
ar
X

iv
:1

60
8.

07
53

1v
2

 [c
s.

P
L]

 3
0

A
ug

 2
01

6

Syntax and semantics of the weak consistency
model speci�cation language cat

Jade Alglave
Microsoft Research Cambridge

University College London
m ol ov tc .c@ mfg ora siaja l , v c .l a uk@l ua a celg ..j

Patrick Cousot
New York University

emer. École Normale Supérieure, PSL Research University
o y ed.i nm@sou u.t uspc c , o et n@ s.s fuo rc

Luc Maranget
INRIA

n@ rra ..c rM gn ft aa iiu eL

31st August 2016

Abstract

We provide the syntax and semantics of the cat language, a domain speci�c language
to describe consistency properties of parallel/distribut ed programs. The language is imple-
mented in the herd7 tool Alglave and Maranget (2015).

1 Introduction

The cat language Alglave et al. (2015b) is a domain speci�c languageto describe consistency
properties succinctly by constraining an abstraction of parallel program executions into a can-
didate execution and possibly extending this candidate execution with additional constraints
on the execution environment. Theanalytic semantics of a program is de�ned by its anarchic
semantics that is a set of executions describing computations and acat speci�cation cat de-
scribing a weak memory model. An example of anarchic semantics semantics forlisa is given
in Alglave and Cousot (2016). An anarchic semantics is a truly parallel semantics, with no
global time, describing all possible computations with all possible communications. Thecat
language operates on abstractions of the anarchic executions calledcandidate executions. The
cat speci�cation cat checks a candidate execution for the consistency speci�cation (including,

1

http://arxiv.org/abs/1608.07531v2

maybe, by de�ning constraints on the program execution environments, such as the the �nal
writes or the coherence order).

The abstraction of an anarchic execution into a candidate execution is overview in Section
2 while the cat language is introduced is Section 3. Its formal semantics isde�ned in Section 4.
Examples can be found in Alglave [2015].

2 Abstraction to candidate executions

The anarchic semantics is a set of executions. Each execution is abstracted to a candidate
execution hevts; po; rf ; IW; sr i providing
� events evts, giving a semantics to instructions; for example inlisa Alglave and Cousot (2016),

a write instruction w[] x v yields a write event of variable x with value v. Events can be
(for brevity this is not an exhaustive list):
� writes, gathered in the set W, including the the set IW of initial writes coming from the

prelude of the program;
� reads, gathered in the setR;
� branch events, gathered in the setB;
� fences, gathered in the setF.

� the program order po, relating accesses written in program order in the originallisa program;
� the read-from rf describing a communication between a write and a read event;
� the scope relationsr relating events that come from threads which reside within the same

scope;
A cat speci�cation cat may add other components to the candidate execution (e.g. to specify
constraints on the execution environment) and then checks that this extended candidate execu-
tion satis�es the consistency speci�cation, that is, essentially, that the communication relation
rf satis�es the consistency speci�cation (under hypotheses on the execution environment).

3 The cat language

A weak consistency speci�cation written in the cat language de�nes constraints to be satis�ed
by the communication relation rf of any candidate execution. A typical cat speci�cation de�nes
new objects depending on the sets and relations of the candidate execution (e.g. the program
order po or the initial writes IW) and then imposes constraints on these objects that ultimately
restrict the allowed communications rf .

3.1 Objects and expressions

3.1.1 Types.

The objects de�ned in a cat speci�cation may be of the following types (see Appendix 4.9and
Figure 5 for the formal details): evt (event), tag (tag), rel (relation between events),set (set),
tuple (tuple), enum (enumeration of tags), fun (unary function type), proc (unary procedure
type).

2

3.1.2 De�nitions in binding statements

(see Appendix 4.12.5 and Figure 17 for their formal semantics) can bind an expression to a
name, which can be used in place of that expression. For example

let rfe = rf & ext

de�nes the relation rfe as the restriction of the communications rf to events coming from
di�erent processes. Formally, rfe is built as the intersection (denoted by & in cat) of the
read-from relation rf and the prede�ned relation ext which links events coming from di�erent
processes (Figure 11).

A set, relation, function or procedure can be given a name by binding (see Figure 7). Bindings
(see Appendix 4.12.5 and Figure 17) can be (mutually) recursive (using let rec ... and ...).

3.1.3 Functions

(see Appendix 4.12.3 and Figure 15 for their formal semantics) de�ne an object as a function
of a unique formal parameter (which may be an empty tuple() in absence of parameter or a
non-empty tuple for multiple parameters). For example

let extof r = r & ext
let rfe = extof rf

de�nes a function extof of a parameter r which intersects the relation r with the relation ext
between events belonging to di�erent processes. We then de�ne the relation rfe as the function
extof applied to the read-from relation rf .

We note that our de�nition of extof above is an abbreviation for the binding of an anonym-
ous function

let extof = fun r -> r & ext

Functions can be recursive (usinglet rec) and get their actual parameters in a call by tuple-
matching their actual argument.

3.1.4 Events.

All events come out of the candidate execution and there is noway in cat to generate any other
event.

3.1.5 Sets

(see Appendix 4.12.4 and Figure 16 for their formal semantics) are either empty {} or a homo-
geneous set{ o1, ..., on , ...} . We do not allow sets of functions or procedures. Prede�ned
sets of events are denoted by the following identi�ers (see Appendix 4.11.1 and Figure 10 for
their formal semantics):

� the set of all write events W, including the initial writes IW;

� the set of all read eventsR;

� the set of all branch eventsB;

3

� the set of all fence eventsF;

� the universe containing all events of the candidate execution, which is denoted �_�.

New sets can be de�ned from existing ones using the followingoperations (see Appendix 4.12.6,
Figures 18, 19 and 20 for the formal semantics of these operations):

� the ~S is the complement of a setS;

� the union of two setsS1 and S2 is S1 j S2;

� the intersection of two setsS1 and S2 is S1 & S2;

� the di�erence of two sets S1 and S2 is S1 n S2 ;

� the addition of an element e to a set S is e++S;

Matching over sets (see Appendix 4.12.4 and Figure 16 for theformal semantics) can be
used for (recursive) set de�nitions. Match is against the empty set {} or, for a non-empty
set, a partition e ++ es into a singleton {e} and the rest of the setes. For example, given a
function f , a set S = f e1; e2; : : : ; en g and an elementy, the call fold f (S, y) returns the
value f (ei 1 ; f (ei 2 ; : : : f (ei n ; y))) , where i 1; i 2; : : : ; i n is some permutation of1; 2; : : : ; n:

let fold f =
let rec fold_rec (es,y) = match es with
|| {} -> y
|| e ++ es -> fold_rec (es, f(e,y))
end

in fold_rec

3.1.6 Relations between events

(see Appendix 4.11.1 for their formal semantics) can be the empty relation 0, the identity
relation id , or the relations de�ned from the candidate execution:

� the program order po;

� the read-from rf ,

or prede�ned relations on events (see Figure 11):

� the relation loc between events accessing the same memory location;

� the relation ext between events coming from di�erent threads.

New relations (see Appendix 4.12.6) can be de�ned from sets of events (see Figure 20):

� the cartesian product of two sets of eventsS1 and S2 is S1* S2

or using unary operators on relations (see Figure 19):

� the identity closure of a relation r is r?

� its re�exive-transitive closure is r*

4

� its transitive closure is r+

� its complement is ~r

� its inverse is r�-1

or using binary operators on relations (see Figure 20):

� the union of two relations r1 and r2 is r1 j r2

� the intersection of two relations r1 and r2 is r1 & r2

� the di�erence of two relations r1 and r2 is r1 n r2

� the sequence of two relationsr1 and r2 is r1;r2 (i.e. the set of pairs(x; y) such that there
exists an intervening z, such that (x; z) 2 r1 and (z; y) 2 r2).

Moreover the following primitives can be used to manipulatesets and relations over events
(see Figure 12 for their formal semantics):

� classes takes a relation r ; if r is an equivalence relation, then we return the equivalence
classes ofr , otherwise anerror is raised;

� linearisations takes a setS and a relation r and returns a set of relations;viz., if the
relation r is acyclic, we return all the possible linearisations (topological sorts in the �nite
case) ofr over S, otherwise we return the empty set.

