arXiv:1608.07531v2 [cs.PL] 30 Aug 2016

Syntax and semantics of the weak consistency
model speci cation language cat

Jade Alglave

Microsoft Research Cambridge
University College London
jaald av@crosdt.co m.algl ave@d a cuk

Patrick Cousot

New York University
emer. Ecole Normale Supérieure, PSL Research University
pcousot @i ns.n . edu, cousot @ sfr

Luc Maranget

INRIA
Lic . Mara ngt @n ra. ff

31st August 2016

Abstract

We provide the syntax and semantics of the cat language, a domain speci ¢ language
to describe consistency properties of parallel/distribut ed programs. The language is imple-
mented in the herd7 tool Alglave and Maranget!(2015).

1 Introduction

The cat language_ Alglave et al. (2015b) is a domain speci ¢ languagéo describe consistency
properties succinctly by constraining an abstraction of paallel program executions into a can-
didate execution and possibly extending this candidate exeution with additional constraints
on the execution environment. The analytic semantics of a program is de ned by its anarchic
semantics that is a set of executions describing computations and aat speci cation Eafl de-
scribing a weak memory model. An example of anarchic semarts semantics forlisa is given
in lAlglave and Cousot (2016). An anarchic semantics is a trwy parallel semantics, with no
global time, describing all possible computations with all possible communications. Thecat
language operates on abstractions of the anarchic executis called candidate executions The
cat speci cation [caf]l checks a candidate execution for the consistency speci cain (including,

http://arxiv.org/abs/1608.07531v2

maybe, by de ning constraints on the program execution envionments, such as the the nal
writes or the coherence order).

The abstraction of an anarchic execution into a candidate ercution is overview in Section
while the cat language is introduced is Section3. Its formal semantics ide ned in Section[4.
Examples can be found in Alglave [2015].

2 Abstraction to candidate executions

The anarchic semantics is a set of executions. Each executiois abstracted to a candidate
execution Hevis} [pg; [T} W, st providing
events[evi$ giving a semantics to instructions; for example inlisa |Alglave and Cousot (2016),
a write instruction w[] x v yields a write event of variable x with value v. Events can be
(for brevity this is not an exhaustive list):
writes, gathered in the setW including the the set W of initial writes coming from the
prelude of the program;
reads gathered in the setR
branch events, gathered in the sefB®
fences gathered in the setB
the program order[pg, relating accesses written in program order in the originalisa program;,
the read-from[f] describing a communication between a write and a read event;
the scope relationsn relating events that come from threads which reside within the same
scope;
A cat speci cation [cafl may add other components to the candidate execution €.g. to specify
constraints on the execution environment) and then checkshat this extended candidate execu-
tion satis es the consistency speci cation, that is, essetially, that the communication relation
satis es the consistency speci cation (under hypotheses n the execution environment).

3 The cat language

A weak consistency speci cation written in the cat language de nes constraints to be satis ed
by the communication relation [[f]of any candidate execution. A typical cat speci cation de nes
new objects depending on the sets and relations of the candide execution (.g. the program
order po or the initial writes IW) and then imposes constraints on these objects that ultimaely
restrict the allowed communications[r] .

3.1 Objects and expressions
3.1.1 Types.

The objects de ned in a cat speci cation may be of the following types (see AppendiX’4.Band
Figure [for the formal details): Eval (event), fag] (tag), (relation between events),Befl (set),
(tuple), (enumeration of tags), funl (unary function type), [proc (unary procedure
type).

3.1.2 De nitions in binding statements

(see Appendix[4.IZ5 and Figurd_17 for their formal semantis) can bind an expression to a
name, which can be used in place of that expression. For exartg

let rfe = rf & ext

de nes the relation rfe as the restriction of the communications rf to events coming from
di erent processes. Formally, rfe is built as the intersection (denoted by & in cat) of the
read-from relation rf and the prede ned relation ext which links events coming from di erent
processes (Figuré11).

A set, relation, function or procedure can be given a name by imding (see FigureT). Bindings
(see AppendiX4.IZ.5 and Figuré17) can be (mutually) recurise (usinglet rec ... and ...).

3.1.3 Functions

(see Appendix[4.12.B and Figuré_T5 for their formal semantig) de ne an object as a function
of a unique formal parameter (which may be an empty tuple() in absence of parameter or a
non-empty tuple for multiple parameters). For example

let extof r = r & ext
let rfe = extof rf

de nes a function extof of a parameterr which intersects the relation r with the relation ext
between events belonging to di erent processes. We then dae the relation rfe as the function
extof applied to the read-from relation rf .

We note that our de nition of extof above is an abbreviation for the binding of an anonym-
ous function

let extof = funr -> r & ext

Functions can be recursive (usinglet rec) and get their actual parameters in a call by tuple-
matching their actual argument.

3.1.4 Events.

All events come out of the candidate execution and there is navay in cat to generate any other
event.

3.1.5 Sets

(see Appendix[4.12.#% and Figuré_16 for their formal semantig) are either empty {} or a homo-
geneous se{og, ..., On, ..} . We do not allow sets of functions or procedures. Prede ned
sets of events are denoted by the following identi ers (see Apendix [Z.I1.1 and Figure[ID for
their formal semantics):

the set of all write eventslW including the initial writes V¥
the set of all read eventdR

the set of all branch eventdB

the set of all fence event&
the universe containing all events of the candidate executin, which is denoted _

New sets can be de ned from existing ones using the followingperations (see AppendiXZ4.12]6,
Figures[1I8,[19 and2D for the formal semantics of these opeliahs):

the =S is the complement of a setS;

the union of two setsS; and S; is Sy | Sp;

the intersection of two setsS; and S, is S; & Sg;
the di erence of two setsS; and S, isS1nS; ;
the addition of an elemente to a setS is e++S;

Matching over sets (see AppendiX"4.12]4 and Figuré16 for théormal semantics) can be
used for (recursive) set de nitions. Match is against the enpty set {} or, for a non-empty
set, a partition e ++ esinto a singleton {e} and the rest of the setes. For example, given a

function f, a setS = fes;er;:::;e,9 and an elementy, the call fold] f (S, y) returns the
value f (e,;f(&,;:::f(&,;Y)), whereiq;iz;:::;in IS some permutation ofl;2;:::;
let fold f =
let rec fold_rec (es,y) = match es with
¢ ->y
|| e ++ es -> fold_rec (es, f(e,y))
end
in fold_rec

3.1.6 Relations between events

(see Appendix[4TIT1 for their formal semantics) can be the mapty relation 0, the identity
relation id , or the relations de ned from the candidate execution:

the program order po;
the read-from[f]
or prede ned relations on events (see Figuré11):
the relation loc between events accessing the same memory location;
the relation ext between events coming from di erent threads.
New relations (see AppendiX4.12J6) can be de ned from setsf@vents (see Figurd—20):
the cartesian product of two sets of eventsS; and S, is S1* S;
or using unary operators on relations (see Figur€19):
the identity closure of a relation r is r?

its re exive-transitive closure is r*

its transitive closure is r+
its complement isr
its inverse isr -1

or using binary operators on relations (see Figuré20):
the union of two relations rl and r2 isrl jr2
the intersection of two relationsrl and r2 isrl & r2
the di erence of two relations rl and r2 isrl nr2

the sequence of two relations1 andr2 isrl;r2 (i.e. the set of pairs(x;y) such that there
exists an intervening z, such that (x;z) 2 r1 and (z;y) 2 r2).

Moreover the following primitives can be used to manipulatesets and relations over events
(see Figure[I2 for their formal semantics):

[Classes]takes a relationr; if r is an equivalence relation, then we return the equivalence
classes of, otherwise anemmur is raised;

[nearisafions 1takes a setS and a relation r and returns a set of relations;viz., if the
relation r is acyclic, we return all the possible linearisations (topdogical sorts in the nite
case) ofr over S, otherwise we return the empty set.

3.1.7 Tuples

(see Appendix[4.1Z.4 and Figuré_16 for their formal semantig) include the empty tuple () , and
constructed tuples (o, ..., 0,). Tuples can be heterogeneous. Tuples are essentially useal t
pass parameters to functions and procedures. Tuples can beedtructured by pattern matching;
for example in the example offold above, we match the argument offold_rec into the pair

(esy) .

3.1.8 Tags.

Events can be tagged (using the annotations on the program istruction generating this event)
and these tags can be used to build relations. The tags must bdeclared (see AppendiX4.1Z]1
and Figure[14) using theenumconstruct. For example

enum memory-order = 'rlx || ‘acq || 'rel

de nes an enumeration type memory-order, which contains three tags: 'rix (relaxed), 'acq
(acquire), 'rel (release).

lisa instructions can be annotated with such tags. Incat, tags have a quote' to not be
confused with identiers. This confusion is impossible inlisa so quotes' are omitted. The
tags that can be worn by instructions must be declared (see Kjure[14 in Appendix[4.12.1), as
follows:

instructions WI{'rlx,'rel}]
instructions R[{rlx,'acq}]

Events generated by an annotatedisa instruction will bear the same tags as the instruction.

