

Thread 0

a: Rx=1

b: Wx=1

rf
po-loc

coWW coWR coRW1

Thread 0

a: Rx=2

b: Wx=1

c: Wx=2

Thread 1

po-loc ca

rf
Thread 0

a: Rx=1

b: Rx=0

c: Wx=1

Thread 1

po-loc ca

rf

rf

coRW2 coRR

Fig. 6. The five patterns forbidden by the Internal Visibility Requirement

Internal visibility requirement

For a read or a write RW1 that appears in program order before a read or a write RW2 to the same location, the internal

visibility requirement requires that exactly one of the following statements is true:

• RW2 is a write W2 that is Coherence-after RW1

• RW1 is a write W1 and RW2 is a read R2 such that either:

– R2 Reads-from W1, or

– R2 Reads-from a write that is Coherence-after W1

• RW1 and RW2 are both reads R1 and R2, such that R1 reads-from a write W3 and either:

– R2 Reads-from W3, or

– R2 Reads-from a write that is Coherence-after W3

Fig. 7. English transliteration of the Internal Visibility Requirement

4.3 Atomicity Requirement

Next up, we focus on the Atomicity requirement. Arm (as well as other architectures such as IBM Power for example)

provides special instructions Load Exclusive (LDXR) and Store Exclusive (STXR): paired together, they allow a user to

build an atomic access. More precisely, the LDXR instruction loads the location it has been given as an argument, but also

reserves that location. Essentially it indicates that this location is not to be touched until that reservation has expired.

The STXR instruction checks whether the location is still reserved: if so it succeeds and stores to it, otherwise it fails.

However, the reservation mechanism is not forbidding: if another thread than the one executing the LDXR/STXR pair

wants to write to the reserved location, it may—but then the STXR will fail. We give an illustration of this situation

in Figure 8 where the * on the read and the write indicate that they have been generated from an LDXR and an STXR

respectively, as opposed to a plain LDR or STR.
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Thread 0

a: Rx*=0

b: Wx*=1

c: Wx=2

Thread 1

rmw
fr

co

rf

Fig. 8. An illustration of an intervening write making an exclusive pair non-successful

(* Atomic: Basic LDXR/STXR constraint to forbid intervening writes. *)
empty rmw & (fre; coe) as atomic

Fig. 9. Atomicity requirement

The cat primitive lxsx (for “load-exclusive-store-exclusive”) describes a relation which only exists between a LDXR

instruction and the next successful STXR. If the LDXR was paired with a non-successful STXR then there is no lxsx

relation between them, because a failed STXR does not generate any write.

As per the architectural description above, an STXR instruction can only be successful if there has not been an

intervening write by another thread, which tampered with the reservation between the LDXR and the STXR. Therefore

there cannot be an external write to the same location in between the LDXR and the next successful STXR. In other words,

there cannot be a write from a different thread which is coherence-after the read of the LDXR and coherence-before the

write of the next successful STXR.

The same constraint holds for atomic operations, such as SWP or CAS. Such instructions generate a pair read-write

to a given location, which also must not be interrupted by an intervening write. The cat primitive amo describes the

relation which exists between the read of an atomic operation and the write of that operation when that write exists,

viz, when the atomic operation is successful.

The cat relation rmw (for “read-modify-write”) gathers those two relations: the lxsx relation between the read of a

load exclusive and the corresponding write of a successful store exclusive, and the amo relation between the read of an

atomic operation and the write of that operation. In cat, we have: let rmw = lxsx | amo.

Thus the Atomicity requirement is phrased as given in Figure 9: the intersection of the rmw relation with the set of

read-write pairs which have a write in between them in the Coherence-after relation, is empty.

4.4 External Visibility Requirement

Lastly, we move on to the External Visibility requirement. In practice, this requirement states which synchronisation to

use when one wants to forbid undesirably weak behaviours.

4.4.1 External Visibility Requirement. The Arm model does so by defining and using two building blocks:

• the Locally-ordered-before relation lob gathers all the possible ways that one can synchronise two instructions

on the same thread. Examples include dependencies, fences, exclusive pairs and atomic accesses.

• the Observed-by relation ob gathers all the possible ways two different threads can interact: combinations of

Coherence-after ca and Reads-from rf.

Manuscript submitted to ACM



16 Alglave, et al.

(* Ordered-before *)
let rec ob = obs

| lob
| ob; ob

(* External visibility requirement *)
irreflexive ob as external

Fig. 10. External visibility requirement

Ordered-before
An arbitrary pair of Memory effects is ordered if it can be linked by a chain of ordered accesses consistent with external

observation. A read or a write RW1 is Ordered-before a read or a write RW2 if and only if any of the following cases

apply:

• RW1 is Observed-by a read or write RW2;

• RW1 is Locally-ordered-before RW2;

• RW1 is Ordered-before a read or write that is Ordered-before RW2.

External visibility requirement
For a read or a write RW1 from an Observer that is Ordered-before a read or a write RW2 from a different Observer, the

external visibility constraint requires that RW2 is not Observed-by RW1. This means that an Architecturally

well-formed execution must not exhibit a cycle in the Ordered-before relation.

Fig. 11. English transliteration of the External Visibility Requirement

Then the External Visibility requirement, given in cat in Figure 10 and in English in Figure 11, states that those two

relations cannot contradict each other: formally, there cannot be a cycle in their union, which is called Ordered-before

(ob).

The relationship between the cat formulation and the English transliteration of the External Visibility requirement is

interesting. To state the acyclicity of the union of Locally-ordered-before (lob) and Observed-by (obs), we could have

defined Ordered-before (ob) as the union of those two relations, and required Ordered-before to be acyclic. Another way

would have been to define the Ordered-before relation (ob) as the transitive closure of the union of those two relations

(making use of the cat postfix operator r+), then requiring Ordered-before to be, equivalently, irreflexive or acyclic.

However, Armhas chosen a different, provably equivalent, approach: insteadwe defineOrdered-before (ob) recursively

(see the use of let rec in Figure 10), thereby avoiding the use of the transitive closure operator. This allows the English

transliteration to be much closer to the cat code: the three prose bullets in Figure 11 correspond exactly to the three cat

clauses of Figure 10.

But of course for the External Visibility requirement to fully make sense, we need to dive into the definition of the

Locally-ordered-before relation lob, which we do next.

4.4.2 Arm Locally-ordered-before lob. The Locally-ordered-before relation lob is another case where the cat clauses

(given in Figure 12) and the English bullets (given in Figure 41) correspond quite closely. Hence we refrain from giving

a detailed paraphrasing of those definitions in the body of the text.

At a high-level the Locally-ordered-before relation lob is made of four distinct components:
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(* Dependency-ordered-before *)
let dob = addr | data

| ctrl; [W]
| (ctrl | (addr; po)); [ISB]; po; [R]
| addr; po; [W]
| (addr | data); lrs

(* Atomic-ordered-before *)
let aob = rmw

| [W & range(rmw)]; lrs; [A | Q]

(* Barrier-ordered-before *)
let bob = po; [dmb.full]; po

| po; ([A];amo;[L]); po
| [L]; po; [A]
| [R]; po; [dmb.ld]; po
| [A | Q]; po
| [W]; po; [dmb.st]; po; [W]
| po; [L]

(* Locally-ordered-before *)
let rec lob = lws

| dob
| aob
| bob
| lob; lob

Fig. 12. Formal definitions for Arm Locally-ordered-before relation

• Local write successor lws, as defined in Figures 4 and 40;

• Dependency-ordered-before dob, which gathers all possible chains of dependencies which provide order;

• Atomic-ordered-before aob, which states how to make use of exclusive pairs (LDXR/STXR) and atomic operations

to provide order; and

• Barrier-ordered-before bob, which gathers all possible ways to use fences to provide order.

Finally, Locally-ordered-before (lob) is transitive: as with the definition of Ordered-before (ob) in Figure 10, Arm has

chosen to phrase this as a recursive definition (see the use of let rec in Figure 12), to enable a more direct English

transliteration (see Figure 41).

4.4.3 Differences with the original Arm cat model of [23]. Our work on the cat model for Arm has led us to make a few

changes, which are now upstream in the herd+diy distribution [1, 14], and which we detail here:

• the notion of internal coherence order (coi in cat) has been subsumed by the notion of Local-write-successor

(lws in cat). The new notion can be determined solely from the program order—this is an instance of applying

our “per-thread reasoning” principle (stated in Section 2.4).

• the notion of internal reads-from (rfi in cat) has been replaced by the notion of Local-read-successor (lrs in

cat). The new notion can be determined solely from the program order—this is an instance of applying our

“per-thread reasoning” principle (stated in Section 2.4).
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The relation lws is equal to the union of coi and fri: this is because co is by definition total and both coi and fri

must respect program order as per the Internal visibility requirement (see Section 4.2). Note that one can prove

hat lob; fri is included in lob by case disjunction over the components of lob. Therefore replacing coi by lws does

not add any extra constraint to lob, hence to the overall model.

The relation lrs is larger than rfi since having (w, r ) ∈ lrs allows for r reading from a write w ′
which is itself

co-after w . If w ′
is on a different thread from w and r , then we have (w,w ′) ∈ coe and (w ′, r ) ∈ rfe, in which case

(w, r ) ∈ ob and hence we have not added a constraint to the model. Ifw ′
is on the same thread asw and r , then one

can prove that lob; fri is included in lob by case disjunction over the components of lob. Therefore replacing rfi

by lrs does not add any extra constraint to lob, hence to the overall model.

Two further changes are as follows:

• the use of coi in the original model was distributed along the clauses of Dependency-ordered-before. We

observed that it was equivalent to factor it out and now list lws as an independent clause of Locally-ordered-

before. This refactoring was beneficial when adding the mixed-size extensions, as it allowed us to add mixed-size

considerations into the definition of Locally-ordered-before very locally (viz, only in the Local-write-successor

clause) instead of every time that coi was used.

• The original model did not account for atomic operations such as CAS or SWP, which did not exist then. We

have added the semantics of those instructions to the cat model, via the new cat construct amo. We have also

added the primitive lxsx to be able to distinguish between read-modify-writes made of load-store exclusive

pairs, and the ones made of atomic operations. Previously there was only one rmw notion. We need to distinguish

between both types of read-modify-write (rmw) because atomic operations (amo) have an extra property which

Load-Exclusive/Store-Exclusive pairs (lxsx) do not. This can be seen in the relation called Barrier-ordered-before

(bob): if an atomic operation is so that its read is an Acquire and its write is a Release, then that atomic operation

acts as a full barrier.

We have validated those changes experimentally as well, using 8970 litmus tests which can be found online at http:

//diy.inria.fr/aarch64.

5 A PRINCIPLE TO HANDLE MIXED-SIZE ACCESSES IN MULTI-COPY-ATOMIC MODELS

Modelling mixed-size concurrency means modelling the interactions of shared memory accesses of various sizes. For

example, what happens if, following the litmus test given in Figure 13, two threads P0 and P1 communicate via a 16-bit

variable x, in the following way: P0 performs an 8-bit store to x, writing 1 into the least significant byte of x, and P1

performs a 16-bit store to x, writing 2 in each 8-bit half of x. If P0 performs a 16-bit load of x, what value is the load to

see?