3.1.7 Tuples

(see Appendix 4.12.4 and Figure 16 for their formal semantics) include the empty tuple () , and
constructed tuples (o1, ..., on) . Tuples can be heterogeneous. Tuples are essentially used to
pass parameters to functions and procedures. Tuples can be destructured by pattern matching;
for example in the example offold above, we match the argument offold_rec into the pair
(es,y) .

3.1.8 Tags.

Events can be tagged (using the annotations on the program instruction generating this event)
and these tags can be used to build relations. The tags must bedeclared (see Appendix 4.12.1
and Figure 14) using theenumconstruct. For example

enum memory-order = 'rlx || 'acq || 'rel

de�nes an enumeration type memory-order, which contains three tags: 'rlx (relaxed), 'acq
(acquire), 'rel (release).

lisa instructions can be annotated with such tags. In cat, tags have a quote' to not be
confused with identiers. This confusion is impossible inlisa so quotes' are omitted. The
tags that can be worn by instructions must be declared (see Figure 14 in Appendix 4.12.1), as
follows:

instructions W[{'rlx,'rel}]
instructions R[{'rlx,'acq}]

5

Events generated by an annotatedlisa instruction will bear the same tags as the instruction.
The set of events bearing a given tagt is provided by tag2events (t) (see Figure 13 in the
Appendix 4.12.1). For example

let Release = tag2events('rel)
let Acquire = tag2events('acq)

de�ne the set Release (resp. Acquire) of events bearing the tag'rel (resp. 'acq).
Tags can be matched against their names as de�ned in anenum, and with the wildcard _

(see Figure 13); examples are provided in the next section.

3.1.9 Scopes.

The organisation of a parallel system is not always �at. Often, threads (and physical processors
or cores alike) are organised in a hierarchical fashion, threads being members of a hierarchy of
nested levels, orscopes. Examples include: the eponymous scope notion in GPU models(e.g.
Cooperative Thread Array, or cta , in Nvidia PTX), or the notion of shareability domain in
ARM (e.g. ish in ARMv8).

Scopes (see Appendix 4.12.2 for their formal semantics) arespecial tags which must be
declared with the reserved identi�er scopes:

enum scopes = 'cta || 'gpu || 'system

The hierarchy of scopes is described in acat �le by the functions narrower and wider (which
are reserved identi�ers but user-de�ned, asscopes is). In the most simple and frequent case,
levels are totally ordered. Then, thewider function takes a scope tag as argument and returns
the immediately wider scope tag, while thenarrower function returns the immediately narrower
scope tag:1

let wider(s) = match s with 'gpu -> 'system || 'cta -> 'gpu end
let narrower(s) = match s with 'system -> 'gpu || 'gpu -> 'cta e nd

The above de�nitions specify that scopes are ordered from narrowest to widest as: 'cta <
'gpu < 'system . In other words, a system contains one or more GPUs, and each GPU contains
one or more CTAs.

All lisa litmus tests specify how many threadsP0, P1, etc. are involved. Additionally a
scoped litmus test speci�es how threads are distributed along the scope hierarchy, by means of
a scope treesuch as

scopes: (system (gpu (cta P0 P1) (cta P2 P3)) (gpu (cta P4 P5) (cta P6 P7)))

which describes the scope hierarchy

1One may also consider heterogeneous systems such as coupledCPUs and GPUs. In that case, the hierarchical
is no longer total and the function narrower returns a set of tags.

6

The herd7 tool checks that the wider function does de�ne a hierarchy, in the sense that each
scope has an unique immediately wider scope except one, the root of the hierarchy, which has
none. It also checks the compatibility of the narrower function and of scope trees with the
de�ned hierarchy.

The events in a given scopes are gathered as an equivalence relationtag2scope (s) (see
Figure 13 in the Appendix 4.12.2). More precisely two eventsare related by tag2scope (s)
when they are generated by threads that are contained in the same scope instance of levels.

Consider for instance the hierarchy depicted above, and twoevents e0, and e2, generated
by P0 and P2 respectively. Then e0 and e2 are related by tag2scope ('gpu) and unrelated by
tag2scope ('cta) sinceP0 and P2 belong to the same GPU but to di�erent CTAs.

3.2 Constraint statements

After de�ning sets and relations depending on the candidateexecution, we can impose con-
straints on them (see Figure 22 for the formal semantics).

3.2.1 Checks

(see Appendix 4.13.1 and Figure 22 for their formal semantics) can have the following syntax:
[~][acyclic j irreflexive j empty] x.

The checks[~][acyclic j irreflexive j] r check if the relation r on events is be acyclic or
irre�exive. The check or [~][empty] S checks if the setS is empty. The check acyclic r is a
shorthand for irreflexive r+. The symbol ~ denotes the negation. Failed checks reject the
candidate execution which is thereforeforbidden . For example

acyclic po | rf

checks whether the union ofpo and rf is acyclic in all the candidate executions of a given
program.

Users have the option to not enforce the checks, but rather touse them to report properties
of the candidate execution. To do so, users must pre�x the check they are interested in with the
keyword flag , and name the �agged test with an identi�er name (by using the post�x quali�er
as name). A failed �agged check has no consequence over the acceptance or rejection of the
candidate execution. It is simply reported (viz., �agged with the name name) for the user's
information. For example

flag ~(acyclic po | rf) as cycle-found

will �ag, using the name cycle-found , all the candidate executions in which there is a cycle in
the union of po and rf .

We often useflag in models that involve data races, e.g. C++ or HSA. In such models,
executions that have data races are typically deemed unde�ned. We handle this in cat by
�agging candidate executions that exhibit data races with the nameundefined .

3.2.2 Procedures. (see Appendix 4.13.2 and Figure 23 for the ir formal semantics)

De�nitions of sets and relations and their checks in constraint statements can be gathered and
parameterised using procedures and checked by procedure calls. Procedures are not recursive

7

and return no result. They have one formal parameter (but that can be a tuple, including the
empty one). Their body is a non-empty list of statements.

For example the following proceduresc implements Sequential Consistency Lamport (1979),
given the relation comas parameter:

procedure sc(com) =
let sc-order = (po | com)+
acyclic sc-order

end

The procedure may have local de�nitions (like sc-order). The scope of the formal parameter
and local de�nitions is limited to the procedure body. Global de�nitions (like the relation po)
can be used in the procedure body.

A call (e.g. call sc(rf)) passes the actual parameter (a tuple, hererf , matching the
formal parameter com) and the procedure body is evaluated with the actual parameter.

3.2.3 Iteration.

A universally quanti�ed check (i.e. a �nite conjunction of checks) can be done for all values
e chosen in a setS by a forall iterator (see Appendix 4.13.3 and Figure 24 for the formal
semantics), as follows:

forall e in S do
call check_contraint(e)

end

3.2.4 Candidate execution extension (with ... from ...)

The construct with o from S requirements introduces an additional constituant o of the se-
mantics, not already part of the candidate execution. This constituant o of the semantics is
introduced in the cat �le rather than in the anarchic semantics because it only depends on the
program execution events (e.g. the coherence order).

The with construct enumerates all possible objectso in S and checks therequirements.
Typically S is a set of relations on events ando a relation between events which must satisfy
the requirementsappearing in the remainder of thecat �le.

For example total orders over certain accesses can be built using with :

� the coherence order between writes to a given memory location ;

� SC accesses in C++ or HSA (we use this in our modelisation of HSA, see HSA Foundation
(2015)).

3.3 Evaluation of a cat �le on a candidate execution

When evaluated on a candidate execution, acat �le returns an error if the cat �le is syntactically
incorrect. Otherwise the binding de�nitions, constraint s tatements, and with requirements are
evaluated in sequence (see Figures 3 and 25). If some (un�agged i.e. mandatory) constraint
fails, we return forbidden to stipulate that the candidate execution does not satisfy the weak
consistency model speci�ed by thecat �le. Otherwise the candidate execution is accepted,i.e.

8

we return allowed . In both cases we return a possibly empty set of �ags for conditions that
are not enforceable (see Appendix 4.7), as well as the objects introduced by with constructs.

9

4 Syntax and formal semantics of the cat language

4.1 Analytic semantics

The analytic semantics SJPKof a parallel program P with a given cat consistency speci�cation
(or weak consistency model)cat is a set of execution behaviors� conforming to this consistency
speci�cation. Each such execution behavior� = h�; rf ; � i is described in two parts, the
computations h�; rf i and the communicationshrf ; � i where the read-from relation rf is their
common interface.