The set of events bearing a given tag is provided by [fagZevenis|(t) (see Figure[IB in the
Appendix B.I12.7). For example

let Release = tag2events('rel)
let Acquire = tag2events(‘acq)

de ne the set Release (resp. Acquire) of events bearing the tag'rel (resp. ‘acq).
Tags can be matched against their names as de ned in aenum and with the wildcard _
(see Figure[IB); examples are provided in the next section.

3.1.9 Scopes.

The organisation of a parallel system is not always at. Often, threads (and physical processors
or cores alike) are organised in a hierarchical fashion, tleads being members of a hierarchy of
nested levels, orscopes Examples include: the eponymous scope notion in GPU modelge.g.
Cooperative Thread Array, or cta, in Nvidia PTX), or the notion of shareability domain in
ARM (e.g. ish in ARMv8).

Scopes (see Appendix“4.12.2 for their formal semantics) arspecial tags which must be
declared with the reserved identi er scopes:

enum scopes = 'cta || 'gpu || 'system

The hierarchy of scopes is described in aat le by the functions narrower and wider (which
are reserved identi ers but user-de ned, asscopes is). In the most simple and frequent case,
levels are totally ordered. Then, thewider function takes a scope tag as argument and returns
the immeé:igiately wider scope tag, while thenarrower function returns the immediately narrower
scope ta

let wider(s) = match s with 'gpu -> 'system || 'cta -> 'gpu end
let narrower(s) = match s with 'system -> 'gpu || 'gpu -> 'cta e nd

The above de nitions specify that scopes are ordered from naowest to widest as: 'cta <
'‘gpu < 'system . In other words, a system contains one or more GPUs, and each®J contains
one or more CTAs.

All lisa litmus tests specify how many threadsPQ P1, etc. are involved. Additionally a
scoped litmus test speci es how threads are distributed alag the scope hierarchy, by means of
a scope treesuch as

scopes: (system (gpu (cta PO P1) (cta P2 P3)) (gpu (cta P4 P5) (cta P6 P7)))

which describes the scope hierarchy

(PO P1 cta) (PQ P3 cta) (P4 P5 Cta) (PG P7 Cta)

gpu gpu
system

10ne may also consider heterogeneous systems such as coupledCPUs and GPUs. In that case, the hierarchical
is no longer total and the function narrower returns a set of tags.

The herd7tool checks that the wider function does de ne a hierarchy, in the sense that each
scope has an unigue immediately wider scope except one, theat of the hierarchy, which has
none. It also checks the compatibility of the narrower function and of scope trees with the
de ned hierarchy.

The events in a given scopes are gathered as an equivalence relatioflagZscope](s) (see
Figure [13 in the Appendix [4.12.2). More precisely two eventsare related by [fagZscope|(s)
when they are generated by threads that are contained in the ame scope instance of leved.

Consider for instance the hierarchy depicted above, and tweevents ey, and e,, generated
by POand P2respectively. Theney and e, are related by[fagZscope|('gpu) and unrelated by
[fagZscope]('cta) since POand P2 belong to the same GPU but to di erent CTAs.

3.2 Constraint statements

After de ning sets and relations depending on the candidateexecution, we can impose con-
straints on them (see Figure[ZP for the formal semantics).

3.2.1 Checks

(see Appendix[4.131 and Figuré_22 for their formal semantig) can have the following syntax:
[Hlacyclic jirreflexive jempty] x.

The checks[g[acyclic jirreflexive j]r check if the relation r on events is be acyclic or
irre exive. The check or [gl[empty] S checks if the setS is empty. The checkacyclic r is a
shorthand for irreflexive r+. The symbol 5 denotes the negation. Failed checks reject the
candidate execution which is thereforeforbidden . For example

acyclic po | rf

checks whether the union ofpo and rf is acyclic in all the candidate executions of a given
program.

Users have the option to not enforce the checks, but rather taise them to report properties
of the candidate execution. To do so, users must pre x the chek they are interested in with the
keyword flag , and name the agged test with an identi er name (by using the post x quali er
as name. A failed agged check has no consequence over the acceptem or rejection of the
candidate execution. It is simply reported (viz., agged with the name name) for the user's
information. For example

flag ~(acyclic po | rf) as cycle-found

will ag, using the name cycle-found , all the candidate executions in which there is a cycle in
the union of po and rf .

We often useflag in models that involve data races e.g. C++ or HSA. In such models,
executions that have data races are typically deemed unde ed. We handle this in cat by
agging candidate executions that exhibit data races with the nameundefined .

3.2.2 Procedures. (see Appendix 4.13. 2 and Figure 23 fdr the ir formal semantics)

De nitions of sets and relations and their checks in constrant statements can be gathered and
parameterised using procedures and checked by procedurelisa Procedures are not recursive

and return no result. They have one formal parameter (but that can be a tuple, including the
empty one). Their body is a non-empty list of statements.

For example the following proceduresc implements Sequential Consistency Lampolt|(1979),
given the relation comas parameter:

procedure sc(com) =
let sc-order = (po | com)+
acyclic sc-order

end

The procedure may have local de nitions (like sc-order). The scope of the formal parameter
and local de nitions is limited to the procedure body. Global de nitions (like the relation po)
can be used in the procedure body.

A call (e.g. call sc(rf)) passes the actual parameter (a tuple, heraf , matching the
formal parameter con) and the procedure body is evaluated with the actual parameer.

3.2.3 lteration.

A universally quanti ed check (i.e. a nite conjunction of checks) can be done for all values
e chosen in a setS by a forall iterator (see Appendix [413.3 and Figure[2# for the formal
semantics), as follows:

forall e in S do
call check_contraint(e)
end

3.2.4 Candidate execution extension (with ... from ...)

The construct with o from S introduces an additional constituant o of the se-
mantics, not already part of the candidate execution. This @nstituant o of the semantics is
introduced in the cat le rather than in the anarchic semantics because it only depends on the
program execution events €.g. the coherence order).

The with construct enumerates all possible object® in S and checks the[requirements,
Typically S is a set of relations on events and a relation between events which must satisfy

the [requirementsappearing in the remainder of thecat le.
For example total orders over certain accesses can be builtsing with :

the coherence order between writes to a given memory locatio;

SC accesses in C++ or HSA (we use this in our modelisation of HS, see HSA Foundation
(2015)).

3.3 Evaluation of a cat le on a candidate execution

When evaluated on a candidate execution, &at le returns an if the cat le is syntactically

incorrect. Otherwise the binding de nitions, constraint statements, and with requirements are
evaluated in sequence (see Figurds 3 andl25). If some (un agdi.e. mandatory) constraint
fails, we return to stipulate that the candidate execution does not satisfy the weak
consistency model speci ed by thecat le. Otherwise the candidate execution is accepted,.e.

we return @llowed] In both cases we return a possibly empty set of ags for condions that
are not enforceable (see Appendik4]7), as well as the objexintroduced by with constructs.

4 Syntax and formal semantics of the cat language

4.1 Analytic semantics

The analytic semantics SIPK of a parallel program P with a given cat consistency speci cation
(or weak consistency modelcatlis a set of execution behaviors conforming to this consistency
speci cation. Each such execution behavior = h; i is described in two parts, the
computations h; and the communicationsif} i where theread-from relation is their
common interface.

The possiblecomputations h; [T are described by the anarchic semanticS,JPK of the
program P. The read-from relation [[f] records the correspondance between the reads, the
matching writes, and the communicated values on the computton

The anarchic semanticsS;JPK places only the following restrictions on the commu-
nications of P so all possible computations with all possible read-from riations [f] are
considered.

Satisfaction: a read event has at least one corresponding communicatiom [If%
Singleness a read event must have at most one corresponding communicimn in [,
Match: if a read reads from a write, then the variables read and writen and commu-
nicated value must be the same;

Inception: no communication is possible without the occurrence of bdt the read and
(maybe initial) write it involves (this does not prevent a read to read from a future
write).

Otherwise stated the consistency speci cation/weak constency model is not taken into
account at all by the anarchic semanticsS,JPK

The possiblecommunications are described by communicationgdf} i between commu-
nication i.e. read and/or write events.

The cat le [caf]l generates all possible communication relationg 2 (using the Wwith]
construct). The communication relations c2 include the coherence ordero, etc. More
generally, they specify requirements on the execution enwbnment of the program P.