We address such questions in the context of naturally aligned accesses only. We define a new relation si (“same

instruction”), which relates events generated by the same execution of the same instruction. We extend the notion

of abstract execution (see Section 4.1.2) to contain the relation si as well. For example, we give in Figure 14 one of

the candidate executions of the test given in Figure 13. Note that the display of mixed-size accesses coming from the

same instruction is different from the non-mixed-size case: for example, in Figure 14, the two events b and c come from

the same instruction (the LDRH on P0, and are both in program order after the write a (generated by the STRB on P0)).

Observe that the two write events d and e of the 16-bit store on P1 are related by si, as are the two read events b and c

of the 16-bit load on P0.
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AArch64 WbRh+Wh
{
uint16_t x;

0:X1=x;
1:X1=x;
}
P0 | P1 ;
MOV W0,0x1 | MOV W0,0x202 ;
STRB W0,[X1] | STRH W0,[X1] ;
LDRH W2,[X1] | ;
exists (x=0x202 /\ 0:X2=0x201)

Fig. 13. A first AArch64 mixed-size litmus test

Thread 0

a: Wxb=0x1

b: Rxb=0x1 c: Rx+1b=0x2

d: Wxb=0x2

Thread 1

e: Wx+1b=0x2

rf po

ca

si

ca

si

rf

Fig. 14. Forbidden candidate execution of the test of Figure 13

Interestingly, the example of Figure 13 is one of the only idioms which was originally forbidden by the Arm

documentation, as we examine in Section 5.1. Those guarantees were fairly minimal, and did not make any provision

about the interaction of mixed-size accesses and synchronisation such as barriers or atomics for example. This means

that it would not have been possible to program with mixed-size accesses at a higher level, because the Arm architecture

would not have made any guarantees.

Yet this still allows programmers to design and implement algorithms making use of this paradigm. In Section 5.2,

we review such an example which comes from the Linux kernel, as it is one of the motivating examples which gave us

a design guideline for extending the Arm model as we did.

We then present in Section 5.3 a principle for modelling mixed-size concurrency in the context of multi-copy-atomic

models. More precisely, we propose a way to extend existing concurrency models so that they apply to mixed-size

accesses. For both x86 and Arm, we extend the cat model distributed within the herd+diy tool suite in consequence, as

detailed in Sections 5.4.1 and 5.4.3.

We give detailed results of our experimental campaigns checking the soundness of our models against existing

Arm and x86 hardware online [28]. To do so we have extended the test generator diy7 and the testing backend litmus7

to handle mixed-size accesses for both x86 and Arm. The extended tools are now distributed within the herd+diy

toolsuite [14].
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Properties of single-copy atomic accesses
A memory access instruction that is single-copy atomic has the following properties:

1. For a pair of overlapping single-copy atomic store instructions, all of the overlapping writes generated by one of the

stores are Coherence-after the corresponding overlapping writes generated by the other store.

2. For a single-copy atomic load instruction L1 that overlaps a single-copy atomic store instruction S2, if one of the

overlapping reads generated by L1 Reads-from one of the overlapping writes generated by S2, then none of the

overlapping writes generated by S2 are Coherence-after the corresponding overlapping reads generated by L1.

Fig. 15. Verbatim of B2.2.2 in ARM DDI 0487D.a ID103018

AArch64 SCA-1
{
0:X0=0x1010101; 0:X1=x;
1:X0=0x2020202; 1:X1=x;
}
P0 | P1 ;
STR W0,[X1] | STR W0,[X1] ;
exists x=0x1010202

Fig. 16. AArch64 litmus test forbidden by the first clause of Figure 15

For Arm, we can go even further: the cat model distributed within the herd+diy tool suite is the official definition of

the concurrency model guaranteed by the Arm architecture. Therefore we have the opportunity to review and extend

the authoritative Arm definitions, in a way that is ratified by Arm. We give the verbatim copy of the extensions as they

appear in the Arm Architecture Manual in Figures 43 and 44.

5.1 A note on what the original Arm documentation guaranteed

We review here the guarantees made about mixed-size accesses in the original Arm documentation. We give their

verbatim copy in Figure 15. Note that in the Arm documentation, the term “overlapping” is applied to instructions

which have one or more of their corresponding events accessing the same memory location.

Intuitively, those guarantees ensure that two stores do not mix their values. Here are two specific instances:

(1) two stores of the same size cannot result in a final value in memory being made of one half of the first store and

one half of the second store. This corresponds to the first clause of Figure 15. This is illustrated by the litmus test

in Figure 16, and the forbidden candidate execution given in Figure 17.

(2) two stores of different sizes cannot result in a subsequent load reading half of one store and the value from the

second store. This corresponds to the second clause of Figure 15. This is illustrated by the litmus test in Figure 13

and the forbidden candidate execution given in Figure 13. Note that this holds regardless of if the smaller store

comes first or second in the coherence order, since the coherence order will relate write events of the same size,

hence will relate the sub-events of the bigger store with respect to the write event of the smaller store.

For the sake of completeness, we give our cat formalisation of those original mixed-size guarantees in Figure 18.
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Thread 0

a: Wxh=0x101 b: Wx+2h=0x101

c: Wxh=0x202

Thread 1

d: Wx+2h=0x202

si

ca
si

ca

Fig. 17. Forbidden candidate execution of the AArch64 litmus test of Figure 16

(* Original mixed-size guarantees as per B2.2.2 in ARM DDI 0487D.a ID103018 *)
irreflexive co;si;co;si as sca1
irreflexive fr;si;rf;si as sca2

Fig. 18. Formal definitions of the original Arm mixed-size guarantees

5.2 A motivating example from Linux

The Virtual File System layer [2] inside the Linux kernel is responsible for handling system calls relating to POSIX

filesystem operations in a manner that is agnostic to the low-level filesystem and on-disk format. This is primarily

achieved using a set of abstract data structures for representing files and their metadata. Of particular significance are

the struct inode and struct dentry objects, which we present briefly below.

A struct inode holds metadata about a filesystem object such as access permissions, file size and modification time.

Locating an inode requires an iterative traversal of the path name components, a process known as a path walk. To

improve performance of path name resolution, the Linux kernel uses a hash table to resolve a path name to a struct

dentry pointer as quickly as possible. This hash table is known as the “Directory Entry Cache” (dcache) and is indexed

by a hash function of the component name and parent dentry pointer. The Linux kernel goes to considerable lengths to

ensure that the dcache is not a bottleneck when performing filesystem operations on even the largest of systems.

5.2.1 Scalability and struct lockref. To improve scalability of dcache lookups, the lockref structure is used to ensure

that dcache hits returning a shared dentry structure can increment the reference count without having to serialise on

the spinlock when it is otherwise unheld. This is achieved by embedding the 32-bit dentry spinlock and reference count

fields into struct lockref, which ensures that they are adjacent to each other in memory and aligned on a 64-bit

boundary:

struct lockref {

union {

aligned_u64 lock_count;

struct {

spinlock_t lock;

int count;

};

};

};
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AArch64 Lockref
{
uint64_t lock_count;
0:X0=lock_count; 0:X2=0x1; 1:X0=lock_count; 1:X2=0x1; }
P0 | P1 ;
(* Load the lock_count field *) | (* Try to acquire the lock *) ;
LDR X1, [X0] | SWPA W2, W1, [X0] ;
(* Check if the lock is held *) | (* Check if we got the lock *) ;
CBNZ W1, out0 | CBNZ W1, out1 ;
(* Check if the dentry is dead *) | (* Load the reference count *) ;
TBNZ X1, #63, out0 | LDR W1, [X0, #4] ;
(* Increment the reference count *) | ;
ADD X2, X1, X2, LSL #32 | ;
(* Attempt the cmpxchg() *) | ;
CAS X3, X2, [X0] | ;
(* Set X1 to 0 iff CAS succeeded *) | ;
SUB X1, X1, X3 | ;
out0: | out1: ;
(* If X1 is 0, access inode *) | (* If X1 is 0, clear inode *) ;
exists(0:X1 = 0 /\ 1:X1 = 0)

Fig. 19. A Linux lockref example

This structure allows the reference count to be incremented using a 64-bit cmpxchg() operation to ensure that the

lock remains unheld while the count is incremented, and avoiding the update altogether if either the lock is taken or if

the count indicates that the dentry is dead. For the sake of exposition simplicity, here we assume that the spinlock is a

simple test-and-set implementation, using an atomic xchg() operation with acquire semantics in a busy-loop when

taking the lock and an atomic store of zero with Release semantics when dropping the lock.

5.2.2 Mixed-size concurrency concerns. Overlaying a 32-bit lock word and a 32-bit reference count onto a combined

64-bit field, as is the case with the lockref structure, introduces mixed-size concurrency if one thread attempts a locked

operation on a dentry while another attempts a 64-bit cmpxchg() operation to obtain a reference to the same dentry. In

this situation, it is critical that mutual exclusion is ensured; either the cmpxchg() or the lock acquisition must fail.

As an example of this concurrency in action, consider a scenario where a thread has finished with a dentry and

therefore drops its reference using a 64-bit cmpxchg(), indicating that the reference count is now zero and that the

dentry is unused. Concurrently, a second thread locates the same dentry in the dcache as part of a path name lookup

and increments the reference count from zero to one, again using a 64-bit cmpxchg(). The first thread then attempts to

transition the dentry to “dead” and takes the spinlock using a 32-bit atomic operation. With the spinlock held, the first

thread rechecks the refcount with a 32-bit load to ensure that it is still zero and can therefore be transitioned to the

“dead” state before clearing its inode pointer to NULL.

For this protocol to work, it must be the case that either the first thread observes the second thread’s increment to

the refcount, or that the second thread observes that the dentry lock is held and fails to increment the refcount. In other

words, the first thread must not clear the inode to NULL if the second thread succeeded in taking a reference on the

dentry. This constraint can be expressed as the litmus test given in Figure 19.
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We constructed this litmus test manually in order to reduce its complexity and to avoid confronting the reader

with hundreds of unrelated instructions present in the vmlinux disassembly due to function inlining, uninteresting

conditional code, stack management etc. Although this required some significant changes, for example replacing Linux’s

queued spinlock implementation with a test-and-set lock as noted in the paper, we manually correlated the result with

the compiler output. This correlation was relatively straightforward, since Linux exclusively uses inline assembly for

its atomic instructions (as opposed to C11 atomics or compiler builtins) and therefore we were able to match some of

the instructions in the litmus test directly to sequences in the source code.

In Figure 20, we give the execution witness which corresponds to the mutual exclusion violation exposed above as

being undesirable.

Prior to our work, the undesirable outcome of this litmus test was not prevented by the Arm architecture, which in

turn means that Linux’s lockref could not be soundly used on Arm. Our work addresses this as follows.

5.3 Our principle

In this section we detail how we model mixed-size accesses in x86 and Arm. More precisely, we propose a modelling

principle to extend certain models to mixed-size accesses. Our models are distributed within the herd+diy toolsuite [6, 7].

We place ourselves in the restricting context of models which are structured like the Arm or the TSO ones, viz,

following the three constraints Internal visibility (see Section 4.2), Atomicity (see Section 4.3) and External visibility

(see Section 4.4).

Another way to understand those models is as follows. Essentially those models create a taxonomy of relations:

• the local orderings preserved by the architecture, i.e. Locally-ordered-before (lob): see Section 4.4.2 for Arm, and

Section 5.4.3 for x86-TSO;

• the orderings relative to the values taken by one given memory location (sometimes called communications, or

interferences) which are deemed "global" by the architecture, i.e. Local-write-successor (lws) and Observed-by

(obs) in Arm and all communications except for the internal reads-from relation in TSO.