� The possiblecomputations h�; rf i are described by the anarchic semanticsSaJPKof the
program P. The read-from relation rf records the correspondance between the reads, the
matching writes, and the communicated values on the computation � .

The anarchic semanticsSaJPK places only the following restrictions on the commu-
nications of P so all possible computations with all possible read-from relations rf are
considered.

� Satisfaction: a read event has at least one corresponding communication in rf ;
� Singleness: a read event must have at most one corresponding communication in rf ;
� Match: if a read reads from a write, then the variables read and written and commu-

nicated value must be the same;
� Inception: no communication is possible without the occurrence of both the read and

(maybe initial) write it involves (this does not prevent a re ad to read from a future
write).

Otherwise stated the consistency speci�cation/weak consistency model is not taken into
account at all by the anarchic semanticsSaJPK.

� The possiblecommunications are described by communicationshrf ; � i between commu-
nication i.e. read and/or write events.

The cat �le cat generates all possible communication relationsc 2 � (using the with
construct). The communication relations c 2 � include the coherence orderco, etc. More
generally, they specify requirements on the execution environment of the program P.

The cat �le semantics sorts out the executions � = h�; rf ; � i that are feasible for weak
consistency model, one by one.

4.2 Consistent semantics speci�cation by cat �les

A cat �le cat 2 Cat de�nes a check that an execution� = h�; rf ; � i satis�es a consistency
speci�cation.

� First the computation h�; rf i of the anarchic semantics is abstracted to a candidate
execution X = � � (h�; rf i) = hevts; po; rf ; IW; sr i (collecting read, write, branch, fence
and rmw events in evts, the program order po, the read-from relation rf , initial IWwrites,
and the program scope treesr) but where e.g. events on local registers or communicated
values are abstracted away.

10

� The cat �le cat is then evaluated onX . Thanks to with ci from Ci constructs, the cat
�le generates all necessary communication relations� = c1; : : : ; cn between communica-
tion events (including co 2 allCo , etc.) which are necessary to express the consistency
speci�cation.

� In absence oferror in cat , the �nal result

� can be hallowed ; f; � i meaning that the computation h�; rf i (with abstraction
X = � � (h�; rf i)) together with the communication speci�cation � satis�es the
consistency speci�cation, or

� can also behforbidden ; f; � i meaning that the � = h�; rf ; � i does not satisfy the
consistency speci�cation.

In both cases f 2 F is the set of �agged constraints in cat satis�ed by the execution
� = h�; rf ; � i (without any in�uence on the allowed / forbidden result).

4.3 Analytic semantics speci�ed by an anarchic semantics an d a cat
speci�cation

We de�ne below, in Figure 2, the semantics JcatKX of a candidate executionX which returns
a set of answers of the formhj; f; � i where j = f allowed ; forbidden g, f is the set of �ags that
have been set up onX and � , and � de�nes the communication relation for the execution to
be allowed / forbidden .

The analytic semantics of a programP with consistency speci�cation cat is therefore

SJP; catK , fh�; rf ; � i j h�; rf i 2 SaJPK^
9f 2 F : hallowed ; f; � i 2 JcatK(� � (h�; rf i))g

This analytic semantics SJPKof a program P for a cat speci�cation cat is the composition SJPK
= � JcatK� � � (SaJPK) of two abstractions of the anarchic semanticsviz.

� � (S) , fhh�; rf i ; � � (h�; rf i)i j h�; rf i 2 Sg

� JcatK(C) , fh�; rf ; � i j hh�; rf i ; X i 2 C ^
9f 2 F : hallowed ; f; � i 2 JcatKX g

4.4 Candidate executions

Candidate executions are tuples:

X = hevts; po; rf ; IW; sr i 2 Candidate

, Evts � Program-order � Read-from� Writes � Scope-rel

which gather the events, the program orderpo on each thread, the read-from relation rf ,
modeling who reads from where, the initial writesIW, and a scope relationsr .

11

4.4.1 Events

e 2 Evt are abstractions of the events generated by a program execution. Events e 2 evts
carry the unique program instruction (and its unique program label) which execution generated
this event e. However, this information is not directly available to cat. Auxiliaries to extract
components of an evente are as follows:

loc-of(e) , location of e kind-of(e) , kind of e

pid-of(e) , process identi�er of e annot-of(e) , annotations of e

from-to-of (e) , events separated by fence evente

The set evts of events belong toEvts , } (Evt).

� The process identi�er pid-of(e) refers to the identi�er of the unique process at the origin
of the event e;

� The location loc-of(e) can be a memory location or a register;

� kind-of(e) is the kind of event e: write (W), read (R), branch (B), fence (F), begin or end of
a rmw. We de�ne the following sets of events by kind:

W(X) , f e 2 evts-of(X) j kind-of(e) = Wg R(X) , f e 2 evts-of(X) j kind-of(e) = Rg

F(X) , f e 2 evts-of(X) j kind-of(e) = Fg B(X) , f e 2 evts-of(X) j kind-of(e) = Bg

� the annotations annot-of(e) of e is a possibly empty set of tags and scopes carried by the
action at the origin of e;

� let eF 2 F(X) be a fence event generated by a localised fence instructionf[ts] {L 1,...,L n }
{L 0

1,...,L 0
m } where this instruction and all L1, ..., L n , L 0

1, ..., L 0
m belong to the

same process ofpid-of(eF).

Then from-to-of (eF) is the set of pairshef ; et i such that ef is an event generated by the
execution of a program instruction labelled Li , i 2 [1; n] and et is an event generated by
the execution of a program instruction labelled L0

j , j 2 [1; m]. Additionally, we require
hef ; eF i 2 po-of(X) and heF ; et i 2 po-of(X), viz. the fence does separate the two events
ef and et . If the fence carries an empty set of labels this isfrom-to-of (eF) , ; . If the
fence carries no sets of labels, we setfrom-to-of (eF) , fhef ; et i j hef ; eF i 2 po-of(X) ^heF ;
et i 2 po-of(X)g.

4.4.2 Program order,

abbreviated po 2 Program-order, abstracts the order of the events of a process in the execution
hence lifts the order in which instructions have been executed to the level of events. For each
candidate execution, it is a total order over events within the same thread, hence irre�exive and
transitive, and cannot relate events from di�erent threads.

4.4.3 Read-from,

abbreviated rf 2 Read-from , } (Write � Read), relates a read event of a certain shared variable
x to a unique write event of the same variable. The read-from relation essentially indicates
which events read from where.

12

4.4.4 Initial writes

are gathered in the setIW2 Writes , } (Write). The initial writes IW simply are the writes in
the prelude of the program.

4.4.5 Scope relation,

abbreviated sr 2 Scope-rel, relates events that come from threads which reside within the
same scope; this is a notion that is mostly used for scoped models such asGPUs (seee.g.,
Alglave et al. (2015a) and Sections 3.1.9).

Auxiliaries to extract components of a candidate executionX , hevts; po; rf ; IW; sr i are
as follows:

evts-of(X) , evts po-of(X) , po rf-of (X) , rf

sr-of(X) , sr init-of (X) , IW

4.5 Program scope relation de�ned by a scope tree and cat scope
hierarchy

A program scope tree speci�es a scope relation. The syntax ofprogram scope trees and their
semantics, that is the scope relation that they de�ne are de�ned in Figure 1. Program scope
trees must match the scope hierarchy de�ned by thecat �le through a scope tag declaration
(see Figure 14) and the user speci�ed functions with reserved namesnarrower and wider , as
checked in Figure 13.

4.6 Values

The cat language is much inspired by OCaml Leroy et al. (2014), featuring for example types,
immutable bindings, �rst-class functions and pattern matching. However, cat is a domain
speci�c language, with important di�erences from OCaml:

� base values are specialised; they are: sets of events, relations over events, �rst class func-
tions; there are also tags, including scope tags, akin to C enumerations or OCaml constant
constructors. There are two structured values: sets of values and tuples of values, see Fig-
ure 5.

� there is a distinction between expressions in Figure 7 that evaluate to some value, state-
ments in Figure 3, which introduce new de�nitions or constraints, and requirements in
Figure 25 which introduce new communication relations on the execution environment
and constraints on them.