The cat le semantics sorts out the executions = h; [Ofl i that are feasible for weak
consistency model, one by one.

4.2 Consistent semantics speci cation by cat les

A cat le [cafl 2 Cat de nes a check that an execution = h; [} i satises a consistency
speci cation.

First the computation h; [J of the anarchic semantics is abstracted to a candidate
executionX = (h; [J) = eviS pg 3 0WsH (collecting read, write, branch, fence
and rmw events in[eviS, the program order[pg, the read-from relation[f] initial WV writes,
and the program scope treesr) but where e.g. events on local registers or communicated
values are abstracted away.

10

The cat le [caflis then evaluated onX . Thanks to Wwith] ¢ Ci constructs, the cat

le generates all necessary communication relations = ¢;;:::;¢, between communica-
tion events (including co 2 allCo , etc.) which are necessary to express the consistency
speci cation.

In absence oferron in [Cafl, the nal result

can be lallowedt f; i meaning that the computation h; [J (with abstraction
X = (h; [d)) together with the communication speci cation satis es the
consistency speci cation, or

can also betiforbidden |, f; i meaning thatthe = h; [t i does not satisfy the
consistency speci cation.

In both casesf 2[E]is the set of agged constraints in[cafl satis ed by the execution
= h; 3 i (without any in uence on the [@llowed]forbidden] result).

4.3 Analytic semantics specied by an anarchic semantics an d a cat
speci cation

We de ne below, in Figure[2, the semanticste)JcaiKX of a candidate executionX which returns
a set of answers of the forntj; f; i wherej = flallowedlforbidden g, f is the set of ags that
have been set up onX and , and de nes the communication relation for the execution to
be allowedY forbidden 1

The analytic semantics of a programP with consistency speci cation[cafl is therefore

SiPatK , fh; [ijh; [J2 SJIPKA
of 2[F]: fallowed? f; 2 &G9fcatK((h; [O))g

This analytic semantics SIPKof a program P for a cat speci cation [cafl is the composition SIPK
= catl (S2JPR of two abstractions of the anarchic semanticsviz.

(89 , fhh; md; (h;)ijh; 002 Sg
JatKC) , fh; ijhh; [3; Xi2C"
of 2[F]: hellowed? f; 2 G9JcamKX g
4.4 Candidate executions

Candidate executions are tuples:

X = Vs pgfI0Wso 2 Candidate
, Evts Program-order Read-from Writes Scope-rel

which gather the events, the program orderpg on each thread, the read-from relation[if],
modeling who reads from where, the initial writes[W¥, and a scope relatiornsn

11

4.4.1 Events

e 2 Evt are abstractions of the events generated by a program execion. Events g 2 [EviS
carry the unique program instruction (and its unique program label) which execution generated
this eventel However, this information is not directly available to cat. Auxiliaries to extract
components of an evente are as follows:

loc-of(e) , location of e kind-of(e) , kind of e
pid-of(e) , process identier of e annot-of(e) , annotations of e
from-to-of(e) , events separated by fence everg

The setlevig of events belong toEvts, } (Evt).

The process identi er [pid-of((€) refers to the identi er of the unique process at the origin
of the eventg;

The location [[oc-of(e) can be a memory location or a register;

[kind-of|(e) is the kind of event e: write (I, read (B), branch ([B), fence [B), begin or end of
armw We de ne the following sets of events by kind:

W(X) , fer2levts-0f(X) jkind-oflE) =[Vg R(X) , fE2[evis-of(X) j[kind-of[®) =[Ry
F(X) , fei2levts-of(X) jkind-oflE) =[Hy B(X) , fE2levis-of(X) jkind-of(E) =[By

the annotationsannaot-of(e) of e is a possibly empty set of tags and scopes carried by the
action at the origin of €

letex 2[ElX) be a fence event generated by a localised fence instructidpts] {L 1,....L n}
{L9...,L 9} where this instruction and all Ly, ..., L n, LY, ..., L 9 belong to the
same process dpid-of(Et).

Then from-to-of (&) is the set of pairshg ;Ei such thate is an event generated by the
execution of a program instruction labelledL;, i 2 [1;n] andE is an event generated by
the execution of a program instruction labelled L]-O, j 2 [1;m]. Additionally, we require
hei ;=1 2 [po-of(X) and e ;=i 2 [po-of(X), viz. the fence does separate the two events

andg. If the fence carries an empty set of labels this ifrom-to-offegx) , ;. If the
fence carries no sets of labels, we s&bm-to-offet) , fhe ;=i j heg ;e i 2 [po-of(X) ek ;

=i 2 pooi(X)g.

4.4.2 Program order,

abbreviated po 2 Program-order, abstracts the order of the events of a process in the executh
hence lifts the order in which instructions have been execwgd to the level of events. For each
candidate execution, it is a total order over events within the same thread, hence irre exive and
transitive, and cannot relate events from di erent threads.

4.4.3 Read-from,

abbreviated rf 2 Read-from, } (Write Read), relates a read event of a certain shared variable
X to a unique write event of the same variable. The read-from r&ation essentially indicates
which events read from where.

12

4.4.4 Initial writes

are gathered in the setlIW?2 Writes , } (Write). The initial writes W simply are the writes in
the prelude of the program.

4.4.5 Scope relation,

abbreviated sr 2 Scope-re| relates events that come from threads which reside within he
same scope this is a notion that is mostly used for scoped models such a&PUs (seee.g.,
Alglave et all (2015a) and Section$-3.T19).

Auxiliaries to extract components of a candidate executionX , hevis po it W s are
as follows:

evits-of(X) , [Evid po-of(X) , [PO rf-of (X) ,
sr-of(X) , init-of (X) , ©IW

4.5 Program scope relation de ned by a scope tree and cat scope
hierarchy

A program scope tree speci es a scope relation. The syntax gbrogram scope trees and their
semantics, that is the scope relation that they de ne are dened in Figure[d. Program scope
trees must match the scope hierarchy de ned by thecat le through a scope tag declaration
(see Figure[I#) and the user speci ed functions with resera namesmamrower and Wider], as
checked in Figure[I3.

4.6 Values

The cat language is much inspired by OCaml Leroy et al. [(2014), featting for example types,
immutable bindings, rst-class functions and pattern matching. However, cat is a domain
speci ¢ language, with important di erences from OCaml:

base values are specialised; they are: sets of events, rédats over events, rst class func-
tions; there are also tags, including scope tags, akin to C emmerations or OCaml constant
constructors. There are two structured values: sets of valas and tuples of values, see Fig-
ure[3.

there is a distinction between expressions in Figur€l7 that ealuate to some value, state-
ments in Figure [3, which introduce new de nitions or constraints, and requirements in
Figure [Z8 which introduce new communication relations on the execution environment
and constraints on them.

We use the following notations: square bracketd:::] denote optional components, paren-
theses(:::) denote grouping, (:::) (resp. (:::)*) denotes zero, one or several (resp. one or
several) repetitions of the enclosed components.

13

— Scope trees —

st = (Btagho ::: Pa)
j (Egsh c::sh)

as follows
srel(§ag Po ::: Pn)) E

Srel(5tag Po ::: Pr)) EEtag
Srel(E-fag sy :::[5h)) EEtag’
Srel(5-tag[sh :::[5hh)) E Etag

processef([S-tag Po ::: Pn))
processef5tag[sh :::[Sh))
tags-of((fag Po ::: Pn))
ftags-of((s-tag(sh :::[sh))

program scope trees

Given a scope treési, a setE of events and a scope-tai, de ne [srel[SH) E [5-Tag to be
the relation between di erent events that come from threads which reside in the scope

; (when s-fag 6 [5-tag)
fhe; dij e;2 EN9i;j 2[0;n]:
[pid-of(e) = R " pid-of(e?) = R g
n

[stelst) E 5tag’ (when[5-fag 6 [5-fag)
i=0
fhe; fij e;f2 EA s
9R;R 2 ., processefSh :::[Sh) :
[pid-of(e) = P " [pid-of(e’) = P g

fs-fadg
n
f5-fagy [[ltags-of(()

i=0

If the program has a scope-tredsi then the candidate executionX must have its scope
relation component st =[sr=0f(X) be such that for all 2 [tags-o(st), =
Lsrel (SY) (evis-of(X)) [5-Tag

Figure 1: Semantics of program scope trees

14

4.7 Consistency speci cations

Consistency speci cations (orcat les/speci cations) [Cafl Iter candidate executions and extend
them with communication relations. In other words, the semantics @< JcaiKX of a cat speci c-
ation [cafl is de ned with respect to a candidate executionX and its result extend it to specify
requirements on the execution environment.