We could find two obvious pathways to extending existing models to mixed-size accesses:

• when two events are locally ordered, then some of the sub-events generated by the same instructions are too;

• when two events are ordered by a communication relation, then some of the sub-events generated by the same

instructions are too.

Consider the test given in Figure 21. This test asks the following question: does the Locally-ordered-before link

between the instructions on P1 extend its reach to all the sub-events of each instruction? To understand this question

more precisely, consider the candidate execution given in Figure 22.

The sequence of instructions on P1 is made of a step of address dependency (addr) between the first LDRH and

the STRB (due to the AND instruction) followed by an internal read-from (rf) between the STRB and the second LDRH.

This read-from however is between the whole of the write event f generated by the STRB and one of the two read

events д and h of the second LDRH, more precisely, the read h. We know that in the original model, the sequence of

address dependency and internal read-from (viz, addr;rfi) is in Locally-ordered-before. Therefore we know that (d,h)

and (e,h) are in Locally-ordered-before The question that the test of Figure 21 is asking is whether this ordering extends

to the other half of the same LDRH instruction as well, i.e. to the read д.

The answer is no: this test is observed on hardware, and has been deemed architecturally allowed by Arm. Thus we

cannot simply extend the Arm model by extending Locally-ordered-before to apply to all sub-events of an instruction.
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Test Lockref, Generic(Unknown)

Thread 0

0:0 LDR X1,[X0]

0:4 CAS X3,X2,[X0]

Thread 1

1:0 SWPA W2,W1,[X0]

a: Rlock_count=0b: Rlock_count+4=0

o: Branching

e: Wlock_count*=0f: Wlock_count+4*=1

q: Branching

c: Rlock_count*=0d: Rlock_count+4*=0

h: Wlock_count*=1

g: Rlock_countAcq*=0

i: Rlock_count+4=0

ev31: Branching

si

po

ca

po

ca

po

popo

si

rmw

ca

rmw

si

rf coucou

ca

rmw

bob

po

po

ca

Fig. 20. Execution witness corresponding to the test of Figure 19
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AArch64 MP+dmb+addr-rfi+MIX+OK
{
uint16_t y; uint16_t x; uint16_t 1:X5; uint16_t 1:X0;
0:X0=0x11; 0:X1=x; 0:X2=0x1111; 0:X3=y;
1:X1=y; 1:X4=x; 1:X9=0x22
}
P0 | P1 ;
STRB W0,[X1] | LDRH W0,[X1] ;
DMB SY | AND W2,W0,#1 ;
STRH W2,[X3] | STRB W9,[X4,W2,SXTW] ;

| LDRH W5,[X4] ;
exists(x=0x2211 /\ 1:X5=0x2200 /\ 1:X0=0x1111)

Fig. 21. An AArch64 test observed on hardware

Thread 0

a: Wxb=0x11

b: Wyb=0x11 c: Wy+1b=0x11

d: Ryb=0x11 e: Ry+1b=0x11

Thread 1

f: Wx+1b=0x22

g: Rxb=0x0 h: Rx+1b=0x22

dmb.sy dmb.sy

si

rf rf

si

addr addr

po

ca

si

rf

rf

Fig. 22. Execution witness corresponding to the test of Figure 21

Rather we take the other approach: we consider that mixed-size accesses inherit the orderings due to communication

relations, which seems a natural extension of the minimal guarantees that already appeared in the Arm documentation,

given in Figure 15. Thus our extension principle is as follows: if an event e1 is before another event e2 with respect to a

global communication relation, then e1 is also before all the sub-events generated by the same instruction as e2.

The test of Figure 21 also illustrates the necessity for the extension principle to be slightly asymmetric. Indeed it

might be tempting to augment the extension principle by requiring that if an event e1 is before another event e2 with

respect to a global communication relation, then all sub-events generated the same instruction as e1 are before e2.

However doing so would make the test of Figure 21 forbidden, when it is observed on hardware and allowed by

the Arm architecture. The reason for the test becoming forbidden if we were to extend our principle in a symmetric

manner can be seen in its execution witness, given in Figure 22: the write a of x on P0 is Ordered-before (due to the DMB

SY) the write c of y+1. The write c of y+1 on P0 is Ordered-before the read e of y+1 on P1 (because e reads-from c and c

and e come from different threads). The read e of y+1 on P1 is Locally-ordered-before, hence Ordered-before the read h
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(* Arm Locally-ordered-before modified to handle mixed-size accesses *)
let rec lob = lws; si

| dob
| aob
| bob
| lob; lob

Fig. 23. Arm Locally-ordered-before relation modified to handle mixed-size accesses

(* Arm Ordered-before modified to handle mixed-size accesses *)
let obs = rfe | fre | coe

let rec ob = obs; si
| lob
| ob; ob

Fig. 24. Arm Ordered-before relation modified to handle mixed-size accesses

of x+1. That is because an address dependency followed by an internal read-from is Locally-ordered-before. Then if we

made our extension principle symmetric, the read h of x+1 would be Ordered-before the write a of x on P0, thereby

creating a forbidding cycle where there should not be one.

5.4 Validation

5.4.1 Arm model extended to mixed-size accesses. Consequently, the Arm model is extended as given in Figures 23

and 24—there are two places in the Arm model where global communications appear:

• in the Local-write-successor clause (lws) of the definition of Locally-ordered-before (lob) given in Figures 12

and 41: RW1 is a write W1 and RW2 is a write W2 such that W2 is a Local write successor of W1;

• in the Observed-by clause (obs) of the Ordered-before definition (ob) given in Figures 4 and 40: RW1 is Observed-

by a read or write RW2.

Applying our principle to those two relations, we get the following two new clauses:

• change the Local write successor clause of the Locally-ordered-before definition to: RW1 is a write W1 and RW2

is a write W2 that is equal to or generated by the same instruction as a Local write successor of RW1. We give

the corresponding change to the cat file in Figure 23.

• change the Observed-by clause of the Ordered-before definition to: RW1 is Observed-by a read or write RW3

that is equal to or generated by the same instruction as RW2. We give the corresponding change to the cat file in

Figure 24.

For the sake of completeness, we also give the verbatim copy of the Arm documentation transliterating our formal

cat definitions in Figures 43 and 44.

Note that the Arm documentation now does not include the original Properties of single-copy atomic accesses given

in Figure 15. Indeed the new definitions of Figures 23 and 24 include the original properties given in Figure 18:

• For the clause sca1: this is an immediate consequence of lws;si and obs;si (hence coe;si) being in ob, therefore

being irreflexive.
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• For the clause sca2, let us distinguish the cases where the read-from rf are internal or external:

– when rf is internal, then the fr link also is. As a consequence, the sequence fr;si;rf;si cannot be reflexive

as it would be a contradiction of the Internal visibility requirement.

– when rf is external, then the fr link also is. Hence the sequence fr;si;rf;si cannot be reflexive as it would

be a contradiction of the External visibility requirement (since both rfe and fre are included in obs).

5.4.2 Revisiting our Linux lockref example. Let us turn back to our Linux lockref example, given in Figure 19, and its

undesirable execution, given in Figure 20. Our new model does forbid this undesirable execution, as follows:

• the event д from the SWPA on P1 is Ordered-before the event i from the LDR on P1, because the SWPA has acquire

semantics, and therefore memory events which come from instructions in program order after SWPAmust remain

after the events of the SWPA. This is captured in the Barrier-ordered-before relation (clause [A]; po).

• the event i from the LDR on P1 is Ordered-before the event f from the CAS on P0, because the read i reads from

a write (the initial write to location lock_count+4) which is overwritten by the write f of the CAS. Therefore

the write f is Coherence-after the read i , and because they come from different processors, this entails that i is

Ordered-before f .

• the read д from the SWPA on P1 reads from the write e from the CAS on P0, and because those events come from

different processors, this entails that e is Ordered-before д.

• Finally, and this is where our mixed-size extension comes into play: because the events e and f from the CAS are

generated from the same instruction, they are related by the “same-instruction” (si) relation.

Therefore we get the following cycle: (e,д, i, f , e), which is forbidden by the extended External visibility requirement.

5.4.3 An x86 model extended to mixed-size accesses. Following the principle of Section 5.3, we extend the TSO model

of the herd+diy distribution as given in Figure 26. The TSO cat file is structured much like the Arm one; it has the same

three axioms although they may have been called differently in the literature: Internal visibility, Atomicity and External

visibility.

The main difference is in the phrasing of the External visibility requirement. To make our exposition easier, we have

done some provably equivalent reorganisation of the TSO-equivalent of the External visibility requirement, so that it is

now structured like the Arm one.

More precisely, we now have a notion of Locally-ordered-before for TSO, which is given in Figure 26. The definitions

of Observed-by and Ordered-before for TSO are the same as the ones for Arm.

x86-TSO Locally-ordered-before. The Locally-ordered-before relation for TSO, given in Figure 25, is stronger than

Arm’s, which means that more behaviours will be naturally forbidden on TSO.

Essentially, TSO maintains all pairs in program order except for write-read pairs. Therefore the first component of

TSO’s Locally-ordered-before relation, given in Figure 25 is po \ ([W];po;[R]) reads as “the whole program order

relation, minus the pairs which start with a write and end with a read”.

Those write-read pairs can be maintained if one uses an MFENCE instruction in between them (as formalised by

the second component of the lob relation given in Figure 25), or if at least one of the two accesses results from the

execution of an atomic instruction—in the x86 sense, for example using x86’s lock prefix, which allows a user to

transform a simple addition into an atomic addition. This is formalised by the third and fourth components of lob in

Figure 25, where X symbolises accesses generated by an atomic instruction. The last component of lob ensures that it

is a transitive relation, viz, one can chain the first fourth components to create a lob link.
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let rec lob = po \ ([W]; po; [R])
| [W]; po; [MFENCE]; po; [R]
| [W]; po; [R & X]
| [W & X]; po; [R]
| lob; lob

Fig. 25. Formal definition for x86-TSO Locally-ordered-before relation

let rec lob = lws; si
| po \ ([W]; po; [R])
| [W]; po; [MFENCE]; po; [R]
| [W]; po; [R & X]
| [W & X]; po; [R]
| lob; lob

let rec ob = obs; si
| lob
| ob; ob

irreflexive ob as external

Fig. 26. TSO External visibility requirement extended to handle mixed-size accesses

x86-TSO extended to mixed-size following our principle. Thus to handle mixed-size accesses in TSO, much like in the

Arm case, we simply extend the model as follows:

• extend the Locally-ordered-before clause relative to internal coherence (Local write successor) and from-read to

accesses generated by the same instruction

• extend the Observed-by clause in the Ordered-before definition to accesses generated by the same instruction.

Note however that the Locally-ordered-before relation in the TSO case is wider, and encompasses much of the

program order, except for the write-read pairs. Hence much like in the non-mixed case, the TSO model is stronger than

the Arm model: for example the litmus test of Figure 21 is forbidden under our TSO mixed model. The corresponding

cat is given in Figure 26.

We now move on to presenting the two alternative formulations of the Arm memory model. Those were prompted by

consumers of the specification such as hardware designers or verification engineers, who felt alternative formulations

could be more intuitive, or more easily communicated and taught.