We use the following notations: square brackets[: : :] denote optional components, paren-
theses(: : :) denote grouping, (: : :) � (resp. (: : :)+) denotes zero, one or several (resp. one or
several) repetitions of the enclosed components.

13

Scope trees

st ::= (s-tag P0 : : : Pn) program scope trees

j (s-tag st0 : : : stn)

where f P0; : : : ; Pn g � f pid-of(e) j e 2 evts-of(X)g.

Given a scope treest, a setE of events and a scope-tagst, de�ne srel(st) E s-tag to be
the relation between di�erent events that come from threads which reside in the scope
s-tag, as follows

srel((s-tag P0 : : : Pn)) E s-tag0 , ; (when s-tag 6= s-tag0)

srel((s-tag P0 : : : Pn)) E s-tag , fhe; e0i j e; e0 2 E ^ 9 i; j 2 [0; n] :
pid-of(e) = Pi ^ pid-of(e0) = Pj g

srel((s-tag st0 : : : stn)) E s-tag0 ,
n[

i =0

srel(sti) E s-tag0 (when s-tag 6= s-tag0)

srel((s-tag st0 : : : stn)) E s-tag , fhe; e0i j e; e0 2 E ^
9Pi ; Pj 2

S n
i =0 processes(st0 : : : stn) :

pid-of(e) = Pi ^ pid-of(e0) = Pj g

processes((s-tag P0 : : : Pn)) , f P0; : : : ; Pn g

processes((s-tag st0 : : : stn)) ,
n[

i =0

processes(sti)

tags-of((s-tag P0 : : : Pn)) , f s-tagg

tags-of((s-tag st0 : : : stn)) , f s-tagg [
n[

i =0

tags-of(sti)

If the program has a scope-treest then the candidate executionX must have its scope
relation component sr = sr-of(X) be such that for all s-tag 2 tags-of(st), sr (s-tag) =
srel(st) (evts-of(X)) s-tag.

Figure 1: Semantics of program scope trees

14

4.7 Consistency speci�cations

Consistency speci�cations (orcat �les/speci�cations) cat �lter candidate executions and extend
them with communication relations. In other words, the semantics JcatKX of a cat speci�c-
ation cat is de�ned with respect to a candidate executionX and its result extend it to specify
requirements on the execution environment.

4.7.1 Evaluating a cat speci�cation

means allowing or forbidding that candidate execution. More precisely, evaluating acat �le
makes a result objecthj; f; �; ! i evolve, where:

� Judgementsj 2 J , f allowed ; forbidden g can be of two kinds: allowed when a candid-
ate execution passes all the checks imposed by thecat speci�cation, or forbidden when
a candidate execution fails on one of the checks of thecat speci�cation cat .

� Flagged checksf 2 F , } (Identi�er) collect identi�ers of checks that have been �agged
and are recorded to signal certain executions (e.g., the ones with data races).

� Environments � 2 E associate identi�ers (which belong to the set Identi�er) to typed
values; more precisely environments are partial functionsfrom identi�ers to values:

E , Identi�er 9 V :

During the evaluation of the cat �le cat , the environment � 2 E gets augmented with new
de�nitions as evaluation progresses. It evolves also locally when evaluating functions and
procedures, according to the static scoping or block-structured visibility rule.

� Sets of communication relation identi�ers ! record the identi�ers of communication rela-
tions introduced by a with requirement.

! 2 W , } (Communication-relation-identi�er)

During the evaluation of the cat �le cat , the set ! 2 W of communication relation identi�-
ers gets augmented with new identi�ers introduced bywith id from . . . requirements, see
Figure 25. The relation � (id) which is the value of such communication relation identi�ers
id is found in the environment � . The �nal verdict in Figure 2 collects this information
in the �nal result of the cat evaluation.

� Results collect judgements, �agged checks, environments, and communication relation
identi�ers or raise error if needed.

r = hj; f; �; ! i 2 R , (J � F � E � W) [f errorg

A result may be unde�ned e.g. when an implementation might not terminate, for example,
when evaluating a non-terminating function. The result can also beerror when the cat �le
is incorrect. The di�erence is that an implementation of cat is assumed to signalerror but
is not required to report unde�ned results. The �nal result i s collected in the �nal verdict
hj; f;

Q
id 2 ! � (id)i , see Figure 2.

Initially, the judgement is allowed , the set of �ags is empty, prede�ned identi�ers are im-
plicitly bound to event sets and relations over events as described in Section 4.11.1 and Figures
10 and 11, and the set of communication relation identi�ers is empty, see Figure 2.

15

4.7.2 Speci�cations

(or cat �les) are lists of requirementspreceded by an identi�er, used for documentation purposes.
We give the syntax and semantics of speci�cations in Figure 2.

The requirements constitutive of the speci�cation are evaluated in sequence, until one re-
quirement raiseserror or forbidden , or until the end of the requirement list. In that latter case ,
the speci�cation accepts the candidate execution, hence raisesallowed .

4.7.3 The �nal verdict

in Figure 2 is given at the top-level, gets rid of the environment, and returns the communication
relations in S obtained by �nding the value of the communication relation i denti�ers id in the
environment. If S is empty, we return forbidden (with unmodi�ed �ags). If S contains error,
the error is returned.

cat 2 Cat
cat ::= identi�er

j identi�er requirements

Jidenti�er KX , fhallowed ; ; ; ;ig

Jidenti�er requirements KX , verdict(JrequirementsKX hallowed ; ; ; ; ; ;i)

JcatK , fhX; � i j X 2 Candidate^ � 2 Communication-relation ^
9f 2 F : hallowed ; f; � i 2 JcatKX g

verdict ; , fhforbidden ; ; ; ;ig

verdict S , error when error 2 S

verdict fhj i ; f i ; � i ; ! i i j i 2 � g , fhj i ; f i ;
Y

id 2 ! i

� i (id)i j i 2 � g otherwise

Figure 2: Semantics of speci�cations

4.8 Statements

Requirements can bestatements introducing new binding de�nitions and checking constraints,
or the with id from S requirement introducing a new communication relation identi�ed by id .

Statements are evaluated for their e�ect: adding new de�nitions or checking constraints.
We give their syntax and semantics in Figure 3. Note that oncean error has been raised, we
stay in that state. Moreover statements have nowith requirement so cannot introduce new

16

communication identi�ers. Therefore the set of communication relation identi�ers is unchanged
by the evaluation of a statement, ! 0 = ! in Figure 3.

statements 2 Statements

statements ::= f statementg+

statement 2 Statement
statement ::= de�nition

j constraint

JstatementsK 2 Candidate ! R ! R

Jstatement statementsKX hj; f; �; ! i ,
let hj 0; f 0; � 0; ! 0i = JstatementKX hj; f; �; ! i in

if j 0 = allowed then

JstatementsKX hj 0; f 0; � 0; ! 0i
else hj 0; f 0; � 0; ! i

JstatementKX error , error

Figure 3: Semantics of statements

4.9 Typed values and semantic domains

Typed values, (gathered in the set V) are given in Figure 5. Events (of type evt) belong to
the set Evt. There are no operation on events so the typeevt can only be used to type elements
of relations or sets. Typed values include (see Figure 5):

� the error symbol;

� tags (of type tag), which belong to Tag;

� relations over events (of typerel), which belong to } (Evt � Evt);

� sets (of typeset) of values, which belong to} (V); sets have to be homogeneous, and cannot
be sets of functions or procedures, as re�ected by the predicate well-formed;

� tuples (of type tuple) of values, which belong to
S

n 2 N

Q n
i =1 V;

� enumerations of tags (of typeenum), which belong to } (Tag);

� functions (of type fun);

� non-recursive procedures (of typeproc).

17

The value of functions and procedures are closures memorising their parameter (which be-
longs to Pat), their body (which in the case of functions belongs toExpr , and in the case of
procedures can be a list of elements ofStatement), and declaration environment (which belongs
to E). On a call, the actual parameters are evaluated in the calling environment and the body
in the declaration environment enriched by the value of the formal parameters and the local
bindings. After the call, evaluation goes on in the calling environment. This is therefore static
scoping.

type 2 Type
type ::=

evt events

j tag tag

j rel relation between events

j set set

j tuple tuple

j enum enumeration

j fun unary function type

j proc unary procedure type

Figure 4: Typed values

4.10 Auxiliaries

To de�ne the semantics of operators over sets and relations in particular we need to de�ne a
certain number of auxiliaries (summarised in Figure 6).