4.7.1 Evaluating a [cail speci cation

means allowing or forbidding that candidate execution. Mot precisely, evaluating acat le
makes a result objec{j; f; ; T i]evolve, where:

Judgementsj 2 0], fallowed ;forbidden g can be of two kinds:@llowed]when a candid-
ate execution passes all the checks imposed by theat speci cation, or farbidden 1 when
a candidate execution fails on one of the checks of theat speci cation [catl

Flagged checkd 2[E], } (ldentier) collect identi ers of checks that have been agged
and are recorded to signal certain executionsd.g., the ones with data races).

Environments 2[E] associate identi ers (which belong to the setldentier) to typed
values; more precisely environments are partial functiondrom identi ers to values:

, Identier 9[V:

During the evaluation of the cat le [cafl the environment 2[Elgets augmented with new
de nitions as evaluation progresses. It evolves also locBl when evaluating functions and
procedures, according to the static scoping or block-struired visibility rule.

Sets of communication relation identi ers ! record the identi ers of communication rela-
tions introduced by a with] requirement.

I 2 .} (Communication-relation-identi er)

During the evaluation of the cat le [caf] the set! 2[W]of communication relation identi -
ers gets augmented with new identi ers introduced byWwithIidIffoml . . . requirements, see
Figure28. The relation (id) which is the value of such communication relation identi ers
is found in the environment . The nal verdict in Figure Zcollects this information
in the nal result of the [Cafl evaluation.

Results collect judgements, agged checks, environments, and comuomication relation
identi ers or raise if needed.

r = hf ;! i 2 R, @FENNWIC)I[f erug

A result may be unde ned e.g. when an implementation might not terminate, for example,
when evaluating a non-terminating function. The result can also beemon when the cat le
is incorrect. The di erence is that an implementation of cat is assumed to signagrron but
is not @quired to report unde ned results. The nal resulti s collected in the nal verdict

h f; e, (@i, see Figurel2.

Initially, the judgement is @Ellowed] the set of ags is empty, prede ned identi ers are im-
plicitly bound to event sets and relations over events as degibed in Section[4.11.1 and Figures
[I0 and[11, and the set of communication relation identi ers 5 empty, see FigurdR.

15

4.7.2 Specications

(or cat les) are lists of requirements preceded by an identi er, used for documentation purposes.
We give the syntax and semantics of speci cations in Figurd R

The requirements constitutive of the speci cation are evalated in sequence, until one re-
quirement raiseserran or forbidden |, or until the end of the requirement list. In that latter case,
the speci cation accepts the candidate execution, hence liaesallowed]

4.7.3 The nal verdict

in Figure 2is given at the top-level, gets rid of the environment, and returns the communication
relations in S obtained by nding the value of the communication relation i denti ers in the
environment. If S is empty, we return forbidden] (with unmodi ed ags). If S containserrun,
the is returned.

cal 2 Cat
catl := identier

| identi er fequirements

G9Jdidentier KX , fh@lowed? ;; ;ig
(=) Jidenti er , Iverdici(s)JrequirementsKX halloweds ;; ;; ;i)

GaJeatK , fhX; ij X 2 Candidate® 2[Communication-relafion]”
of 2[F]: Hallowedt f; 2 GeJcaiKX g

verdict; , fhforbiddenT ;; ;ig

verdiclS v whengmn 2 S

[verdictf ji2 g , fhji fi; i@@iji2 g otherwise
[ﬁlz!i

Figure 2: Semantics of speci cations

4.8 Statements

Requirements can bdstatements introducing new binding de nitions and checking constraints,
or the With 1id]fromi[S] requirement introducing a new communication relation iderti ed by [dl
Statements are evaluated for their e ect: adding new de nitions or checking constraints.
We give their syntax and semantics in Figure[3. Note that oncean has been raised, we
stay in that state. Moreover statements have nowith] requirement so cannot introduce new

16

communication identi ers. Therefore the set of communication relation identi ers is unchanged
by the evaluation of a statement,! °= ! in Figure

statements 2 Statements

n= fStatementy”
2 Statement
Sfafemen ::=
j [consfrainfl

“ 2 Candidate'FEER]
A _wmx_m
if j°=[allowed] then
‘JSI&[&DJ.&DIS<X P S
etse [{% % % 1]

(o) JSfatementKX emon , [Ermon

Figure 3: Semantics of statements

4.9 Typed values and semantic domains

Typed values, (gathered in the setl/) are given in Figure[. Events (of type evt) belong to
the set Evt. There are no operation on events so the typevt can only be used to type elements
of relations or sets. Typed values include (see Figurgl 5):

the emon symbol,
tags (of type tag), which belong to Tag;
relations over events (of typerel), which belong to } (Evt Ewt);

sets (of type set) of values, which belong to} (V); sets have to be homogeneous, and cannot
be sets of functions or procedures, as re ected by the predate well-formed

S
tuples (of type tuple) of values, which belong to , Qi”:1
enumerations of tags (of typeenum), which belong to } (Tag);
functions (of type fun);

non-recursive procedures (of typeproc).

17

The value of functions and procedures are closures memornigj their parameter (which be-
longs to[Pat)), their body (which in the case of functions belongs toExpr] and in the case of
procedures can be a list of elements @tatement), and declaration environment (which belongs
to [E). On a call, the actual parameters are evaluated in the callig environment and the body
in the declaration environment enriched by the value of the brmal parameters and the local
bindings. After the call, evaluation goes on in the calling evironment. This is therefore static
scoping.

type 2 Type

unary function type

pel =

evt events
j @ tag
J relation between events
] Bel set
J tuple
J ETTUITT enumeration
j
] P

unary procedure type

Figure 4: Typed values

410 Auxiliaries

To de ne the semantics of operators over sets and relationsni particular we need to de ne a
certain number of auxiliaries (summarised in Figurel®).

4.11 Expressions

Expressions let the user build new sets or relations over tagyand events. Figurel¥ summarises
the syntax of expressions.

Several constructs are non-deterministic: the set matchig of Section[4.IZ4, the iteration
over sets of Sectiori4.13]3. In the semantics, only one re$us nondeterministically picked out
of all possible ones. This is dierent from the With] requirement of Section[4.14.P2 where all
possibilities for choosing the communication relation areenumerated.

The semantics of an expression ismronwhenever the semantics of any one of its subexpressions
isermon To leave this check implicit, we assume that the mathemati@l construct let fiype-y; =
G9Jexpri KX ; i 2 [1;°] in ::: equalsemronwhenever there exists in [1;] such that (5 Jexpr K=
Cemon

18

well-formedS) , 8fyperV 2 S :[fiype] 62 Funiprocy ~ 8 fype™M° 2 S :[iype] = fype”]

— Semantic domains —

Vv,
ferrorg
[tag: Tag
[rel:} (Evt EwW)

[setfS 2 } (W) j pelformed)
[¥
[tuple:(fOQI V)

n2N;n> 1 i=2

[enum:} (Tag)

[fun:((Pat! Expr) EJ)

[proc:((Pat!f Statemeng®) EJ)
, Identier 9V
, flallowedyforbidden g
. }(ldentier)
.} (Communication-relation-identi er)

, @I EW) [f emog

_h
NN YN
D= T e m

Figure 5: Semantic domains

ix , fhe;dje2Xg

r;r® . fhereljorl’: eeli2 r ~heflrefi2 1%
dom(r) , fxj9y:hx;vyi2 rg

range(r) , fyjOx:h yi2 rg

d(r) . Fom(D)[Fange(r)]

check sets

typed values

environments
judgements

agged checks

set of com. identi ers
results

identity relation on set X
sequence of relations
domain of relation r

range of relationr
eld of relation r

Ifp F= fX2}(S)jF(X) Xg the least xpoint of the -increasing operator
F on the powerset} (S) [Tarski (1955)

Figure 6: Auxiliaries for de ning operators' semantics

4.11.1 Identiers

are either prede ned or de ned by the user through de nition statements. We list the reserved
identi ers in Figure 8] User-de ned identi ers cannot be re served identi ers and are bound in

the environment (see Figure[®).

19

simple] 2 Simples
simple =
] identi ers
j &g tags
] anonymous functions
| [procedurg procedures
j [Eed sets
] tuples
[clausd 2 Clauses
clause =
[l 1fag > exprfl| fag -> exprig [-> Expr
i 010 > Eronl [d+dl -> Expr
Exprp 2 Expr
e s
J simple simples
] EXpIERD function application
] (Expr)] begin exprend grouping
] let [rec][pbinding]fandpindingly in Expn binding expressions
j [mafchExpnwithllclause end matching
] Op)] operators on sets and relations
2 De nition
= [decl
| let [rec]|binding|fandbindingy
Figure 7: Simple expressions, expressions and de nitions
Prede ned identi ers denoting sets of events appear in Figure[I0. We have: the univer-

sal sets, the set of all write, read, memory, branch and fenceevents, as well as the set of initial
writes. The semantics of these identi ers, given in Figure D is straightforward; they denote the
eponymous sets of events.