5.5 Experimental results

We give here an overview of our experimental campaigns and results. Detailed tables can be found at http://diy.

inria.fr/mixed.

5.5.1 Experiments on x86. Our x86 test base consists of 14833 mixed-size tests, most of which generated by the diy7

tool. Our pool of machines consists of:

• a dual-core (Intel Core i5-53005U, 2.30 GHz) HP EliteBook laptop,

• a quad-core (Intel Core i7-4770HQ, 2.20 GHz) Apple MacBook pro,

• an octo-core (quad-core Intel Xeon E5620, 2.40 GHz, x2) HP Z800 desktop,
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• a 12-core (hexa-core Intel Xeon E5-2620, 2.40 GHz, x2) Dell Precision 7810 desktop,

• a 40-core (10-core Intel Xeon E7-4870, 2.40 GHz, x4) Dell PowerEdge R910 Server.

All tested machines have 2-way hyper-threading enabled.

We ran each test 18G times in total, spread across those machines. We have not observed any contradiction of our

proposed model, which demonstrates its experimental soundness. For completeness, we observe that 69 tests which are

allowed by our model have not exhibited themselves—a small number as compared to the total number of tests run.

5.5.2 Experiments on Arm. Our Arm test base consists of 2669 mixed-size tests—a combination of tests automatically

generated by diy7 and hand-written tests. Our pool of machines consists of:

• S905, a quad-core Arm Cortex-A53-based SoC

• S922X, a quad-core Arm Cortex-A73 and dual-Core Arm Cortex-A53-based SoC

• a Qualcomm Snapdragon810

• a Qualcomm Snapdragon820

• a Qualcomm Snapdragon425

• an Apple A10XFusion

• a Samsung Exynos9

• BCM2711, the Broadcom chip used in the Raspberry Pi 4 Model B

• a Mediatek HelioG25, composed of 8 Arm Cortex-A53 CPUs

We ran each test between 15G and 96G, with an average of 62G, spread across those machines. We have observed

contradictions of our proposed model, but those were deemed by Arm to be hardware anomalies. For example, we

observed the test SCA-02 (test WbRh+Wh of Figure 13), 10 times over 37G, on Snapdragon810, Snapdragon 425 and

HelioG25. An analysis of those anomalies is available online at http://diy.inria.fr/mixed/classify-mixed-

aarch64/.

In more detail, we have categorised the hardware anomalies we observed according to which cycle they exhibit. The

model is phrased in terms of forbidding cycles, therefore an anomaly can be characterised by which cycle it exhibits.

The anomalies we observed were of three kinds:

• 245 invalid executions that contain a cycle “cae;si;rfe;si”, for example the test of Figure 13 and its execution

show in Figure 14;

• 1 invalid execution that contains a cycle “cae;dmb.sy;rfe;si”, i.e. the test of Figure 27;

• 87 invalid executions that contain a cycle “cai;rfe;si;cae;si”, for example the test of Figure 28.

In the anomaly given in Figure 27, the write a of x+4 is Ordered-before the write b of x, thanks to the DMB SY fence

between them. The read d of x and the read e of x+4 are both generated by the LDR X0,[X1] instruction on P1, hence

related by si. The anomalous behaviour that we observed on hardware is as depicted in Figure 27: the read d reads

from the write b, yet the read e is Ordered-before the write b. This is because the read e is Coherence-before the write a,

itself Barrier-ordered-before the write b, altogether a contradiction of the External Visibility requirement.

In the anomaly given in Figure 28, the write a of x and the write b of x+4 are both generated by the STR X0,[X1]

instruction on P0. The write a of x is Coherence-before the write c of x. The read e of x and the read f of x+4 are both

generated by the LDR X0,[X1] instruction on P1. The write c gives its value to the read e of x, whilst the read f of x+4

is Coherence-before the write b of x+4. This is another contradiction of the External Visibility requirement.
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AArch64 WW+R+dmb.sysw4w0+q0+BIS
{
uint64_t x; uint64_t 1:X0;
0:X0=0x1010101; 0:X1=x; 0:X2=0x2020202; 1:X2=0x3030303;
1:X1=x;
}
P0 | P1 ;
STR W0,[X1,#4] | STR W2,[X1,#4] ;
DMB SY | LDR X0,[X1] ;
STR W2,[X1] | ;
exists (x=0x101010102020202 /\ 1:X0=0x303030302020202)

Thread 0

a: Wx+4=0x1010101

b: Wx=0x2020202

d: Rx=0x2020202

Thread 1

c: Wx+4=0x3030303

e: Rx+4=0x3030303

dmb.sy

rf

ca

po

si

ca
rf

Fig. 27. Anomaly WW+R+dmbsysw4w0+q0+BIS

6 TWO ALTERNATIVE FORMULATIONS OF THE EXTERNAL VISIBILITY REQUIREMENT

6.1 A worked example

To provide an intuitive overview of the alternative formulations, let us examine the test given in Figure 29. This test is

another message-passing shape between two threads P0 and P1 communicating via shared-memory locations x and y.

This time the interesting thread is the writer P0, since the reader P1 is properly synchronised with a DMB LD between

its two loads. On P0, the store of the data x with value 1 is immediately followed in program order by a load of x. The

store of the flag y has an address dependency on this load of x, due to the manipulation of registers via EOR.

The question that the test is asking is as follows: if the load of the data x on P0 reads from the store of x immediately

before it in program order, and if the load of the flag y on P1 does receive the updated flag from P0, can the load of the

data x on P1 see the stale value of x still, or must it see the updated value by P0?

Naturally the answer is that the Arm architecture permits the load on P1 to see the stale value—since the thread P0 is

not properly synchronised: the sequence on P0 does not contribute to the Locally-ordered-before relation of Figure 12.

Therefore all three formulations will answer the same: that the final state given in Figure 29 is allowed. However,

they will proceed differently to each other in determining that answer.

Before we dive into how each formulation builds its execution witness for the test of Figure 29, let us present briefly

the differences and motivations for each formulation:

Manuscript submitted to ACM



Armed cats: formal concurrency modelling at Arm 31

AArch64 SCA-04
{
uint64_t x; uint64_t 1:X0;

0:X0=0x101010101010101; 0:X1=x; 0:X2=0x2020202;
1:X1=x; 1:X2=0x3030303;
}
P0 | P1 ;
STR X0,[X1] | STR W2,[X1,#4] ;
STR W2,[X1] | LDR X0,[X1] ;
exists(x=0x101010102020202 /\ 1:X0=0x303030302020202)

Thread 0

a: Wx=0x1010101 b: Wx+4=0x1010101

c: Wx=0x2020202

e: Rx=0x2020202

Thread 1

d: Wx+4=0x3030303

f: Rx+4=0x3030303

si

ca po

rf

ca

po

si

ca
rf

Fig. 28. Anomaly SCA-04

AArch64 MP+rfi-addr+dmb.ld
{0:X1=x; 0:X5=y; 1:X1=x; 1:X5=y;}
P0 | P1 ;
MOV W0,#1 | LDR W0,[X5];
STR W0,[X1] | DMB LD ;
LDR W2,[X1] | LDR W2,[X1];
EOR W3,W2,W2 | ;
MOV W4,#1 | ;
STR W4,[X5,W3,SXTW] | ;
exists (0:X2=1 /\ 1:X0=1 /\ 1:X2=0)

Fig. 29. A test to illustrate the alternative formulations of the Arm model

• the original model is written in a quite classic axiomatic way: stating constraints over relations, which essentially

ensure that those relations are partial orders. This style is quite close to higher-level models such as C++ and

Linux, and therefore lends itself quite well to be compared to those models.

• the second formulation prefers a formulation where a total order is built, but otherwise follows quite closely the

original model, in that it simply linearises the partial orders constrained by the original model. It appears that

total order formulations are more intuitive to certain audiences (certain hardware designer in particular). This

style is also much closer to operational models (although this second formulation is not itself an operational
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model, but rather could be seen as an abstraction of an operational model), and therefore lends itself quite well

to be compared to those models.

• finally, the third formulation also chooses to build a total order, but this time the construction of that total order

does not simply follow the definitions of the original model. In particular, it departs from the Locally-ordered-

before relation, in order to pick read events to place in the total order, such that those reads are valid a priori.

By contrast, the second formulation requires an a posteriori check to ensure that the reads placed in the total

order are valid. Ensuring that reads are valid by design, a priori, ensures a lesser load for verification methods

checking that executions are correct with respect to the consistency model.

6.2 Building the execution witness of the test of Figure 29 using the original model

In the original model, the External visibility requirement given in Figure 10 is at play. In this point of view, to determine

whether an execution is valid or not, we proceed as follows:

• per thread, we build the Locally-ordered-before relation, by looking for dependencies, fences, atomics and

exclusives (see definition of lob in Figure 12);

• between threads, we build the Observed-by relation (see definition of obs in Figure 4);

• we check whether those relations form a cycle (see definition of external in Figure 10).

This leads to the execution witness given in Figure 30-(a). On each thread we build the Locally-ordered-before

relation:

• on P0, the EOR between the load and the second store creates an address dependency; this is depicted by an addr

arrow between the corresponding events: the read b of x and the write c of y.

• on P1, the DMB LD between the two loads creates a barrier-ordered-before relation; this is depicted by a dmb.ld

arrow between the corresponding events: the read d of y and the read e of x.

Between threads, we build the Observed-by relation:

• the read d of y on P1 reads from the write c on P0, which is depicted by the read-from arrow between those

events;

• the read e of x on P1 reads from the initial state. The initial state for x is overwritten by the write a on P0.

Therefore the read e is coherence-before the write a; we depict this with a coherence-after (ca) arrow from e to a.

Now we need to establish whether the Locally-ordered-before relation and the Observed-by relation that we just

built form a cycle. To help with this, we have depicted the corresponding Ordered-before (ob) arrows. Observed that

the read-from arrow on P0 (which corresponds to the load of x reading from the first store on P0) does not qualify as an

Ordered-before arrow. Therefore there is no cycle in the candidate execution of Figure 29-(a), which makes it a valid

candidate execution as per the External visibility requirement.

We now move on to presenting the two alternative views.

6.3 External completion requirement

In the first alternative view, a new requirement replaces the External visibility requirement: it is called the External

completion requirement. This alternative view differs from the original view in that it seems better suited to hardware

designers, because it does not require to reason about a given program by consider the whole program. We give

the formal details of the External completion requirement in Figure 31—here we simply give an illustration of the
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Thread 0

a: Wx=0x1

b: Rx=0x1

c: Wy=0x1

d: Ry=0x1

Thread 1

e: Rx=0x0

rf

obaddr

rf

obob ca
ob

dmb.ld

rf

(a) External visibility formulation.

Thread 0

a: Wx=1

b: Rx=1

c: Wy=1

d: Ry=1

Thread 1

e: Rx=0

rf

preorder-cb
cb

rf

cb

cb

ca

preorder-cb
cb

Thread 0

a: Wx=1

b: Rx=1

c: Wy=1

d: Ry=1

Thread 1

e: Rx=0

rfgcb

po

rf

gcb

gcb

ca

preorder-gcb
gcb

(b) External completions formulation. (c) External global completions formulation.