4.11 Expressions

Expressions let the user build new sets or relations over tags and events. Figure 7 summarises
the syntax of expressions.

Several constructs are non-deterministic: the set matching of Section 4.12.4, the iteration
over sets of Section 4.13.3. In the semantics, only one result is nondeterministically picked out
of all possible ones. This is di�erent from the with requirement of Section 4.14.2 where all
possibilities for choosing the communication relation areenumerated.

The semantics of an expression iserror whenever the semantics of any one of its subexpressions
is error. To leave this check implicit, we assume that the mathematical construct let typei : vi =

Jexpr i KX�; i 2 [1; `] in : : : equalserror whenever there existsi in [1; `] such that Jexpr i K=
error.

18

well-formed(S) , 8 type:v 2 S : type 62 ffun ; procg ^ 8 type0: v0 2 S : type = type0

check sets
Semantic domains

V , typed values
f errorg
[tag: Tag
[rel: } (Evt � Evt)
[set:f S 2 } (V) j well-formed(S)g

[tuple: (f ()g [
[

n 2 N;n> 1

nY

i =2

V)

[enum:} (Tag)
[fun: ((Pat ! Expr) � E)

[proc:((Pat ! f Statementg+) � E)

� 2 E , Identi�er 9 V environments

j 2 J , f allowed ; forbidden g judgements

f 2 F , } (Identi�er) �agged checks

! 2 W , } (Communication-relation-identi�er) set of com. identi�ers

r 2 R , (J � F � E�W) [f errorg results

Figure 5: Semantic domains

iX , fhe; ei j e 2 X g identity relation on set X

r ; r 0 , fhe; e0i j 9 e00: he; e00i 2 r ^ he00; e0i 2 r 0g sequence of relations

dom(r) , f x j 9y : hx; y i 2 rg domain of relation r

range(r) , f y j 9x : hx; y i 2 rg range of relation r

�d (r) , dom(r) [range(r) �eld of relation r

lfp � F =
\

f X 2 } (S) j F (X) � X g the least �xpoint of the � -increasing operator
F on the powerset} (S) Tarski (1955)

Figure 6: Auxiliaries for de�ning operators' semantics

4.11.1 Identi�ers

are either prede�ned or de�ned by the user through de�nition statements. We list the reserved
identi�ers in Figure 8. User-de�ned identi�ers cannot be re served identi�ers and are bound in
the environment � (see Figure 9).

19

simple 2 Simples
simple ::=

j id identi�ers

j tag tags

j function anonymous functions

j procedure procedures

j set sets

j tuple tuples

clause 2 Clauses
clause ::=

[||] tag -> expr f || tag -> expr g� [___ -> expr]

j [||] {} -> expr || id ++id -> expr

expr 2 Expr
expr ::=

j simple simples

j expr expr function application

j (expr) j begin expr end grouping

j let [rec] binding f and bindingg� in expr binding expressions

j match expr with clause end matching

j op operators on sets and relations

de�nition 2 De�nition
de�nition ::= decl

j let [rec] binding f and bindingg�

Figure 7: Simple expressions, expressions and de�nitions

Prede�ned identi�ers denoting sets of events appear in Figure 10. We have: the univer-
sal sets, the set of all write, read, memory, branch and fences events, as well as the set of initial
writes. The semantics of these identi�ers, given in Figure 10 is straightforward; they denote the
eponymous sets of events.

Prede�ned identi�ers denoting relations on events appear in Figure 11. We have: the
empty and identity relations, the relation over events accessing the same memory location, the
relation over events with di�erent pids, the program order, and the read-from relation.

20

Keywords ,
{ acyclic , and, as, begin , call , do, empty, end, enum, flag , forall , from, fun , in ,
instructions , irreflexive , let , match, procedure , rec , scopes, with }

Primitives ,
{ classes , fromto , linearisations , tag2events , tag2scopes }

Names ,
{ ___, 0, B, ext , F, id , IW, loc , M, narrower , po, R, rf , rmw, W, wider }

Reserved , Keywords[Primitives [Names

Figure 8: List of reserved identi�ers

id 2 Identi�er

id 2 Communication-relation-identi�er , Identi�er n Reserved

Jid KX � , if id 2 dom(�) then
let type: v = � (id) in

if type = enum then set:v else type:v
else error

(when id 62Names)

(for id 2 Names, see Figures 10 or 11)

Figure 9: Semantics of identi�ers

21

aevt ::= annotable events

j W write events

j R read events

j B branch events

j F fence events

prede�ned-events ::=

j ___ all events

j IW initial writes

j M memory events,M= W[R

j aevt annotable events

J__KX � , set:f evt: e j e 2 evts-of(X)g events

JWKX � , set:f evt: e j e 2 evts-of(X) \ W(X)g write events

JRKX � , set:f evt: e j e 2 evts-of(X) \ R(X)g read events

JBKX � , set:f evt: e j e 2 evts-of(X) \ B(X)g branch events

JFKX � , set:f evt: e j e 2 evts-of(X) \ F(X)g fence events

JMKX � , set:f evt: e j e 2 evts-of(X) \ (R(X) [W(X))g memory events

JIWKX � , set:f evt: e j e 2 init-of (X)g initial write events

where JIWKX � � JWKX �

Figure 10: Prede�ned sets and their semantics

22

The semantics of these prede�ned identi�ers, given in Figure 11 is relatively straightforward
again: 0 is the empty relation, id is the identity relation, loc the relation between events
accessing the same variable, andext the relation between events from di�erent threads. It is
the eponymous relation forpo and rf .

Prede�ned relations over events

prede�ned-relations ::= 0 empty relation

j id identity

j loc same location

j ext external (di�erent pids)

j po program order

j rf read-from

j rmw read-modify-write

Semantics of prede�ned relations

J0KX � , rel: ;

Jid KX � , rel: ievts-of(X) , rel: fhe; ei j e 2 evts-of(X)g

Jloc KX � , rel: fhe; e0i 2 evts-of(X) � evts-of(X) j loc-of(e) = loc-of(e0)g

Jext KX � , rel: fhe; e0i 2 evts-of(X) � evts-of(X) j ^ pid-of(e) 6= pid-of(e0)g

JpoKX � , rel: po-of(X)

Jrf KX � , rel: rf-of(X)

JrmwKX � , let RMW = fhr; w i j 9 eb; ee 2 evts-of(X) :
kind-of(eb) = beginrmw^ kind-of(ee) = endrmŵ
heb; r i 2 po-of(X) ^ (@e 2 evts-of(X) : heb; ei 2 po-of(X) ^
he; r i 2 po-of(X)) ^ hr; w i 2 po-of(X) ^ hw; eei 2 po-of(X) ^
(@e 2 evts-of(X) : hw; ei 2 po-of(X) ^ he; eei 2 po-of(X)) ^
(@e 2 evts-of(X) : (heb; ei 2 po-of(X) ^ he; eei 2 po-of(X)) ^

kind-of(e) 2 f beginrmw; endrmwg)g
in

rel:RMW

Figure 11: Prede�ned relations over events and their semantics

23

4.12 Primitives to manipulate sets and relations over event s

appear in Figure 12. We have �ve primitives (Primitives , f classes , fromto , linearisations ,
tag2events , tag2scopeg). We will detail the primitives tag2events and tag2scope in Sec-
tion 4.12.1. For the other three primitives:

� classes takes as argument an expressionexpr, which should evaluate as a relationr ; if r
is an equivalence relation, then we return the equivalence classes ofr , otherwise we raise
an error;

� linearisations takes as argument a pair of two expressionsexpr1, which should evaluate
to a set S, and expr2, which should evaluate to a relation r ; if this relation is acyclic,
then we return all the possible linearisations (topological sorts) of r over S, otherwise we
return the empty set.

� fromto takes as argument a expressionexpr, which should evaluate to a setS of tags,
the events tagged with these tags should be fence events, andthe result is the union of all
their sets of pairs of events separated by these fence events.