Prede ned identi ers denoting relations on events appear in Figure[I1. We have: the
empty and identity relations, the relation over events accessing the same memory location, the
relation over events with di erent pids, the program order, and the read-from relation.

20

Keywords,

{[acyclic] and, as, begin, [call] [dg, end, emum [flag} forall, from} funi in,
[nstructions 7] liireflexive], let , [mafch, [procedure] rec, sctopes, with] }

Primitives ,
{classes] fromio], linearisations], fagZevents } tag2scopes}

Names,
{__, 0B Ex]E d W loc] M marower, po, |], mmw MY wider] }
Reserved , Keywords[Primitives|[Names

Figure 8: List of reserved identi ers

[[d12 Identier

[d]12 Communication-relation-identier , Identi er HReserveH

(o) IdIKX , if]2 then (when[id] 62Names
letfypery = (id) in
if iype] =remum then [Seiv else [fypeyv
else cermor

(for [d]2 Names see Figures_I0 o 111)

Figure 9: Semantics of identi ers

21

aevt

prede ned-events

(693 KX
(59 KX
69 JRKX
(59 JBKX
(59 JHKX
(59) JINKX

(59 JIWIKX

—_— s —

mw o s
i

g = 2|

serfeviie jrel 2[evis-of(X)g

setf evile jre 2levis-of(X) \ [Wi(X)g
serfeveie el 2levis-oi(X) \ [R(X)g

serf evrie jrel 2levis-o(X) \ [BI(X)g
serfevre jrel 2levis-of(X) \ [E(X)g
serfeviie jrer 2[evis-of(X) \ (RI(X) [WA(X))g
serfeveie jre 2[0nit-of(X)g

where &3 VKX (54 KX

annotable events
write events
read events

branch events
fence events

all events

initial writes
memory events M= [R
annotable events

events

write events

read events

branch events

fence events

memory events
initial write events

Figure 10: Prede ned sets and their semantics

22

The semantics of these prede ned identi ers, given in Figure[I1 is relatively straightforward
again: [@ is the empty relation, is the identity relation, [oc] the relation between events
accessing the same variable, angxt the relation between events from di erent threads. It is
the eponymous relation forpg and [f]

— Prede ned relations over events —

prede ned-relations = [empty relation
j identity
j o] same location
J external (di erent pids)
] program order
| i read-from
] mmw read-modify-write

— Semantics of prede ned relations —

GIJOKX el
AKX, Fellpgsog,, - relfherm jre2levisoi(X)g
69doc KX, [el¥hercefi 2[evisof(X) [evis-o(X) [Toc-of() =[loc-of(ef)g
G9JextkX , [el¥hercefi 2[evisoi(X) [evis-ol(X) j ~[pid-of(E) 6 [pid-of(El)g

E9JpoKX , [ellpo-of(X)
(o) KX ., [ellfofl(X)
E9IrmwkX . let RMW = fhr; wij9Epres 2levis-oi(X) :
[kind-oflEy) = [beginrmw” [kind-of(Er) =[Cendrm
he,; i 2 [poof(X) (@ 2[evisol(X) : hew;rei 2 [po-of(X) »
hes ri 2 [po-of(X)) ~hr; wi 2 [po-of(X) » hw;resi 2 [po-of(X) »
(@ 2evis=0l(X) - w;rei 2 [po-of(X) / her i 2 [po-of(X)
(@ 2[evis-of(X) : (hen;mEi 2 [po-of(X) N herEki 2 [po-of(X)) »
kind-off@e) 2 f [peginrmwendrmig)g

in

lelRMW

Figure 11: Prede ned relations over events and their semarits

23

4.12 Primitives to manipulate sets and relations over event S

appear in Figure[I2. We have ve primitives (Primitives, flclasses] fromio] [inearisafions],

fagZevents |, fagZscopelg). We will detail the primitives [fagZevenis | and fagZscope] in Sec-
tion B.1Z.7. For the other three primitives:

[Classes]takes as argument an expressiogxpr}, which should evaluate as a relationr; if r
is an equivalence relation, then we return the equivalencelasses ofr, otherwise we raise
an Efmor,

linearisaiions 1takes as argument a pair of two expressiornsxpry, which should evaluate
to a set S, and gxprp, which should evaluate to a relationr; if this relation is acyclic,
then we return all the possible linearisations (topologicad sorts) of r over S, otherwise we
return the empty set.

takes as argument a expressioxpr, which should evaluate to a setS of tags,
the events tagged with these tags should be fence events, arle result is the union of all
their sets of pairs of events separated by these fence events

— Semantics of primitive functions —
t9classes EXprKX , letfypey = (E9JexprKX in
if (type]=Lrel) » ra() orArr r)then
serfserfevie 2 [d ()] herefi 2 rg fef 2 [d (N

elsecermor
(9Jlinearisations ExprKX , letiypery = &9JexprKX in

if (iyperv = [uple:}&etss;[rel¥i) * (8fype,sVv 2 s :[iype,] =[evi) then
if r* \[s = ; then
setfel}°2 } (s s)jr\ (s s) rorr{o 0
(8m6rel2 s:egEfi2 0 hefiei 2 r9g

else[set}
elsecerror
t9Jfromto ExprKX , letfypeS = (9JEXprKX in

if (J@:@n)’\ (8fypee 2 S :fiypes] =[evil” e 2[F(X)) then
Eell [om-to-offe)

e2s
elsecerror

Figure 12: Semantics of primitives

4.12.1 Tags

24

Tags essentially are identi ers preceded by a quoté (to distinguish them form identi ers in
bindings); and we gather them in sets, as shown in Figur€13. &/ rst de ne an auxiliary over

a tagfag}

is-tag-declaredi checks that[fag] has been de ned in an environment , i.e. belongs to an
enumerationftag-sef in

Now, the value of a tag' [[d]is the corresponding typed value if the tag has been declareih
the environment , or anemn if not.

Finally, the primitive gathers all events bearing the tadfag, provided that the
tag [fag] is declared in the environment .

Declarations. One can declare enumerations of tags named by an identi er vih the con-
struct One can use these tags taannotate Lisa instructions, using the eponymous
construct.

Declarations (see Figurd_14) augment the environment. The ect of an Emumdeclaration is
to extend the environment with the corresponding set of tags In other terms, the semantics of
emumid] = [|]fagh ::: | ffagh is to augment the environment with the set of typed tags
ffagh; : : :fagh, under the namelidl

The semantics of aninstruction declaration is as follows: if there is a tag not in the
environment, we raise an error; and if there is an event whosé&" tag is not in the i tag set,
we raise an error.

4.12.2 Scopes.

Semantically, we distinguish scope tags s-tapfrom other tags, as shown in Figure[IB. Thus
for erarmdeclarations, the identi er [stopes) is reserved to declare scopes. If aBnumsctopep
declaration is provided then two functionsmrarrower] and wider] must be declared on scope tags,
to de ne the set of all possible scope hierarchies. Finallythe primitive builds the
relation between events coming from instructions that belag to the same scope\iz., the scope
instances of that scope) relatively to a scope tree appearing in the original program. We give
its semantics in Figure[T3.

Matching over tags is as follows:
match expr] with
Il [@gh -> Expm
..
Il [@gh -> Exph
Il __ > Expm
end

The value of the[maich expression is computed as follow: rst evaluatgexpr]to some value
3, which must be a tagt. Thenmis compared with the tagsffagh, :::, ffagh, in that order. If
some tag patternffag] equalst, then the value of thelmaich is the value of the corresponding
expressiorexpr} Otherwise, the value of themaichis the value of the default expressioexpry.
As the default clause___ -> Expry is optional, the construct may fail in We give
the semantics of matching over tags in Figuré_13.