Fig. 30. Execution witnesses of the test of Figure 29, as produced three models

requirement on the test of Figure 29. In the External completion point of view, to determine whether an execution is

valid or not, we proceed as follows:

• we build a relation called IM0, in which the initial writes are before any other access to the same location, and all

accesses to a given location are before the final write to that location;

• per thread, we build the Locally-ordered-before relation, by looking for dependencies, fences, atomics and

exclusives (see definition of lob in Figure 12);

• we then try to build a total order called “Completes-before” (cb) over all accesses, which respects both IM0 and

the Locally-ordered-before relation built as above.

This leads to the execution witness given in Figure 29-(b). We build the Locally-ordered-before relation as before: the

address dependency on P0 and the barrier-ordered-before relation due to the DMB LD on P1 both contribute to this. We
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(* External completion requirement *)
let IM0 = loc & ((IW * (M\IW)) | ((W\FW) * FW))
let preorder-cb = IM0 | lob
with cb from linearisations(M, preorder-cb)
~empty cb

let rf-fwd = (W * R) & po-loc & cb^-1 \ intervening-write(po-loc)
let rf-nfwd = (W * R) & loc & cb \ intervening-write(cb & loc)
let rf-cb = rf-fwd | rf-nfwd
let co-cb = (W * W) & loc & cb

call equal(rf, rf-cb)
call equal(co, co-cb)

Fig. 31. External completion requirement

then try to build a total order which embeds those Locally-ordered-before relations: the order b, c,d, e,a satisfies those

constraints.

If such a Completes-before order exists, we then need to justify the value taken by each read access r , as follows:

• either it is a case of store forwarding: there exists a write w to the same location as r on the same thread as

r , which is the last write to the same location before r in program order. If in the total order built as above, r

appears beforew , then we record r as reading fromw . In Figure 29-(b), this corresponds tow = a and r = b.

• or it is not a forwarding case: then r reads from its closest preceding write to the same location in the Completes-

before order. For example in Figure 29-(b), this corresponds tow = c and r = d . If no such write exists, then r

reads from the initial value of the memory location, as is the case in Figure 29-(b) for r = e .

The cat formulation of the External completion requirement, given in Figure 31, is interesting: it makes use of the

cat constructs with and linearisations. Thus the way to read this cat file is as follows: we build all the total orders

which respect Locally-ordered-before using linearisations(M,preorder-cb). We then pick one, which we call cb,

using the cat construct with. We check that cb is not empty, which means that there exists such a total order. We then

check that the reads-from and the coherence order are valid as presented above.

For completeness we give the English transliteration of the External completion requirement in Figure 42.

6.4 External global completion requirement

In the second alternative view, a new requirement replaces the External visibility requirement: it is called the External

global completion requirement. We give the formal details of it in Figure 32—here we simply give an illustration of the

requirement on the test of Figure 29.

The External global completion requirement has the same overall principle as the External completion requirement

given above, viz, building a total order called Globally-completes-before over all accesses which respects the Locally-

ordered-before relation. However, instead of justifying who reads fromwhere a posteriori like in the External completion

view, the External global completion view chooses to embed the constraints on the validity of reads within the building

of the Globally-completes-before order. This has benefits for verification engineers in charge of validating core designs:

in a given total order trace, the reads given are valid by construction—there is no need for an extra algorithmic step to

check their validity.
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Intuitively, the Globally-completes-before order can be seen as the order in which events are recorded by a global

checker which collects events after they have exited the memory hierarchy fully.

In the External global completion point of view, to determine whether an execution is valid or not, we proceed as

follows:

• we build a relation called IM0, in which the initial writes are before any other access to the same location, and all

accesses to a given location are before the final write to that location;

• per thread, we build the Locally-ordered-before relation, by looking for dependencies, fences, atomics and

exclusives (see definition of lob in Figure 12);

• we then restrict it as follows:

– we keep all pairs of accesses in lob where the first access is a write;

– if the first access is a read r , we keep the pair when:

∗ either r reads from another thread,

∗ or r reads from a writew on the same thread, which is also locally-ordered-before the second access of the

pair.

• we then try to build a total order called Globally-completes-before (gcb) over all accesses, which respects both IM0

and this restricted Locally-ordered-before relation built as above.

The construction of which Locally-ordered-before pairs to keep ordered appears considerably more involved in the

case of pairs headed by a read. However, this cost is paid up-front, and removes the need for an a posteriori check on

the validity of reads, as would be the case in the second formulation. This cost a priori translates into a requirement to

build traces where the reads which are picked are valid by design, hence the verification of those traces is less involved.

The trade-off is really a matter of what the model is used for: for verification engineers, this third model permits easier

verification algorithms.

This leads to the execution witness given in Figure 29-(c). We build the Locally-ordered-before relation as above, and

restrict it as follows:

• there are no Locally-ordered-before pairs which start with a write;

• the pair (b, c) is in Locally-ordered-before. However, the writea fromwhichb reads is not Locally-ordered-before c ;

hence we do not keep the pair (b, c).

• the pair (d, e) is in Locally-ordered-before, and the read d reads from another thread. Therefore we keep the

pair (d, e)

We then try to build a total order which embeds this restricted Locally-ordered-before relation. The order c,d, e,a,b

satisfies those constraints.

If such a Globally-completes-before order exists, we then justify the value taken by each read access r , as follows:

• r reads from its closest preceding write to the same location in the Globally-completes-before order. For example

in Figure 29-(c), this corresponds tow = a and r = b, as well asw = c and r = d .

• if no such write exists, then r reads from the initial value of the memory location, as is the case in Figure 29-(c)

for r = e .

We also need to ensure that the coherence order can be obtained from the Globally-completes-before order: as above,

the coherence order is the projection of the Globally-completes-before order onto writes to the same location.
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(* External global completion requirement *)
let IM0 = loc & ((IW * (M\IW)) | ((W\FW) * FW))
let gc-req = (W * _) | ((R * _) & ((range(rfe) * _) | (rfi^-1; lob)))
let preorder-gcb = IM0 | lob & gc-req

with gcb from linearisations(M, preorder-gcb)
~empty gcb

let rf-gcb = (W * R) & loc & gcb \ intervening-write(gcb & loc)
let co-gcb = (W * W) & loc & gcb

call equal(rf, rf-gcb)
call equal(co, co-gcb)

Fig. 32. External global completion requirement

The cat formulation of the External global completion requirement also makes use of the cat constructs with and

linearisations, much like the External completion requirement.

For completeness we give the English transliteration of the External global completion requirement in Figure 45.

6.5 Extending the alternative formulations to mixed-size accesses

Adding mixed-size accesses to those alternative formulations was challenging because we wanted to respect the design

principles outlined in our introduction. Specifically, the principle given in Section 2.4 requires us to enable per-thread

reasoning, or more precisely to keep the Completes-before and Globally-complete-before orders linearisations of lob

or extensions thereof.

Now, observe that our extension of the External visibility requirement for mixed-size accesses augments the Observed-

by relationwith the si relation. In other words, this is precisely not a local extension: rather thewaywe handlemixed-size

accesses is by altering the interactions over a same variable, in particular the interactions between threads as defined

by Observed-before.

To tackle this challenge, we proceeded as follows: instead of ordering sole events, we order equivalence classes of

events.

6.5.1 Certain events are equivalent w.r.t. mixed-size orderings. Intuitively, the Arm mixed-sized formulation of the

External visibility requirement considers that certain orderings towards a given event extend to the other events

generated by the same instruction. For example writes generated by the same instruction are equivalent: if two

writes w1 and w2 are such that w2 is coherence-after w1, all the events generated by the same instruction as w2 are

coherence-afterw1. This is because:

• the sequence lws; si is included in lob (see Figure 23)

• the sequence obs; si (and therefore coe; si) is included in ob (see Figure 24).

Therefore we build our equivalence classes as restrictions over events generated by the same instruction, viz, as

restrictions over the relation si, and order those classes of events following a total order which linearises lob or an

extension therefore: this formal trick allowed us to satisfy our design principles.
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let ER = range(rfe)
let IR = range(rfi)
let rfisw = rfi^-1;si;rfi

let erln = (si & (W*W) |
si & (ER * ER) |
si & (R*R) & rfisw)+

let MC = classes(erln)
let scaob = si & (ER*IR)

Fig. 33. Mixed-size equivalence classes and Single-copy-atomic-ordered-before relation

We now detail those formal constructions, given in Figure 33. The cat language already provides the notion of

equivalence classes, via the keyword classes. Thus we build the set MC (“memory classes”) of equivalence classes from

an equivalence relation erln. Defining ER to be the set of reads reading from external writes and IR to be the set of

reads reading from internal writes, we build the equivalence relation erln, as the union of pairs of the following events:

• writes generated by the same instruction, viz, si & (W*W)

• reads generated by the same instruction which both read from external writes, viz, si & (ER*ER)

• reads generated by the same instruction which both read from internal writes generated by the same instruction,

viz, si & (R*R) & rfisw.

Note that we do not include pairs of reads where both reads read internally, but from writes which are not generated

by the same instruction. To see why, consider the test given in Figure 34.

In this test, we are asking the following question: if the load of variable y on P1 observes the update made by P0, can

the load of variable x at the bottom of P1 observe the writes of x and x4+ made by P1 in each half respectively? In other

words, are both halves of the load of x by P1 ordered either with respect to one another, or both together with respect

to the rest of the events?

This test is observed on hardware, which confirms that those two reads cannot be considered equivalent from an

ordering point of view.

6.5.2 Single-copy-atomic-ordered-before relation. The cat language did not provide the ability to build linearisations

over classes; we extended it to do so. Now, our first attempt in designing a mixed-size extension to our alternative

formulations was simply to linearise the same relation (i.e. lob for the External completion requirement and lob &

gc-req for the External global completion requirement), but over the classes MC instead of the set of events as in the

non-mixed-size case.

This does not quite work. To see why, consider the test given in Figure 13. In this case, the lob relation is empty,

hence there is nothing to order if we linearise only following lob. However, we can learn from how the External

visibility requirement forbids the outcome of the test of Figure 13.

The mixed-size extension of the External visibility requirement (see Figures 23 and 24) ensures that the read b is

ordered-before the write d because b is coherence-before d , but also that b is ordered-before the write e because e is

generated by the same instruction as d . We handle this by treating the two writes d and e to be equivalent (see definition

of the erln relation in Figure 33).
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AArch64 MP+dmb.syw4w0+dataw0w0-rfiw0q0+RFI00
{
uint64_t y; uint64_t x; uint64_t 1:X5; uint64_t 1:X0;
0:X0=0x2020202; 0:X1=x; 0:X2=0x1010101; 0:X3=y;
1:X1=y; 1:X2=0x1010101; 1:X4=x; 1:X9=0x3030303;
}
P0 | P1 ;

| STR W9,[X4,#4] ;
| DMB SY ;

STR W0,[X1,#4] | LDR W0,[X1] ;
DMB SY | EOR X3,X0,X0 ;
STR W2,[X3] | ADD W3,W3,W2 ;

| STR W3,[X4] ;
| LDR X5,[X4] ;

exists(x=0x202020201010101 /\ 1:X5=0x303030301010101 /\ 1:X0=0x1010101)

Fig. 34. A test which justifies why internal reads reading from different writes are not equivalent

Thread 0

a: Wx+4=0x2020202

b: Wy=0x1010101 d: Ry=0x1010101

Thread 1

c: Wx+4=0x3030303

e: Wx=0x1010101

g: Rx+4=0x3030303f: Rx=0x1010101

dmb.sy

rf

ca

dmb.sy

data

po

dmb.sy

rf

si

ca

rf

dmb.sy

Fig. 35. Execution witness for the candidate of Figure 34

The mixed-size extension of the External visibility requirement ensures that the write e is ordered-before the read c ,

but also before the read b which is generated by the same instruction as c . Therefore the way the External visibility

requirement rules this behaviour out is by ordering the read c before the read b, so that the following cycle is formed:

d, e, c,b.
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Single-copy-atomic-ordered-before
A read (R1) is single-copy-atomic-order-before another read (R2) if and only if all the following statements are true:

• R1 and R2 are reads generated by the same instruction,

• R1 is not a local-read-successor of a write,

• R2 is a local-read-successor of a write.