Semantics of primitive functions

Jclasses exprKX � , let type: r = JexprKX � in

if (type = rel) ^ (i�d (r) � r ^ (r)� 1 � r ^ r ;r � r) then

set:f set:f evt: e 2 �d (r) j he; e0i 2 rg j e0 2 �d (r)g
else error

Jlinearisations exprKX � , let type: v = JexprKX � in

if (type:v = tuple: hset:s; rel: r i) ^ (8 typev : v 2 s : typev = evt) then

if r + \ is = ; then

set:f rel: r 0 2 } (s � s) j r \ (s � s) � r 0^ r 0;r 0 � r 0^
(8e 6= e0 2 s : he; e0i 2 r 0_ he0; ei 2 r 0)g

else set:;
else error

Jfromto exprKX � , let type: S = JexprKX � in

if (type = set) ^ (8 typee : e 2 S : typee = evt ^ e 2 F(X)) then

rel:
[

e2 S

from-to-of (e)

else error

Figure 12: Semantics of primitives

4.12.1 Tags

24

Tags essentially are identi�ers preceded by a quote' (to distinguish them form identi�ers in
bindings); and we gather them in sets, as shown in Figure 13. We �rst de�ne an auxiliary over
a tag tag:

� is-tag-declaredchecks that tag has been de�ned in an environment� , i.e. belongs to an
enumeration tag-set in � .

Now, the value of a tag ' id is the corresponding typed value if the tag has been declaredin
the environment � , or an error if not.

Finally, the primitive tag2events gathers all events bearing the tagtag, provided that the
tag tag is declared in the environment� .

Declarations. One can declare enumerations of tags named by an identi�er with the con-
struct enum. One can use these tags toannotate Lisa instructions, using the eponymous
instructions construct.

Declarations (see Figure 14) augment the environment. The e�ect of an enumdeclaration is
to extend the environment with the corresponding set of tags. In other terms, the semantics of
enumid = [||] tag1 : : : || tagn is to augment the environment � with the set of typed tags
tag1; : : : tagn , under the nameid .

The semantics of aninstruction declaration is as follows: if there is a tag not in the
environment, we raise an error; and if there is an event whosei th tag is not in the i th tag set,
we raise an error.

4.12.2 Scopes.

Semantically, we distinguish scope tags s-tagfrom other tags, as shown in Figure 13. Thus
for enumdeclarations, the identi�er scopes is reserved to declare scopes. If anenum scopes
declaration is provided then two functions narrower and wider must be declared on scope tags,
to de�ne the set of all possible scope hierarchies. Finally,the primitive tag2scope builds the
relation between events coming from instructions that belong to the same scope (viz., the scope
instances of that scope) � relatively to a scope tree appearing in the original program. We give
its semantics in Figure 13.

Matching over tags is as follows:

match expr with
|| tag1 -> expr1

|| ...
|| tagn -> exprn

|| ___ -> exprd

end

The value of the match expression is computed as follow: �rst evaluateexpr to some value
v , which must be a tag t . Then v is compared with the tags tag1, : : : , tagn , in that order. If
some tag pattern tag i equals t , then the value of the match is the value of the corresponding
expressionexpri . Otherwise, the value of thematch is the value of the default expressionexprd.
As the default clause___-> exprd is optional, the match construct may fail in error. We give
the semantics of matching over tags in Figure 13.

25

Tags

tag 2 Tag
tag ::= ' id

s-tag ::= tag scope tags

Auxiliaries over tags ' id

is-tag-declaredJ' id K� , 9 tag-set 2 dom(�) : � (tag-set) = enum:T ^ tag: ' id 2 T

tag-set-ofJ' id K� , f ' id 0 j 9 tag-set 2 dom(�) : � (tag-set) = enum:T ^
tag: ' id 2 T ^ tag: ' id 0 2 Tg

Value of a tag ' id

J' id KX � ,
if is-tag-declaredJ' id K� then tag: ' id else error

Gathering all events bearing the same tag' id

Jtag2events(' id) KX � ,
if is-tag-declaredJ' id K� then f e 2 evts-of(X) j ' id 2 annot-of(e)g
else error

Building the scope instance of levels-tag

Jtag2scope(s-tag) KX � ,
let typew : t = Jwider s-tagKX �
and typen : n = Jnarrower s-tagKX � in

if typew = tag: ^ typen 2 f tag ; setg ^ is-tag-declaredJs-tagK� ^ 8 ' id 2 tag-set-ofJs-tagK� :
t = ' id) sr-of(X) s-tag � sr-of(X) ' id ^
typen = tag ^ n = tag: ' id) sr-of(X) ' id � sr-of(X) s-tag ^
typen = set ^ tag: ' id 2 n) sr-of(X) ' id � sr-of(X) s-tag

then

sr-of(X) s-tag
else

error

Tag matching

Jmatch expr0 with [||] tag1 -> expr1 : : : || tagn -> exprn otherwise endKX � ,
let type: t = Jexpr0 KX � in

if type 6= tag then error else leti = min f k j t = tagk g in

if i 6= + 1 then Jexpr i KX �
else if otherwise= ||___ -> exprn +1 then Jexprn +1 KX �
else error

Figure 13: Tags and their semantics

26

Declarations

annotation 2 Annotation
annotation ::= set (annotations are sets of tags)

decl 2 Decl
decl ::= enumid = [[||]tag f || tagg�] (whenid 6= scopes)

j enum scopes = [[||]s-tag f || s-tagg�]

j instructions ainstr [f annotation g+]

Semantics ofenum

Jenumid = [||] tag1 : : : || tag` KX hj; f; �; ! i , (including id = scopes)
hj; f; � [id := enum:f tag: tag1; : : : ; tag: tag` g]; ! i

Semantics ofinstructions

Jinstructions aevt [annotation 1, : : : , annotation n] KX hj; f; �; ! i ,
let typei : Ti = Jannotation i KX hj; f; �; ! i ; i 2 [1; n] in

if 8i 2 [1; n] : typei = set ^ 8 type0: t 2 Ti : type0 = tag ^
8e 2 evts-of(X) : (kind-of(e) = aevt)) (8i 2 [1; n] : annot-of(e) i 2 Ti)

then hj; f; �; ! i else error

Figure 14: Declarations

27

4.12.3 Functions

Functions are �rst class values, as re�ected by the anonymous functionconstruct fun pat ->
expr. We call the expressionexpr the body of the function. A function takes one argument pat
only. When this argument is a tuple, it may be destructured by a tuple pattern (id 1, : : : , id n) .

The value of a function, given in Figure 15, is its closure; we write h� id . body; � 0i for a
closure with parameter id , body body and declaration environment � 0 (this closure can also be
understood as a triplehid ; body; � 0i).

Function calls are written expr1 expr2. That is, functions are of arity one and the application
operator is left implicit. Notice that function applicatio n binds tighter than all binary operators
(see Section 4.12.6) and looser that post�x operators (see Section 4.12.6). Furthermore the
implicit application operator is left-associative.

The cat language has call-by-value semantics. That is, the e�ective parameter expr2 is
evaluated before being bound to the function formal parameter, see Figure 15.

4.12.4 Sets and tuples.

Sets are written as follows: { expr1, expr2, : : : , exprn } with n greater than 0. As events are
not values, one cannot build a set of events using explicit set expressions. Sets are homogeneous,
i.e. contain elements of the same type. We give their semantics in Figure 16. The value of {}
is the empty set, and the value of{ expr1, : : : , exprn } is the set of valuesf v1 : : : vn g where the
vi are the values ofexpr i .

Matching over sets is as follows:

match expr with
|| {} -> expr1

|| id 1 ++ id 2 -> expr2

end

We compute the value of the match as follow: �rst evaluate expr to some valuev, which
must be a set. If v is the empty set {} , then the value of the match is the value of expr1.
Otherwise, if v is a non-empty setS, then let e be some element inS and S0 be the setS minus
the element e. The value of the match is the value of expr2 in a context where id 1 is bound
to e and id 2 is bound to S0. We give the semantics of matching over sets in Figure 16, where
the non-deterministic choice e 2 s is arbitrary (and unknown). So the semantics in Figure 16
returns one possible match (as opposed to all possibilities).

Tuples include the empty tuple () , and constructed tuples (expr1, expr2, : : : , exprn) , with
n greater than 2. In other words there is no tuple of size one (which avoids ambiguity with
grouping between parentheses).