25

Tags —

fag 2 Tag
tag =
s-tag = [ag scope tags

Aucxiliaries over tags —

is-tag-declared [dK , 9[ag-sef2 |[dom()|: (fag-sei) = A idl2T

tag-set-of) [dK , f'[dPj9 fag-sef2 [dom()|: (fag-sei) = A
rag] id2 T~ rag] [dP2 Tg

— Value of atag'[d] —

HIIKX
i S-tag-deciareds @K then [ragr]] else remmor

Gathering all events bearing the same tag —

Godtag2events(' [id) KX ,
if [s-tag-declared [dK then fr12[evis-of(X) j ' id] 2[annot-of(e)g

else remor

Building the scope instance of leves-tag —

(s92ag2scope([s-fag) KX ,
letfiypent = G9Jwider [s-fagKX
and [ype:n = G9Jnarrower [S-tagkKX in
if [Ypew = [f[ag:]” iypen]2 f fFagysetg ~ [is-tag-declareffs-tagk ~ 8'[id] 2 ftag-set-ofJs-fagK :
t="Md) el)Ffg [SeoX) [
fypen)= [@g)™ n = fagy id]) (SEei(X) 'l (SEol(X) Stag
fypen] =Csen” fagy] 12 n) [Seof(X) 'd] [Sraf(X) E-tag
then
Brol(X) E-Tag

else

(S1AM0]|

— Tag matching —

&9 Imatchexpr With1[] 1fagh -> expm :::| fagh -> Expm otherwiseendkX
let [fpeT} = GIJERPHKX in
if iype] 6 [fag] then e else leti = mipdk j t = ffagkg in
if i 6+ 1 then{sJexpr] KX
else if otherwise= |__ -> [EXprh+1 then 9Jexprh+1 KX
else (e

Figure 13: Tags and their semantics

lannotation|
annotation

decli
decl

— Declarations —

2

2

)
j

Annotation

[Setdl (annotations are sets of tags)
Decl

emumid] = [[] g f| fagy] (wheriid] 6 scopes)

scopes= [[| E-fagf|]
[nsfructions 1fainsir] [flannofafionly” |

— Semantics ofermum —

G9Jenundid] = [| Jfagy ::: | fag KX [51] (including [id] = [scopes)
b, f;, [dl:=renumf ragfagh; : : - ;rgfag gf; !]
— Semantics ofinstructions 1 —
9Jinstructions [@evl [[annotafionh, :::,fannofafionl,] KX [ij; f; ;1 1] ,

let fiypei-|T; = (oJannofafion] KX [, f; ;T i} i 2[1;n] in
it 8i 2 [1;n] : yper] =rsen” 8 fype”t 2 Ti :fype’ = [ag]”

8e1 2[evis-of(X) : (kind-of(e) =[@aevi)) (8i 2 [1;n] {annotofE); 2 T)
then else remor

Figure 14: Declarations

27

4.12.3 Functions

Functions are rst class values, as re ected by the anonymous functionconstruct funl[pat] ->
Expr} We call the expressionexpr]the body of the function. A function takes one argument[pat]
only. When this argument is a tuple, it may be destructured by a tuple pattern (idh, :::,id}).
The value of a function, given in Figure[I5, is itsclosure; we write h [d]-[pody; % for a
closure with parameterfid] body [body| and declaration environment ° (this closure can also be

understood as a triple lid} 9).

Function calls are written expry exXprp. That is, functions are of arity one and the application
operator is left implicit. Notice that function applicatio n binds tighter than all binary operators
(see Section 4.12]6) and looser that post x operators (see€&stion [4.12.6). Furthermore the
implicit application operator is left-associative.

The cat language has call-by-value semantics. That is, the e ectie parametergxprp is
evaluated before being bound to the function formal parameer, see Figure1b.

4.12.4 Sets and tuples.

Sets are written as follows: { Expry, EXPr, :::, EXPrh} With n greater than 0. As events are
not values, one cannot build a set of events using explicit gexpressions. Sets are homogeneous,
i.e. contain elements of the same type. We give their semanticsiFigure [18. The value of {}

is the empty set, and the value of{expry, :::, EXprh} is the set of valuesfv; :::v,g where the

v; are the values ofexpr].

Matching over sets is as follows:

match expr with

I > Expm
|| Gk ++0db -> Exprp

end

We compute the value of the[maichi as follow: rst evaluate gxpr] to some valuew, which
must be a set. Ifwis the empty set {} , then the value of the [maich is the value of gxpry.
Otherwise, ifmis a non-empty setS, then let e be some element irS and S° be the setS minus
the elemente. The value of themaich is the value ofexprp in a context wherelid} is bound
to e and[idb is bound to S°. We give the semantics of matching over sets in Figuré16, whe
the non-deterministic choicee 2 s is arbitrary (and unknown). So the semantics in Figure[1&
returns one possible match (as opposed to all possibilitigs

Tuples include the empty tuple () , and constructed tuples (EXprh, EXPTp, :::, [EXPTh), With
n greater than 2. In other words there is no tuple of size one (which avoids amiguity with
grouping between parentheses).

We give their semantics in Figure[I&. The value of() is the empty tuple hi, and the value
of lexpry; :::; EXprhi is the tuple of valueshvy; :::; voi where thev; are the values ofexpry;
we do not impose that these valuedwy; :::; v,i have the same type.

28

— Patterns —

paf 2 Pat
pag == MO j (Ef, o)

— Anonymous functions —

2 Function
n= funlpat -> expn

— Values of functions —

E9Jun [-> erprkX © , Emh id-expry

COXum() > Exprkx ° , funh () -expg 9

GoJunl(idh, :::, [d}) -> exprkX © N
funth Hidh; :::;0d}i -expy 9

— Semantics of function calls —

9Jexpr EXpp KX, (when expry 62Primitives)
letfiypevi = G9JexpnKX ; i 2[L2] in
match [fyper:jvi with
jinh [d-prpn 9 _ GJExprkX d]:= [ypezve]
jlanh () -pxpg % _ if ypezve = [fuplechi then
9 eRpTKX °
else cemor
jEanch Hidk; ::o0dhi -pxpg 4 _ if ypezv2 = fupleshes; 1::; ei® T = nthen
9JexprKX Yidh = e]:::[idh = en]
else cermor
rerron

| P

Figure 15: Semantics of functions

Grouping s straightforward, as shown in Figure[16: the semantics of @arenthesised expres-
sion (expr) is the semantics ofexpr}, idem for begin Expr end.

4.12.5 Bindings

are of the form[pat] = expr or [dljpat] =xpr, wherelidljpat] =Expris syntactic sugar forlid] = [funl
[pat] -> expr} As shown in Figure[17, bindings simply update the environmat . The bindings

29

Sets and tuples —

Befl 2 Set
sei == { | {exenf, expro }
2 Tuple
= 0 | (expn, expnf, EXpro)

Semantics of sets —

Y KX, Ee
EOHExph, 111, EXPHIKX
letiypevi = &9JexprKX ;i 2 [0;n] in
let S =[SeTf[yper:V1;:::;[¥Pen:Mnd in
if then S else remor

Set matching —

(9 Jmatchexprp With1[] 1 -> exprul ldh +4idb -> Exprp endkX
let iypers = oJexprp KX in
if fype] 6[sell then rerror
else if s=; then (9Jexpry KX

else lete2 s in

9 Jexprp KX [idl :=rset)(s n feg)]fidh = €]

Semantics of tuples —

6930 KX, [uplethi
CINEXEh, i, EXEH)KX
fuple:F&oJexprn KX ;125 E9Jexprm KX i

Semantics of grouping —

DI exp) KX, E9JexprKX
£9Jbegin exprendKX , (9JexprKX

Figure 16: Semantics of sets, tuples and grouping

30

sets

tuples

n>2

for [paf] = gxpr] are as follows: ifjpaf] is () , then expr] must evaluate to the empty tuple; if [pat]
islidl or (id), then[idlis bound to the value ofxpry if [pat] is a proper tuple pattern (idh, :::,
id}) with n greater than 2, then expr] must evaluate to a tuple value of sizen (W, :::, ¥h)
and the namedid}, :::, [d} are bound to the valuesvy, :::, ¥h.

31

— Bindings —

binding 2 Binding
binding] = [paf=Expn j [d][pat]=Expr|
wherelid]paf] = expn , [d] =[funl[pat] -> Eexpn

— Value of a binding —

G9Jpat] = exprKX , match[paf]with
j0 _ [uplechi

jidlj(id) _ [d]:= &JexprKX]
j(idh, <2 idk)

match (&9 JexprKX) with

jfuplerber; (it emi _ [[dh = en]::: fidh = em]

J___ _ [Emon

GoJidlpat] = pxprkKX , (9Jid] =[funi[paf] -> exprkX

— Binding de nitions

oo Jlet and ::: and[pinding}, KX ,
(&9 Jpindingh, KX (::: (E9Jpindingh KX) ::3))

Recursive function binding:

G9Jdet rec [idh path = exprh and ::: andldl, [path, = Exprh KX
letclt =

GoJumpat) -> expr KX [idh = cly]:::[id == cly] in
j=1
[idh ;= cl} 1:::[idh := cl}]
Recursive set/relation binding:

GsJetrec [dh = Expm and ::: andidl = Exprh KX
Y1

Y Y
let Fi(Xj), letypesi = &9dexpnKX [[Od] = xj] in
j=1 j=1 j=1
if (fype:]2 fsemfrellg) then ype i elseemor i 2 [1;n]
¥ Yon Y
in let e=|fp- - Xi Fi(X) in
i=1 i=1 Q=1 =1

if (9i 2[1;n]:e =remo) then Emuy else [idh := e]:::[idh = en]
— Binding expressions —

&) Jlet and ::: and[pinding}, inggxprKX ,
o) JexprKX (E9)Jlet and ::: andpindingl, KX)

t9Jet rec [dh = exprp and ::: andld}, = Expr, in EXprKX
(69 JexprKX (69Jetrec [idh = exprp and ::

:andlidl, = exprhKX)

Figure 17: Bindings and their semantics

Binding de nitions happen through the let and let rec constructs, which bind value
names for the rest of a speci cation evaluation. We give the emantics of binding de nitions in
Figure [I4.