Fig. 36. English transliteration of the definition of the Single-copy-atomic-ordered-before relation

We generalise this analysis to the definition of the Single-copy-atomic-ordered-before relation scaob: we give its cat

definition in Figure 33 and its English transliteration in Figure 36.

6.5.3 From events to equivalence classes of events and vice-versa. We also added two primitives to the cat language

which allow a user to navigate from events to their classes and back. We therefore introduced two new primitives:

• lift: given a relation r over events and a set C of equivalence classes, lift returns the relation lifted to the

classes. Formally, lift(C,r) returns {(C1,C2) | C1 ∈ C ∧C2 ∈ C ∧ ∃e1 ∈ C1 ∧ ∃e2 ∈ C2 ∧ (e1, e2) ∈ r }.

• delift: given a relation over classes of events and a set of events, delift returns the corresponding relation

over the set of events. Formally, delift(s,R) returns {(e1, e2) | e1 ∈ s ∧ e2 ∈ s ∧ ∃C1, e1 ∈ C1 ∧ ∃C2, e2 ∈

C2 ∧ (C1,C2) ∈ R}.

We use those primitives in the mixed-size formulations of the External completion and External global completion

requirements, to ensure that the reads-from relation and the coherence order are valid. We now move on to exposing

the details of those definitions.

6.5.4 Mixed-size external completion. The cat definition of the mixed-size External completion requirement is given in

Figure 37, and its English transliteration as appears in the Arm documentation is given in Figure 46.

Much like in the non-mixed case, we define a relation called preorder-cb, which contains lob. To handle the

mixed-size case (see discussion of the test of Figure 13), we also add the relation scaob to the preorder-cb relation.

Then we lift the preorder-cb to the level of the equivalence classes MC (as defined in Figure refcat:classes), resulting in

a relation called preorder-cb-lift. We then linearise this preorder-cb-lift relation, which gives us a total order

which we call cb.

To check the validity of the reads-from relation and the coherence order, we project the total order cb from classes

down to the level of events, and restrict the resulting relation to events relative to the same location using the relation loc.

We then check that the reads-from relation and coherence order are valid as before.

6.5.5 Mixed-size global external completion. The cat definition of themixed-size Global external completion requirement

is given in Figure 38, and its English transliteration as appears in the Arm documentation is given in Figure 47.

Much like in the non-mixed case, we define a relation called preorder-gcb, which contains lob & gc-req. To

handle the mixed-size case (see discussion of the test of Figure 13), we also add the relation scaob to the preorder-gcb

relation. Then we lift the preorder-gcb to the level of the equivalence classes MC (as defined in Figure refcat:classes),

resulting in a relation called preorder-gcb-lift. We then linearise this preorder-gcb-lift relation, which gives us

a total order which we call gcb.
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(* External completion requirement, with mixed-size *)
let IM0 = loc & ((IW * (M\IW)) | ((W\FW) * FW))
let preorder-cb = IM0 | lob | scaob
let preorder-cb-lift = lift(MC,preorder-cb)

with cb from linearisations(MC,preorder-cb-lift)
~empty cb

let dcb = delift(M,cb) & loc
let rf-fwd = (W*R) & po-loc & dcb^-1 \ intervening-write(po-loc)
let rf-nfwd = (W*R) & dcb \ intervening-write(po-loc | dcb)
let rf-cb = rf-fwd | rf-nfwd
let co-cb = dcb & (W*W)

call equal(rf, rf-cb) as rfeq
call equal(co, co-cb) as cbeq

Fig. 37. Mixed-size external completion requirement

(* External global completion requirement, with mixed-size *)
let IM0 = loc & ((IW * (M\IW)) | ((W\FW) * FW))
let gc-req = (W * _) | (R * _) & ((range(rfe) * _) | (rfi^-1; lob))
let preorder-gcb = IM0 | lob & gc-req | scaob
let preorder-gcb-lift = lift(MC,preorder-gcb)

with gcb from linearisations(MC, preorder-gcb-lift)
~empty gcb

let dgcb = delift(M,gcb) & loc
let rf-gcb = (W * R) & dgcb \ intervening-write(dgcb)
let co-gcb = (W * W) & dgcb

call equal(rf, rf-gcb)
call equal(co, co-gcb)

Fig. 38. Mixed-size external global completion requirement

To check the validity of the reads-from relation and the coherence order, we project the total order gcb from

classes down to the level of events, and restrict the resulting relation to events relative to the same location using the

relation loc. We then check that the reads-from relation and coherence order are valid as before.

7 ALL THREE FORMULATIONS OF THE MODEL ARE EQUIVALENT

In this section we give the formal statements of the equivalence theorems, and a high-level overview of the main

arguments for each proof. The formal proofs have been by Viktor Vafeiadis using the Coq proof assistant and can be

found online [42].

Here we give those proof sketches for the non-mixed-size models. We give the mixed-size proofs in Appendix P.

Manuscript submitted to ACM



Armed cats: formal concurrency modelling at Arm 41

To start with, observe that all three models follow the same structure: Internal visibility, Atomicity, and a third axiom.

Therefore proving their equivalence amounts to proving that their third axioms are equivalent.

7.1 External visibility and External global completion equivalence

Theorem 7.1 (External visibility and External global completion eqivalence). For all execution witness,

such that:

• its relations rf, co, si and lob are well-formed

• the Internal Visibility requirement is satisfied

then:

• if the External Visibility requirement is satisfied, then there exists a global-completes-before order compatible with

that execution witness which satisfies the External global completion requirement;

• if there exists a global-completes-before order compatible with that execution witness which satisfies the External

global completion requirement, then that execution witness satisfies the External Visibility requirement.

7.1.1 From External visibility to External global completion. The structure of the proof is as follows. We build a relation

called pre_egcwhich consists of the transitive closure of the union of the following relations: rf, ca and preorder-gcb.

We linearise that relation (which requires showing that pre_egc is a partial order). We show that the resulting total

order is a qualifying globally-completes-before order.

The relation pre_egc is a partial order. The relation pre_egc is evidently transitive as it is defined to be a transitive

closure. The fact that it is irreflexive is less obvious, and we prove it by contradiction.

Observe that the relation pre_egc can be decomposed into the following relations:

• the reflexive-transitive closure of the union of obs+ and preorder-gcb, all this sequenced with rfi

• the transitive closure of obs

• the reflexive transitive closure of the sequence of obs* with preorder-gcb, itself sequenced with obs+ again.

Now, suppose that pre_egc is not irreflexive: then there would exists an event x such that (x, x) is in pre_egc. This

means that one of the three relations listed above is reflexive. The second two relations cannot be reflexive as this

would be a direct contradiction of the External Visibility requirement. Suppose the first one is reflexive: there exists x

such that (x, x) is either in (obs+ | preorder-gcb)+, a contradiction of External Visibility, or in rfi, a contradiction

because the extremities of that relation are a write at the source and a read at the target.

A linearisation of pre_egc is a qualifying globally-completes-before order. The fact that a linearisation of the relation

pre_egc is a total order is a triviality because a linearisation is a total order by design. Ensuring that the reads-from

and coherence order built from that total order are valid relies on the fact that the original reads-from relation and

coherence order are well-formed.

7.1.2 From External global completion to External Visibility. We reason again by contradiction. Given the existence

of a total globally-completes-before order, suppose that the execution witness does not satisfy the External Visibility

requirement. This means that there exists x such that (x, x) is in ob. Much like in the previous case, we find a way to

decompose ob in various subrelations:

• obs+

• the transitive closure of the sequence of obs+ and preorder-gcb, itself sequenced with obs+
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• the reflexive closure of that same relation, preceded by lob \ gc-req

• lob \ gc-req followed by the reflexive-transitive closure of obs.

The first relation cannot be reflexive, as it would contradict the Internal Visibility requirement. The second relation

cannot be reflexive, as it would contradict the External Visibility requirement. If either of the last two relations was

reflexive, then either so would be lob gc-req, a contradiction since lob is included in po hence cannot be reflexive, or

so would be the transitive closure of the sequence of obs* and preorder-gcb, itself sequenced with obs+. We know

that last relation cannot be reflexive as this would contradict External Visibility.

7.2 External visibility and External completion equivalence

Theorem 7.2 (External visibility and External completion eqivalence). For all execution witness, such that:

• its relations rf, co, and lob are well-formed

• the Internal Visibility requirement is satisfied

then:

• if the External Visibility requirement is satisfied, then there exists a completes-before order compatible with that

execution witness which satisfies the External completion requirement;

• if there exists a completes-before order compatible with that execution witness which satisfies the External completion

requirement, then that execution witness satisfies the External Visibility requirement.

7.2.1 From External visibility to External completion. The structure of the proof is as follows. We build a relation called

pre_ecwhich consists of the transitive closure of the union of the following relations: rfe, ca and lob. We linearise that

relation (which requires showing that pre_ec is a partial order). We show that the resulting total order is a qualifying

completes-before order.

The relation pre_ec is a partial order. The relation pre_ec is evidently transitive as it is defined to be a transitive

closure. The fact that it is irreflexive is less obvious, and we prove it by contradiction.

Observe that the relation pre_ec can be decomposed into:

• the transitive closure of obs

• the transitive closure of the sequence of obs* with lob, itself sequenced with obs* again.

Now, suppose that pre_ec is not irreflexive: then there would exists an event x such that (x, x) is in pre_ec. This

means that one of the two relations above is reflexive.

The first relation being reflexive is a contradiction of the Internal Visibility requirement. The second relation being

reflexive contradicts the External visibility requirement.

A linearisation of the lift of pre_ec is a qualifying globally-completes-before order. The fact that a linearisation of

the relation pre_ec is a total order is a triviality because a linearisation is a total order by design. Ensuring that the

reads-from and coherence order built from that total order are valid relies on the fact that the original reads-from

relation and coherence order are well-formed.

7.2.2 From External completion to External visibility. We reason again by contradiction. Given the existence of a total

completes-before order, suppose that the execution witness does not satisfy the External Visibility requirement. This

means that there exists x such that (x, x) is in ob.

Much like in the previous case, we find a way to decompose ob in various subrelations:
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• obs+

• the transitive closure of the sequence of obs* and lob; obs*

The first relation cannot be reflexive, as it would contradict the Internal Visibility requirement. The second relation

cannot be reflexive, as it would be a contradiction of the External Visibility requirement.

7.3 Application to x86

Interestingly, the fact that our equivalence proofs are parametric in lob means that those alternative formulations

apply to x86 as well. In other words this means that our work also offers two new ways of looking at modelling and

verifying x86 designs, including mixed-size accesses.