We give their semantics in Figure 16. The value of() is the empty tuple hi, and the value
of hexpr1; : : : ; exprn i is the tuple of valueshv1; : : : ; vn i where the vi are the values ofexpr i ;
we do not impose that these valueshv1; : : : ; vn i have the same type.

28

Patterns

pat 2 Pat

pat ::= id j () j (id f , id g�)

Anonymous functions

function 2 Function
function ::= fun pat -> expr

Values of functions

Jfun id -> exprKX � 0 , fun: h� id . expr; � 0i

Jfun () -> exprKX � 0 , fun: h� () . expr; � 0i

Jfun (id 1, : : : , id `) -> exprKX � 0 , ` > 1

fun: h� hid 1; : : : ; id ` i . expr; � 0i

Semantics of function calls

Jexpr1 expr2 KX � , (when expr1 62Primitives)
let typei : vi = Jexpr i KX �; i 2 [1; 2] in

match type1 : v1 with

j fun: h� id . expr; � 0i _ JexprKX � 0[id := type2 : v2]

j fun: h� () . expr; � 0i _ if type2 : v2 = tuple: hi then

JexprKX � 0

else error

j fun: h� hid 1; : : : ; id n i . expr; � 0i _ if type2 : v2 = tuple: he1; : : : ; è i ^ ` = n then

JexprKX � 0[id 1 := e1] : : : [id n := en]
else error

j ___ _ error

Figure 15: Semantics of functions

Grouping is straightforward, as shown in Figure 16: the semantics of aparenthesised expres-
sion (expr) is the semantics ofexpr, idem for begin expr end.

4.12.5 Bindings

are of the form pat = expr or id pat = expr, where id pat = expr is syntactic sugar for id = fun
pat -> expr. As shown in Figure 17, bindings simply update the environment � . The bindings

29

Sets and tuples

set 2 Set

set ::= {} j { expr f , exprg� } sets

tuple 2 Tuple

tuple ::= () j (expr, expr f , exprg�) tuples

Semantics of sets

J{} KX � , set:;

J{ expr1, : : : , exprn } KX � , n > 1
let typei : vi = Jexpr i KX �; i 2 [0; n] in

let S = set:f type1 : v1; : : : ; typen : vn g in

if well-formed(S) then S else error

Set matching

Jmatch expr0 with [||] {} -> expr1|| id 1 ++id 2 -> expr2 endKX � ,
let type: s = Jexpr0 KX � in

if type 6= set then error

else if s = ; then Jexpr1 KX �
else lete 2 s in

Jexpr2 KX � [id 2 := set:(s n f eg)][id 1 := e]

Semantics of tuples

J() KX � , tuple:hi

J(expr1, : : : , exprn) KX � , n > 2
tuple:h Jexpr1KX �; : : : ; Jexprn KX � i

Semantics of grouping

J(expr) KX � , JexprKX �

Jbegin expr endKX � , JexprKX �

Figure 16: Semantics of sets, tuples and grouping

30

for pat = expr are as follows: ifpat is () , then expr must evaluate to the empty tuple; if pat
is id or (id) , then id is bound to the value of expr; if pat is a proper tuple pattern (id 1, : : : ,
id n) with n greater than 2, then expr must evaluate to a tuple value of sizen (v 1, : : : , v n)
and the namesid 1, : : : , id n are bound to the valuesv 1, : : : , v n .

31

Bindings

binding 2 Binding

binding ::= pat = expr j id pat = expr

where id pat = expr , id = fun pat -> expr

Value of a binding

Jpat = exprKX � , match pat with

j () _ tuple: hi
j id j (id) _ � [id := JexprKX �]
j (id 1, : : : , id m) _

match (JexprKX �) with

j tuple: he1; : : : ; em i _ � [id 1 := e1] : : : [id m := em]
j ___ _ error

Jid pat = exprKX � , Jid = fun pat -> exprKX �

Binding de�nitions

Jlet binding1 and : : : and bindingn KX � , n > 1
(Jbindingn KX (: : : (Jbinding1KX �) : : :))

Recursive function binding:

Jlet rec id 1 pat 1 = expr1 and : : : and id n pat n = exprn KX � ,

let cl1 =
nY

j =1

Jfun pat i -> expr i KX � [id 1 := cl11] : : : [id n := cl1n] in

� [id 1 := cl11] : : : [id n := cl1n]

Recursive set/relation binding:

Jlet rec id 1 = expr1 and : : : and id n = exprn KX � ,

let Fi (
nY

j =1

x j) , let typei : si = Jexpr i KX � [
nY

j =1

id j :=
nY

j =1

x j] in

if (typei 2 f set; relg) then typei : si else error; i 2 [1; n]

in let
nY

i =1

ei = lfp
_� � .

nY

i =1

x i

nY

i =1

Fi (
nY

i =1

x i) in

if (9i 2 [1; n] : ei = error) then error else � [id 1 := e1] : : : [id n := en]

Binding expressions

Jlet binding1 and : : : and bindingn in exprKX � , n > 1
JexprKX (Jlet binding1 and : : : and bindingn KX �)

Jlet rec id 1 = expr1 and : : : and id n = exprn in exprKX � ,
JexprKX (Jlet rec id 1 = expr1 and : : : and id n = exprn KX �)

Figure 17: Bindings and their semantics

32

Binding de�nitions happen through the let and let rec constructs, which bind value
names for the rest of a speci�cation evaluation. We give the semantics of binding de�nitions in
Figure 17.

First, the construct let binding1 and : : : and bindingn , that is, let pat1 = expr1 and : : :
and pat n = exprn , evaluatesexpr1, : : : , exprn , and binds the names in the patternspat1, : : : ,
pat n to the resulting values.

Second, for recursive function bindingslet rec id 1 pat1 = expr1 and : : : and id e patn =
exprn , we follow Milner and Tofte (1991) where the proof of existence and unicity of the in�nite
closurecl1 is based on Aczel (1988).

Third, for recursive set or relation bindings let rec id 1 = expr1 and : : : and id n = exprn ,
we compute the least solution of the equationsid 1 = expr1, : : : , id n = exprn on sets or re-
lations using inclusion for ordering. These �xpoint equations must satisfy the � -monotony
(increasingness) hypotheses of Tarski (1955) �xpoint theorem or else the result is unde�ned.

The recursive bindings may be mutually recursive. We suppose these recursive de�nitions
well-formed, i.e. terminating. The result of ill-formed de�nitions is unde� ned (i.e. an imple-
mentation might return an error or never terminate).

Binding expressions happen through the construct let [rec] bindings in expr, which
locally binds the names de�ned bybindings to evaluate expr. Both non-recursive and recursive
bindings are allowed.

4.12.6 Operators on sets and relations

Operators can be unary or binary. We list them in Figure 18, and detail their semantics below.

Operators on sets and relations

op 2 Operators
op ::= expr ++expr set addition

j expr * expr cartesian product

j expr | expr union

j expr &expr intersection

j expr ; expr relation composition

j expr + transitive closure

j expr ? re�exive closure

j expr * re�exive and transitive closure

j expr�-1 inverse

j expr \ expr subtraction

j ~expr complement

Figure 18: List of both unary and binary operators

33

Unary operators. Given an expression denoting a relation, we can build its identity closure
with the operator ?, its re�exive-transitive closure with the operator * , its transitive closure
with +, its complement with ~ and its inverse with �-1 . These operators are post�x, and are
de�ned on relations only, except for the complement, which can apply to sets of events or tags
as well. Figure 19 gathers them all. We recall that the value of identi�er 0 is the empty relation.

post�xed op cat-operation-ofJopKX r relation operation

* lfp � � . xievts-of(X) [x;r re�exive closure

+ lfp � � . xr [x;r irre�exive closure

? ievts-of(X) [r identity closure

�-1 fhe0; ei j he; e0i 2 rg inverse

Unary operators on relations

Jexpr opKX � ,
let type: r = JexprKX � in

if type = rel then

rel: cat-operation-ofJopKX r
else error

Complement of a set or relation

J~ exprKX � ,
let type: s = JexprKX � in

if type = set ^ 8 type:e 2 s : type = evt then

set:(f evt: e j e 2 evts-of(X)g ns)
else if type = set ^ 9 id 2 dom(�) : � (id) = enum:T ^ s � T then

set:(T n s)
else if type = rel then

rel: ((evts-of(X) � evts-of(X)) n s)
else error

Figure 19: Semantics of unary operators

Binary operators. We can build the sequence (or composition in the sense of Figure 6)
of two expressions with the operator; , de�ned on relations only. We can add an element to a
set: the addition operator expr1 ++ expr2 operates on sets. The value ofexpr2 must be a set of
values S and the operator returns the setS augmented with the value of expr1. We can build

34

a new relation out of the cartesian product of two sets of events, with the in�x operator * .
We can build the union, intersection, and di�erence of sets and relations as summarised

in Figure 20. The semantics ofexpr1 op expr2 is the operator op applied to the sets (resp.
relations) s1 and s2, viz., the values ofexpr1 and expr2.