First, the construct let and ::: andpinding},, that is, let [path =Expry and :::
and[paf}, =[Eexpr, evaluatesexpry, :::, EXprh, and binds the names in the patterngpat, :::,
[Pat} to the resulting values.

Second, for recursive function bindingslet rec [d} [path =Expry and ::: and[idLk [pat,, =
[EXprh, we follow/Milner and Toftel (1991) where the proof of existerte and unicity of the in nite
closurecl® is based orl Aczél|(19€8).

Third, for recursive set or relation bindings let rec [idh =Exprp and ::: andlidl, =Expr,
we compute the least solution of the equationdidh =Expry, :::, idh =EXpr, on sets or re-
lations using inclusion for ordering. These xpoint equations must satisfy the -monotony
(increasingness) hypotheses of Tarski (1955) xpoint theoem or else the result is unde ned.

The recursive bindings may be mutually recursive. We suppos these recursive de nitions
well-formed, i.e. terminating. The result of ill-formed de nitions is unde ned (i.e. an imple-
mentation might return an error or never terminate).

Binding expressions happen through the construct let [rec] [bindings| in Expn, which
locally binds the names de ned bypindings]to evaluateexpr} Both non-recursive and recursive
bindings are allowed.

4.12.6 Operators on sets and relations

Operators can be unary or binary. We list them in Figure[18, ard detail their semantics below.

— Operators on sets and relations —

op] 2 Operators

Op] = [EXPI+HEXPT set addition
] Expr*Expn cartesian product
j Exenl Bxpn union
j Expré&expn intersection
J EXpn; EXEY relation composition
j Erpm+ transitive closure
J Expn? re exive closure
j Expn* re exive and transitive closure
j Exp-l inverse
I Expn\ Expr subtraction
j HEXPT complement

Figure 18: List of both unary and binary operators

33

Unary operators. Given an expression denoting a relation, we can build its idetity closure
with the operator ?, its re exive-transitive closure with the operator *, its transitive closure
with +, its complement with 5 and its inverse with -1 . These operators are postx, and are
de ned on relations only, except for the complement, which @n apply to sets of events or tags
as well. Figure[I9 gathers them all. We recall that the value didenti er [@is the empty relation.

postxed op| cat-operation-ofJopKX r relation operation
* Ifp - Migvisofx) [Xr | re exive closure
Ifp Kro[oxgr irre exive closure
lievisofx) [T identity closure
-1 fhefrei jherei 2 rg | inverse

— Unary operators on relations —

b9dexpr opkX
let[ypey = GIJEXprKX in

if fype] =Lrell then
refl:fcat-operation-ofJopKX r

else

— Complement of a set or relation —

SERC 52511 O
let[ypess = G9JexprkX in

if fype|=[Sen " 8[iypee 2 s :[iype]=[&v then
et feviiel jrel 2[evis-of(X)g ns)

else if [iypg =[S0 » 9[d]2 [dom()|: (id) =remumT ~ s T then
BetAT ns)

else if [type =[rell then
Fefl(evsai(X) [evis-olX)) n's)

else cerror

Figure 19: Semantics of unary operators

Binary operators. We can build the sequence (or composition in the sense of Fige[8)
of two expressions with the operator;, de ned on relations only. We can add an element to a
set: the addition operatorgxpry ++EXprp operates on sets. The value géxprp must be a set of
values S and the operator returns the setS augmented with the value ofgxpry. We can build

34

a new relation out of the cartesian product of two sets of evets, with the in x operator *.

We can build the union, intersection, and di erence of sets ad relations as summarised
in Figure Z0. The semantics ofexpry opEXprp is the operator op applied to the sets (resp.
relations) s; and s, viz., the values ofexpry and gxprp.

35

— Sequence of relations—

(59Jexprh ; EXPRKX ;
letiyperyi = E9JexpnKX ;i 2[12] in
if [yper] = [ypez] =[rellthen
[cel.Y 1y 2
else remmor

— Adding an element to a set —

(9 Jexpry, ++EXPrRKX '
letfypecvi = GoJexpnKX ; i 2[12] in
let S :|§_£E(f19 [V2) in
if then S else cemor

— Cartesian product of two sets of events —

(9)Jexpry * EXprpKX :
letfypecsi = Go9JexpnKX ; i 2[1;2] in
if [ype]= =IEEI"8 2s1[s :fiype]=Cev then
ells; s
else cemmor

op | cat-operation-ofJopK

| [union
& \ intersection
\ n di erence

— Binary operators relative to both sets and relations —

9Jexpmh OPEXPTRKX
letfypesi = Go9JexpnKX ; i 2[1;2] in
if [ypei]= fypez]=[sen” well-formed(s; [sp)| then
e, (Gatoperation-okop s,
else ifftypa]= fiypez]=[rellthen
el (CaEoperation-oblopK) s,
else cermmor

Figure 20: Semantics of binary operators

36

4.13 Constraints

Constraints (see Figure[Z1) can be checks, procedure callsr iteration over sets.

— Constraints —

constraintl 2 Constraint
[Consfrainf] ::=

| [agoption |Ehecklexpr as

j cadidlexpn

j forarJidlin exprdosaEements end
agoption == [flag]

Figure 21: Constraints

4.13.1 Checks

happen through the constructlcheck fexpy which evaluatesgxpr] and applies the checkcheck
There are six checks: acyclicity (keywordacyclic), irre exivity (keyword [rreflexive) and
emptyness (keywordempty); and their negations. If the check succeeds, the candidatexecution
is allowed so far. Otherwise, the candidate execution is fdridden.

A check can optionally be namedid] using the keyword as. A check can also be agged,
by pre xing it with the keyword. Flagged checks must be named with theas construct.
Failed agged checks do not stop evaluation; instead failedagged checks are recorded under
their name in the componentf of the semantics of thecat speci cation, for example to handle
agged candidate executions later within our herd7 tool. We give the semantics of checks in
Figure [22.

Flagged checks are useful for speci cations with statemerst that impact the semantics of
an entire program, e.g., in the case of speci cations phrased in terms of data racessuch as
C++ Batty et al. (2016) or HSA HSA Foundation (2015).

4.13.2 Procedures

Procedures have no result and cannot be recursive: the body of a procederis a list of
statements and the procedure will be invoked to apply the costraints within its body. Intended
usage of procedures is to de ne constraints that are checkeldter. Figure 23 gives the semantics
of procedures: just like functions, procedure declaratios simply augment the environment
with their closure.

Procedure calls are written [call][id] gxpr; wherelid] is the name of a previously de ned
procedure. The bindings performed during the call of a procdure are discarded when the
procedure returns, all other e ects (e.g. checks or ags, see Sectiof 4.13.1) performed are
retained. Procedures cannot be recursive.