We distribute those alternative formulations for x86 within the herd+diy distribution [14].

8 CONCLUSION: A WORK IN PROGRESS

We have given a review of the process for formalising the concurrency aspects of the Arm architecture, and given

details about the design principles and rationale behind the Arm consistency model.

Needless to say, the design, maintenance and extension of such a model is work in progress. At the time of writing,

several extensions are in the works internally at Arm and waiting to be upstreamed.

We do hope however that this paper and its accompanying material gives the community the indication that this

investment in formal modelling is in fact a commitment. We very much hope for those formal models to be helpful

foundations or stepping stones towards achieving greater safety and security goals, as highlighted in the introduction.

Acknowledgements. We thank Azalea Raad and James Riely for comments on a draft.
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A COMMON DEFINITIONS (ARMV8-COMMON.CAT)
let IM0 = loc & ((IW * (M\IW)) | ((W\FW) * FW))

(* Coherence-after *)
let ca = fr | co

(* Local read successor *)
let lrs = [W]; po-loc \ intervening-write(po-loc); [R]

(* Local write successor *)
let lws = po-loc; [W]

(* Observed-by *)
let obs = rfe | fre | coe

(* Read-modify-write *)
let rmw = lxsx | amo

(* Dependency-ordered-before *)
let dob = addr | data

| ctrl; [W]
| (ctrl | (addr; po)); [ISB]; po; [R]
| addr; po; [W]
| (addr | data); lrs

(* Atomic-ordered-before *)
let aob = rmw

| [W & range(rmw)]; lrs; [A | Q]

(* Barrier-ordered-before *)
let bob = po; [dmb.full]; po
| po; ([A];amo;[L]); po
| [L]; po; [A]
| [R]; po; [dmb.ld]; po
| [A | Q]; po
| [W]; po; [dmb.st]; po; [W]
| po; [L]

(* Tag-ordered-before *)
let tob = [R & T]; intrinsic; [M \ T]

(* Locally-ordered-before *)
let rec lob = if "Mixed" then lws; si else lws
| dob
| aob
| bob
| tob
| lob; lob

(* Single-copy-atomic-ordered-before *)
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let ER = range(rfe)
let IR = range(rfi)
let rfisw = rfi^-1;si;rfi
let erln = (si & (W*W) | si & (ER * ER) | si & (R*R) & rfisw)+
let MC = classes(erln)
let scaob = si & (ER*IR)

(* Internal visibility requirement *)
acyclic po-loc | ca | rf as internal

(* Atomic: Basic LDXR/STXR constraint to forbid intervening writes. *)
empty rmw & (fre; coe) as atomic

B ORIGINAL ARMV8 MODELWITHOUT MIXED-SIZE
(* Ordered-before *)
let rec ob = obs

| lob
| ob; ob

(* External visibility requirement *)
irreflexive ob as external

C MIXED-SIZE EXTENSION OF THE ORIGINAL ARMV8 MODEL
(* Ordered-before *)
let rec ob = obs; si

| lob
| ob; ob

(* External visibility requirement *)
irreflexive ob as external

D EXTERNAL COMPLETION MODELWITHOUT MIXED-SIZE
let preorder-cb = IM0 | lob
with cb from linearisations(M,preorder-cb)
~empty cb

let rf-fwd = (W*R) & po-loc & (cb & loc)^-1 \ intervening-write(po-loc)
let rf-nfwd = (W*R) & (cb & loc) \ intervening-write(cb & loc | po-loc)
let rf-cb = rf-fwd | rf-nfwd
let co-cb = (cb & loc) & (W*W)

call equal(rf, rf-cb) as rfeq
call equal(co, co-cb) as cbeq

E MIXED-SIZE EXTENSION OF THE EXTERNAL COMPLETION MODEL
let preorder-cb = IM0 | lob | scaob
let preorder-cb-lift = lift(MC,preorder-cb)
with cb from linearisations(MC,preorder-cb-lift)
~empty cb
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let rf-fwd = (W*R) & po-loc & (delift(cb) & loc)^-1 \ intervening-write(po-loc)
let rf-nfwd = (W*R) & (delift(cb) & loc) \ intervening-write(delift(cb) & loc | po-loc)
let rf-cb = rf-fwd | rf-nfwd
let co-cb = (delift(cb) & loc) & (W*W)

call equal(rf, rf-cb) as rfeq
call equal(co, co-cb) as cbeq

F EXTERNAL GLOBAL COMPLETION MODELWITHOUT MIXED-SIZE
let gc-req = (W * _) | (R * _) & ((range(rfe) * _) | (rfi^-1; lob))
let preorder-gcb = IM0 | lob & gc-req
with gcb from linearisations(M, preorder-gcb)
~empty gcb

let rf-gcb = (W * R) & (gcb & loc) \ intervening-write(gcb & loc)
let co-gcb = (W * W) & (gcb & loc)

call equal(rf, rf-gcb)
call equal(co, co-gcb)

G MIXED-SIZE EXTENSION OF THE EXTERNAL GLOBAL COMPLETION MODEL

let gc-req = (W * _) | (R * _) & ((range(rfe) * _) | (rfi^-1; lob))

let preorder-gcb = IM0 | lob & gc-req | scaob

let preorder-gcb-lift = lift(MC,preorder-gcb)

with gcb from linearisations(MC, preorder-gcb-lift)

~empty gcb

let rf-gcb = (W * R) & (delift(gcb) & loc) \ intervening-write(delift(gcb) & loc)

let co-gcb = (W * W) & (delift(gcb) & loc)

call equal(rf, rf-gcb)

call equal(co, co-gcb)
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H ENGLISH TRANSLITERATION OF ARM BASIC TERMINOLOGY

Memory effects on a Location are related by the following relations:

Reads-from
A Reads-from relation that couples reads and writes to the same Location such that each read is paired with a single

write in the program. A read R2 of a Location Reads-from a write W1 to the same Location if and only if R2 takes its

data from W1.

Coherence order
A Coherence order relation for each Location in the program that provides a total order on all writes from all coherent

Observers to that Location, starting with a notional write of the initial value.

Fig. 39. English transliteration of notions fundamental to cat models

Local read successor
A read R2 of a Location is the Local read successor of a write W1 from the same Observer to the same Location if

and only if W1 appears in program order before R2 and there is not a write W3 from the same Observer to the same

Location appearing in program order between W1 and R2.

Local write successor
A write W2 of a Location is a Local write successor of a write W1 from the same Observer to the same Location if and

only if W1 appears in program order before W2.

Coherence-after
A write W2 to a Location is Coherence-after another write W1 to the same Location if and only if W2 is sequenced

after W1 in the Coherence order of the Location.

A write W2 to a Location is Coherence-after a read R1 of the same location if and only if R1 Reads-from a write W3 to

the same Location and W2 is Coherence-after W3.

Observed-by
A read or a write RW1 from an Observer is Observed-by a write W2 from a different Observer if and only if W2 is

coherence-after RW1.

A write W1 from an Observer is Observed-by a read R2 from a different Observer if and only if R2 Reads-from W1.

Fig. 40. English transliteration of basic Arm terminology

I ENGLISH TRANSLITERATION OF ARM LOCALLY-ORDERED-BEFORE RELATION - NONMIXED-SIZE
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Dependency-ordered-before
A dependency creates externally-visible order between a read and another Memory effect generated by the same

observer. A read R1 is Dependency-ordered-before a read or a write RW2 from the same observer if and only if R1

appears in program order before RW2 and any of the following cases apply:

• There is an Address or a Data dependency from R1 to RW2

• RW2 is a write W2 and there is a Control dependency from R1 to W2

• RW2 is a read R2 appearing in program order after a Context synchronization event CSE3, and there is a Control

dependency from R1 to CSE3

• RW2 is a write W2 appearing in program order after a read or a write RW3 and there is an Address dependency

from R1 to RW3

• RW2 is a read R2 that is a Local read successor of a write W3 and there is an Address or a Data dependency from

R1 to W3.

Atomic-ordered-before
Load-Exclusive and Store-Exclusive instructions provide some ordering guarantees, even in the absence of

dependencies. A read or a write RW1 is Atomic-ordered-before a read or a write RW2 from the same Observer if and

only if RW1 appears in program order before RW2 and either of the following cases apply:

• RW1 is a read R1 and RW2 is a write W2 such that R1 and W2 are generated by an atomic instruction or a

successful Load-Exclusive/Store-Exclusive instruction pair to the same Location.

• RW1 is a write W1 generated by an atomic instruction or a successful Store-Exclusive instruction and RW2 is a

read R2 generated by an instruction with Acquire or AcquirePC semantics such that R2 is a Local read successor

of W1.

Barrier-ordered-before
Barrier instructions order prior Memory effects before subsequent Memory effects generated by the same Observer. A

read or a write RW1 is Barrier-ordered-before a read or a write RW2 from the same Observer if and only if RW1

appears in program order before RW2 and any of the following cases apply:

• RW1 appears in program order before a DMB FULL that appears in program order before RW2.

• At least one of RW1 and RW2 is generated by an atomic instruction with both Acquire and Release semantics.

• RW1 is a write W1 generated by an instruction with Release semantics and RW2 is a read R2 generated by an

instruction with Acquire semantics

• RW1 is a read R1 and either:

– R1 appears in program order before a DMB LD that appears in program order before RW2, or

– R1 is generated by an instruction with Acquire or AcquirePC semantics

• RW2 is a write W2 and either:

– RW1 is a write W1 appearing in program order before a DMB ST that appears in program order before W2,

– or W2 is generated by an instruction with Release semantics.

Locally-ordered-before
Dependencies, Local write successor, Load/Store-Exclusive, atomic and barrier instructions can be composed within an

observer to create externally-visible order. A read or a write RW1 is locally-ordered-before a read or a write RW2 from

the same observer if and only if any of the following cases apply:

• RW1 is a write W1 and RW2 is a write W2 such that W2 is a Local write successor of W1

• RW1 is Dependency-ordered-before RW2

• RW1 is Atomic-ordered-before RW2

• RW1 is Barrier-ordered-before RW2

• RW1 is Locally-ordered-before a read or a write that is Locally-ordered-before RW2.

Fig. 41. English transliteration of Arm Locally-ordered-before definitions
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J ENGLISH TRANSLITERATION OF THE EXTERNAL COMPLETION REQUIREMENT - NONMIXED-SIZE

The Completes-before order is a total order that corresponds to the order in which memory effects complete within the

system.

Deriving Reads-from from the Completes-before order
The Completes-before order can be used to resolve the Reads-from relation for every memory access in the system as

follows. For a read R1 of a memory location by an observer, then:

• If there is a write W2 to the same Location from the same Observer and all of the following are true:

– W2 appears in program order before R1

– R1 Completes-before W2

– There are no writes to the Location appearing in program order between W2 and R1 then R1 reads-from W2.

• Otherwise, R1 reads-from its closest preceding write to the same location in the Completes-before order. If no

such write exists, then R1 reads-from the initial value of the memory location.

Deriving Coherence order from the Completes-before order
The Completes-before order can be used to resolve the Coherence order relation for every memory access in the system

as follows:

The Coherence order of writes to a memory location is the order in which those writes appear in the Completes-before

order. The final value of each memory location is therefore determined by the final write to each Location in the

Completes-before order. If no such write exists for a given location, the final value is the initial value of that Location.

External completion requirement
The Completes-before order is a total order over memory effects, such that: for a read or a write RW1 that is

Locally-ordered-before a read or a write RW2, the external completion requirement requires that RW1

Completes-before RW2.

Fig. 42. English transliteration of the External completion requirement

K ENGLISH TRANSLITERATION OF ARM LOCALLY-ORDERED-BEFORE - MIXED-SIZE

Locally-ordered-before
Dependencies, Local write successor, Load/Store-Exclusive, atomic and barrier instructions can be composed within an

Observer to create externally-visible order. A read or write RW1 is Locally-ordered-before a read or write RW2 from

the same Observer if and only if any of the following apply:

• RW1 is a write W1 and RW2 is a write W2 that is equal to or generated by the same instruction as a Local write

successor of RW1.

• RW1 is Dependency-ordered-before RW2.

• RW1 is Atomic-ordered-before RW2.

• RW1 is Barrier-ordered-before RW2.

• RW1 is Locally-ordered-before a read or a write that is Locally-ordered-before RW2.

Fig. 43. English transliteration of the new Arm Locally-ordered-before relation
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L ENGLISH TRANSLITERATION OF ARM ORDERED-BEFORE - MIXED-SIZE

Ordered-before
An arbitrary pair of Memory effects is ordered if it can be linked by a chain of ordered accesses consistent with external

observation. A read or a write RW1 is Ordered-before a read or a write RW2 if and only if any of the following cases

apply:

• RW1 is Observed-by a read or write RW3 that is equal to or generated by the same instruction as RW2;

• RW1 is Locally-ordered-before RW2;

• RW1 is Ordered-before a read or write that is Ordered-before RW2.

Fig. 44. English transliteration of the new Arm Ordered-before relation

M ENGLISH TRANSLITERATION OF THE EXTERNAL GLOBAL COMPLETION REQUIREMENT - NON
MIXED-SIZE

The Globally-completes-before order is a total order that corresponds to the order in which memory effects

globally-complete within the system.

Deriving Reads-from and Coherence order from the Globally-completes-before order
The Globally-completes-before order can be used to resolve the Reads-from and Coherence order relations for every

memory access in the system as follows:

• A read R1 of a memory location by an Observer Reads-from its closest preceding write to the same Location in

the Globally-completes-before order. If no such write exists, then R1 Reads-from the initial value of the memory

location.

• The Coherence order of writes to a memory location is the order in which those writes appear in the

Globally-completes-before order. The final value of each memory location is therefore determined by the final

write to each Location in the Globally-completes-before order. If no such write exists for a given Location, the

final value is the initial value of that Location.

External global completion requirement
For a read or a write RW1 that is Locally-ordered-before a read or a write RW2, the external global completion

requirement requires that RW1 Globally-completes-before RW2 if and only if any of the following statements are true:

• RW1 is a write

• RW1 is a read R1 and either:

– R1 does not Locally-reads-from a write, or

– R1 Locally-reads-from a write that is Locally-ordered-before RW2

Fig. 45. English transliteration of the External global completion requirement
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N ENGLISH TRANSLITERATION OF THE EXTERNAL COMPLETION REQUIREMENT - MIXED-SIZE

The Completes-before order is a total order that corresponds to the order in which memory effects complete within the

system. The following effects constitute a single entry in the Completes-before order:

• writes from the same instruction

• reads from the same instruction which read from external writes

• reads from the same instruction which read from the same internal write.

All other reads constitute distinct entries in the Completes-before order.

External completion requirement
A read or a write RW1 Completes-before a read or a write RW2 if and only if any of the following statements are true:

• RW1 is Locally-ordered-before RW2.

• RW1 is a read R1 and RW2 is a read R2 and R1 is Single-copy-atomic-ordered-before R2.

Fig. 46. English transliteration of the mixed-size External completion requirement

O ENGLISH TRANSLITERATION OF THE EXTERNAL GLOBAL COMPLETION REQUIREMENT -
MIXED-SIZE

The Globally-completes-before order is a total order that corresponds to the order in which memory effects globally-

complete within the system. The following effects constitute a single entry in the Globally-completes-before order:

• writes from the same instruction

• reads from the same instruction which read from external writes

• reads from the same instruction which read from the same internal write.

All other reads constitute distinct entries in the Globally-completes-before order.

External global completion requirement
For a read or a write RW1 that is Locally-ordered-before a read or a write RW2, the external global completion

requirement requires that RW1 Globally-completes-before RW2 if and only if any of the following statements are true:

• RW1 is Locally-ordered-before RW2 and either:

– RW1 is a write.

– RW1 is a read R1 and either:

∗ R1 is not a Local read successor of a write.

∗ R1 is a Local read successor of a write that is Locally-ordered-before RW2.

• RW1 is a read R1 and RW2 is a read R2 and R1 is Single-copy-atomic-ordered-before R2.

Fig. 47. English transliteration of the mixed-size External global completion requirement

P ALL THREE FORMULATIONS OF THE MIXED-SIZE MODEL ARE EQUIVALENT

In this section we give the formal statements of the equivalence theorems, and a high-level overview of the main

arguments for each proof. The formal proofs have been done by Viktor Vafeiadis using the Coq proof assistant and can

be found online [42].
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To start with, observe that all three models follow the same structure: Internal visibility, Atomicity, and a third axiom.

Therefore proving their equivalence amounts to proving that their third axioms are equivalent.

P.1 External visibility and External global completion equivalence

Theorem P.1 (External visibility and External global completion eqivalence). For all execution witness,

such that:

• its relations rf, co, si and lob are well-formed

• the Internal Visibility requirement is satisfied

then:

• if the External Visibility requirement is satisfied, then there exists a global-completes-before order compatible with

that execution witness which satisfies the External global completion requirement;

• if there exists a global-completes-before order compatible with that execution witness which satisfies the External

global completion requirement, then that execution witness satisfies the External Visibility requirement.

P.1.1 From External visibility to External global completion. The structure of the proof is as follows. We build a relation

called pre_egc which consists of the transitive closure of the union of the following relations: rf;si, ca;si and

preorder-gcb. We lift that relation to the level of classes and then linearise the result (which requires showing

that pre_egc is a partial order). We show that the resulting total order is a qualifying globally-completes-before order.

The relation pre_egc is a partial order. The relation pre_egc is evidently transitive as it is defined to be a transitive

closure. The fact that it is irreflexive is less obvious, and we prove it by contradiction.

Observe that the relation pre_egc can be decomposed into the following relations:

• the reflexive-transitive closure of the union of erln;obs+;erln and erln; preorder-gcb; erln, all this se-

quenced with rfi; erln

• the transitive closure of erln; obs+; erln

• the reflexive transitive closure of the sequence of (erln; obs+; erln)* with erln;preorder-gcb; erln, itself

sequenced with erln; obs+; erln again.

Now, suppose that pre_egc is not irreflexive: then there would exists an event x such that (x, x) is in pre_egc. This

means that one of the three relations listed above is reflexive. The second two relations cannot be reflexive as this would

be a direct contradiction of the External Visibility requirement. Suppose the first one is reflexive: there exists x such

that (x, x) is in ((erln; obs+; erln ∪ erln; preorder-gcb; erln))*; (rfi; erln). Therefore there exists y such

that (y,y) is in (rfi;erln); ((erln; obs+; erln ∪ erln; preorder-gcb; erln))*, which in turn means that (y,y) is

either in (erln;obs+;erln | erln; preorder-gcb; erln)*, a contradiction of External Visibility, or in rfi; erln, a

contradiction because the extremities of that relation are a write at the source and a read at the target.

A linearisation of the lift of pre_egc is a qualifying globally-completes-before order. The fact that a linearisation of the

lift of the relation pre_egc is a total order is a triviality because a linearisation is a total order by design. Ensuring that

the reads-from and coherence order built from that total order are valid relies on following the definition of delift and

using the fact that the original reads-from relation and coherence order are well-formed.
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P.1.2 From External global completion to External Visibility. We reason again by contradiction. Given the existence

of a total globally-completes-before order, suppose that the execution witness does not satisfy the External Visibility

requirement. This means that there exists x such that (x, x) is in ob.

Much like in the previous case, we find a way to decompose ob in various subrelations:

• (obs+; si)*

• the transitive closure of the sequence of (obs+; si)* and preorder-gcb, itself sequenced with obs+; si

• the reflexive closure of that same relation, preceded by lob\ gc-req

• lob\ gc-req followed by the reflexive-transitive closure of obs+; si.

The first relation cannot be reflexive, as it would contradict the Internal Visibility requirement. The second relation

cannot be reflexive, as one can prove that if two events are related by that relation, then their respective classes are

ordered in the globally-completes-before order under scrutiny. Therefore we would have a cycle (via the class of x ) in

our order, a contradiction.

If either of the last two relations was reflexive, then either so would be lob\ gc-req, a contradiction since lob is

included in po hence cannot be reflexive, or so would be the transitive closure of the sequence of (obs+; si)* and

preorder-gcb, itself sequenced with obs+; si. We know that last relation cannot be reflexive by the reasoning given

in the previous paragraph.

P.2 External visibility and External completion equivalence

Theorem P.2 (External visibility and External completion eqivalence). For all execution witness, such that:

• its relations rf, co, si and lob are well-formed

• the Internal Visibility requirement is satisfied

then:

• if the External Visibility requirement is satisfied, then there exists a completes-before order compatible with that

execution witness which satisfies the External completion requirement;

• if there exists a completes-before order compatible with that execution witness which satisfies the External completion

requirement, then that execution witness satisfies the External Visibility requirement.

P.2.1 From External visibility to External completion. The structure of the proof is as follows. We build a relation

called pre_ec which consists of the transitive closure of the union of the following relations: rfe; erln, ca; erln

and preorder-cb. We lift that relation to the level of classes and then linearise the result (which requires showing

that pre_ec is a partial order). We show that the resulting total order is a qualifying completes-before order.

The relation pre_ec is a partial order. The relation pre_ec is evidently transitive as it is defined to be a transitive

closure. The fact that it is irreflexive is less obvious, and we prove it by contradiction.

Observe that the relation pre_ec can be decomposed into:

• the transitive closure of the union of erln; obs+; erln

• the sequence of (erln; obs+; erln)with erln; preorder-cb; erln, itself sequenced with (erln; obs+; erln)

again.

Now, suppose that pre_ec is not irreflexive: then there would exists an event x such that (x, x) is in pre_ec. This

means that one of the two relations above is reflexive.
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The first relation being reflexive is a contradiction of the Internal Visibility requirement. The second relation being

reflexive contradicts the External visibility requirement.

A linearisation of the lift of pre_ec is a qualifying globally-completes-before order. The fact that a linearisation of the

lift of the relation pre_ec is a total order is a triviality because a linearisation is a total order by design. Ensuring that

the reads-from and coherence order built from that total order are valid relies on following the definition of delift and

using the fact that the original reads-from relation and coherence order are well-formed.

P.2.2 From External completion to External visibility. Let us reason by contradiction once again: assume a cycle in ob.

Then there also is a cycle in either:

• obs+; si, or

• ((obs+; si); preorder-cb; (obs+; si))+

The first one is a contradiction of the Internal Visibility requirement. The second one cannot be reflexive, as one can

prove that if two events are related by that relation, then their respective classes are ordered in the completes-before

order under scrutiny.
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