37

Checks —

lchecK := [checknameé | gjchecknameé
checkname ::= [acyclic | j [rreflexive 1 j [empty

check-condition-on-relatiollcheckK R

match [ChecK with

j acyclic _ [check-condition-on-refatioklirreflexive _KR*
j irreflexive _ (8!32 [d'(R)]: herrei 62R)

j empty _

j ~check® _ (EDQQK_CQD.d.LtLQD&D_LelaILQﬂCheCkOKR)

cat-check-relation)[agoption |Eheckl R asidKy; f; ;1 1] ,
if (check-condition-on-relatiokicheckKR) then
else if [agoption |= flag then
h; £ [f
else

— Value of checks —

(s agoption |EhecklExpr as [dKX
let fyperR = EP_TKX in
if (type] =Lrel) _ =[sen” [check 2 f-) then
mhegk_uﬂaIM| agoption JEheckI R as

else remor

Figure 22: Checks and their semantics

38

— Procedures —

0 durd 2 Procedure
proced »= |[procedure]idlpat = f[Stafementy” end

— Declarations of procedures —

9Jprocedure id} [d} = fStafementy® endKX [ff; F; ;T 1] ,
h; f; [idh = procch [dl - flSTalementg® ;i1 il

G9Jprocedure|id] () = fEfalementy” endKX [T, ;T 1] |
b f, [idl:= proch () - flSTatementg . 1] L1l

&9 Jprocedure]id] (idh, :::, [d}) = fS@Emeny” endkX [f, ;| 1]
h; f; [idl:= proch Hidk; :::;0d}i - fETaEementg™ . 1], il

— Procedure calls —

t9dcall dlexprKX i, f; ;1 1] ,
if [d162dom()| then o else
match ([[d) with
jh [d} - fetaiementg’; %4 _
&9 Jfstatementy” KX Yidh := (693exprikX)]
jh (-fstatementg”; 9 _
letiypery = (oJexprKX [{; f; 5T] in
if yperVv = [uplezhi then
) X Statementy* KX [; ;% 1]
else emor
jh fidk; :::;0dhi - fsfaementy’; % _
letypey = G9JexprkKX [f; 5T] in
if yperVv = fuple:hes; :::; ei”™ (n = ") then
9 Jftatementg” KX Ij; f; ik = e]::: [idh-="e.] 11l
else cemor
j__ _ remom

Figure 23: Semantics of procedures

39

4.13.3 lteration over sets
We can iterate checks over sets with théforall] construct:

forall [id] in Expr do
istatements
end

The expressionexpr must evaluate to a setS. Then, the list of statements [Statements is
evaluated for all bindings of the namelid] to some elemente of S. In practice, as failed checks
forbid the candidate execution, this amounts to checking tke conjunction of the checks within
[Statementsfor all the elements ofS. Similarly to procedure calls, the bindings performed durng
an iteration are discarded when iteration ends, all other cunulated e ects (e.g. checks) being
retained. We give the semantics of iteration in Figure[24#; the iteration is non-deterministic
since the choicee in S is arbitrary and unknown.

cat-iterate [d] S fSTatementy* X ,
if S=; thenfi; f;, ;T 1]
else lete2 S in
let r = o JfStafementg” KX h; f; in
if r =remon then else
et £% % lij= r in
if j°=[allowed] then
[cat-iteratel i[d] (S n feg) fstatementg™ X [{Y f% G Ti
else [P T®_ 17

— lteration over sets —

9 Jforall [dlin [exprdoa fEtatementy” endkX :
letiype S = E9JexprkKX [f ;1] in
if fype]6Sell then remor
else [cat-iterateld] S fEtatementy” X

Figure 24: Semantics of iteration

4.14 Requirements

Requirements are the constitutive blocks of acat speci cation. Their evaluation goes as given
in Figure Z9. Requirements can be statements, bindings.

40

4.14.1 Statements

and their semantics have been presented in the sections abev At the level of requirements,

we evaluate lists of statements, gather their evaluatiorfj; f; ; T i] and the nal verdict forgets
the environment to built the result (see Figure [2).

4.14.2 Candidate extension via With] binding

happens through the constructwithlidIfromiexpr} This construct extends the current environ-
ment by one binding (see FigurdZb). The grammar only allow§vith1bindings to occur at the
top-level. The expressiorgxpr] is evaluated to a setS. Then the remainder of the speci cation
is evaluated for each choice of elemerg in S in an environment extended by a binding of the
namelid]to e.

The nal verdict at top level in Figure Zets rid of the enviro nment and returns the com-
munication relations obtained by nding the value of the communication relation identi ers [id]
in the environment.

41

— Requirements —

2
requirements =
j
j Mith]d]froml expr[fequirements

2 Candidate! KT} (R)
JFEqUIEMENTSKX e |

JrequirementsKX hj; f; ;! i, if j =[forbidden] thenhy; f; ;! i
else match [requirements with
jElatement _ f JSaemenKX fallowedl f, ; | ig

j STatement fequirerents’ _
letr = JStafementkX in
if (r =rcemon) then Emon
else leth; 5 % H|=r in
if (j =[Alowed]) then
Jrequirements®kX hallowed ; f [f% % 1§
else frg

jwith id from expr requirements® _
let type:S = JexprKX in
if (ty[pe 6 set) then error

else JequirementskX hallowed ; f; [id := €]; ! [f idgi
e2s

Figure 25: Semantics of requirements

42

5 cat library functions

For reference, we give the code of three library functions tht operate over relations and sets
(fold , mapand cross).

5.1 De nition of fold

Given a function f, a setS = fe;ep;:::;eng and an elementy, the call fold f (S, y
returns the value f (e, ;f (e,;:::f (&,;Y))), whereiq;iz;:::;in iS a permutation of 1;2;:::;n:
let fold f =

let rec fold_rec (es,y) = match es with

¢ ->y

|| e ++ es -> fold_rec (es, f(e,y))

end in

fold_rec
5.2 Denition of map
Given afunctionf and asetS = fe;;:::;e,0,thecallmap f S returnsthe setff (e1);:::;f (en)g.

This function can be implemented directly or more conciselyby calling the fold function:

let map f = fun es -> fold (fun (e,y) -> f e ++ vy) (es{})

5.3 Denition of cross

fe[el] [enje12S1;e2Sy;::en2S509

Note that if S is empty, then cross should return one relation exactly: the empty relation ;,
i.e., the neutral element of the union operator. This choice forcross (;) = ; is natural when
we de ne cross inductively:

[
cross (S; ++S) = fei [tg
12S1;t2CroSs (S)

In this speci cation, we simply build cross (S; ++S) by building the set of all unions of
one relation e; picked in S; and of one relationt picked in cross (S). From this inductive
speci cation for cross, one writes the following concise code:

let rec cross S = match S with
Il ->{0}
|| S1 ++ S ->
let yss = cross S in
fold
(fun (e1,r) -> map (fun't -> el | t) yss | 1)
(SL{)

end

43

References

P. Aczel. Non-well-founded setsvolume 14 of CSLI Lecture Notes. Stanford University, Center
for the Study of Language and Information, 1988.

J. Alglave and P. Cousot. Syntax and analytic semantics of LEA. CoRR, abs/1608.06583, 2016.
URL http://arxiv.org/abs/1608.06583

J. Alglave and L. Maranget. herd7. virginia.cs.ucl.ac.uk/herd , 31 Aug. 2015.

J. Alglave, M. Batty, A. F. Donaldson, G. Gopalakrishnan, J. Ketema, D. Poetzl, T. Sorensen,
and J. Wickerson. GPU concurrency: Weak behaviours and progamming assumptions. In
ASPLOS, 2015a.

J. Alglave, P. Cousot, and L. Maranget. Syntax and semantics of the
cat language. HSA Foundation, Version 1.1:38 p., 16 Oct 2015bh. URL
http://www.hsafoundation.com/?ddownload=5382

M. Batty, J. Wickerson, and A. F. Donaldson. Overhauling SC atomics in C11 and OpenCL.
In POPL, 2016.

HSA Foundation. Hsa platform system architecture speci caion 1.0. HSA-SysArch-1.01.pdf ,
cat_ModelExpressions-1.1.pdf , 15 Jan. 2015.

L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Computers, 28(9):690 691, 1979.

X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon. The OCaml system,
release 4.02, Documentation and user's manual caml.inria.fr |, 24 Sept. 2014.

R. Milner and M. Tofte. Co-induction in relational semantic s. Theor. Comput. Sci., 87(1):
209 220, 1991.

A. Tarski. A lattice theoretical xpoint theorem and its app lications. Pacic J. of Math. , 5:
285 310, 1955.

44

	Introduction
	Abstraction to candidate executions
	The cat language
	Objects and expressions
	Types.
	Definitions in binding statements
	Functions
	Events.
	Sets
	Relations between events
	Tuples
	Tags.
	Scopes.

	Constraint statements
	Checks
	Procedures. (see Appendix ?? and Figure ?? for their formal semantics)
	Iteration.
	Candidate execution extension (with ... from ...)

	Evaluation of a cat file on a candidate execution

	Syntax and formal semantics of the cat language
	Analytic semantics
	Consistent semantics specification by cat files
	Analytic semantics specified by an anarchic semantics and a cat specification
	Candidate executions
	Events
	Program order,
	Read-from,
	Initial writes
	Scope relation,

	Program scope relation defined by a scope tree and cat scope hierarchy
	Values
	Consistency specifications
	Evaluating a hyper:catfilehyper:nonterminal:catcatcatcatcat1mu specification
	Specifications
	The final verdict

	Statements
	Typed values and semantic domains
	Auxiliaries
	Expressions
	Identifiers

	Primitives to manipulate sets and relations over events
	Tags
	Scopes.
	Functions
	Sets and tuples.
	Bindings
	Operators on sets and relations

	Constraints
	Checks
	Procedures
	Iteration over sets

	Requirements
	Statements
	Candidate extension via hyper:catwithttwith binding