35

Sequence of relations

Jexpr1 ; expr2KX � ,
let typei : r i = Jexpr i KX �; i 2 [1; 2] in

if type1 = type2 = rel then

rel: r1;r2

else error

Adding an element to a set

Jexpr1 ++expr2KX � ,
let typei : vi = Jexpr i KX �; i 2 [1; 2] in

let S = set:(f type1 : v1g [v2) in

if well-formed(S) then S else error

Cartesian product of two sets of events

Jexpr1 * expr2KX � ,
let typei : si = Jexpr i KX �; i 2 [1; 2] in

if type1 = type2 = set ^ 8 type:v 2 s1 [s2 : type = evt then

rel:s1 � s2

else error

op cat-operation-ofJopK

| [union
& \ intersection
\ n di�erence

Binary operators relative to both sets and relations

Jexpr1 op expr2KX � ,
let typei : si = Jexpr i KX �; i 2 [1; 2] in

if type1 = type2 = set ^ well-formed(s1 [s2) then

set:s1 (cat-operation-ofJopK) s2

else if type1 = type2 = rel then

rel:s1 (cat-operation-ofJopK) s2

else error

Figure 20: Semantics of binary operators

36

4.13 Constraints

Constraints (see Figure 21) can be checks, procedure calls,or iteration over sets.

Constraints

constraint 2 Constraint
constraint ::=

j �agoption check expr as id

j call id expr

j forall id in expr do statements end
�agoption ::= [flag]

Figure 21: Constraints

4.13.1 Checks

happen through the construct check expr, which evaluatesexpr and applies the checkcheck.
There are six checks: acyclicity (keywordacyclic), irre�exivity (keyword irreflexive) and
emptyness (keywordempty); and their negations. If the check succeeds, the candidateexecution
is allowed so far. Otherwise, the candidate execution is forbidden.

A check can optionally be namedid , using the keyword as. A check can also be �agged,
by pre�xing it with the flag keyword. Flagged checks must be named with theas construct.
Failed �agged checks do not stop evaluation; instead failed�agged checks are recorded under
their name in the component f of the semantics of thecat speci�cation, for example to handle
�agged candidate executions later within our herd7 tool. We give the semantics of checks in
Figure 22.

Flagged checks are useful for speci�cations with statements that impact the semantics of
an entire program, e.g., in the case of speci�cations phrased in terms of data races, such as
C++ Batty et al. (2016) or HSA HSA Foundation (2015).

4.13.2 Procedures

Procedures have no result and cannot be recursive: the body of a procedure is a list of
statements and the procedure will be invoked to apply the constraints within its body. Intended
usage of procedures is to de�ne constraints that are checkedlater. Figure 23 gives the semantics
of procedures: just like functions, procedure declarations simply augment the environment �
with their closure.

Procedure calls are written call id expr , where id is the name of a previously de�ned
procedure. The bindings performed during the call of a procedure are discarded when the
procedure returns, all other e�ects (e.g. checks or �ags, see Section 4.13.1) performed are
retained. Procedures cannot be recursive.

37

Checks

check ::= checkname j ~checkname

checkname ::= acyclic j irreflexive j empty

check-condition-on-relationJcheckKR ,
match check with

j acyclic _ check-condition-on-relationJirreflexive KR+

j irreflexive _ (8e 2 �d (R) : he; ei 62R)
j empty _ R = ;
j ~check0 _ : (check-condition-on-relationJcheck0KR)

cat-check-relationJ�agoption check R as id Khj; f; �; ! i ,
if (check-condition-on-relationJcheckKR) then

hj; f; �; ! i
else if �agoption = flag then

hj; f [f id g; �; ! i
else hforbidden ; f; �; ! i

Value of checks

J�agoption check expr as id KX hj; f; ; � i ,
let type: R = JexprKX � in

if (type = rel) _ (type = set ^ check 2 f empty; ~emptyg) then

cat-check-relationJ�agoption check R as id Khj; f; �; ! i
else error

Figure 22: Checks and their semantics

38

Procedures

procedure 2 Procedure

procedure ::= procedure id pat = f statementg+ end

Declarations of procedures

Jprocedure id 1 id 2 = f statementg+ endKX hj; f; �; ! i ,

hj; f; � [id 1 := proc:h� id 2 . f statementg+ ; � i]; ! i

Jprocedure id () = f statementg+ endKX hj; f; �; ! i ,

hj; f; � [id := proc:h� () . f statementg+ ; � i]; ! i

Jprocedure id (id 1, : : : , id `) = f statementg+ endKX hj; f; �; ! i ,

hj; f; � [id := proc:h� hid 1; : : : ; id ` i . f statementg+ ; � i]; ! i

Procedure calls

Jcall id exprKX hj; f; �; ! i ,
if id 62dom(�) then error else

match � (id) with

j h� id 1 . f statementg+ ; � 0i _

Jf statementg+ KX � 0[id 1 := (JexprKX �)]

j h� () . f statementg+ ; � 0i _
let type: v = JexprKX hj; f; �; ! i in

if type: v = tuple: hi then

Jf statementg+ KX hj; f; � 0; ! i
else error

j h� hid 1; : : : ; id n i . f statementg+ ; � 0i _
let type: v = JexprKX hj; f; �; ! i in

if type: v = tuple: he1; : : : ; è i ^ (n = `) then

Jf statementg+ KX hj; f; � 0[id 1 := e1] : : : [id n := en]; ! i
else error

j ___ _ error

Figure 23: Semantics of procedures

39

4.13.3 Iteration over sets

We can iterate checks over sets with theforall construct:

forall id in expr do
statements

end

The expressionexpr must evaluate to a setS. Then, the list of statements statements is
evaluated for all bindings of the nameid to some elemente of S. In practice, as failed checks
forbid the candidate execution, this amounts to checking the conjunction of the checks within
statements for all the elements ofS. Similarly to procedure calls, the bindings performed during
an iteration are discarded when iteration ends, all other cumulated e�ects (e.g. checks) being
retained. We give the semantics of iteration in Figure 24; the iteration is non-deterministic
since the choicee in S is arbitrary and unknown.

cat-iterate id S f statementg+ X hj; f; �; ! i ,
if S = ; then hj; f; �; ! i
else lete 2 S in

let r = Jf statementg+ KX hj; f; � [id := e]; ! i in

if r = error then error else

let hj 0; f 0; � 0; ! i = r in

if j 0 = allowed then

cat-iterate id (S n f eg) f statementg+ X hj 0; f 0; � 0; ! i
else hj 0; f 0; � 0; ! i

Iteration over sets

Jforall id in expr do f statementg+ endKX hj; f; �; ! i ,
let type: S = JexprKX hj; f; �; ! i in

if type 6= set then error

else cat-iterate id S f statementg+ X hj; f; �; ! i

Figure 24: Semantics of iteration

4.14 Requirements

Requirements are the constitutive blocks of acat speci�cation. Their evaluation goes as given
in Figure 25. Requirements can be statements, orwith bindings.

40

4.14.1 Statements

and their semantics have been presented in the sections above. At the level of requirements,
we evaluate lists of statements, gather their evaluationhj; f; �; ! i , and the �nal verdict forgets
the environment � to built the result (see Figure 2).

4.14.2 Candidate extension via with binding

happens through the constructwith id from expr. This construct extends the current environ-
ment by one binding (see Figure 25). The grammar only allowswith bindings to occur at the
top-level. The expressionexpr is evaluated to a setS. Then the remainder of the speci�cation
is evaluated for each choice of elemente in S in an environment extended by a binding of the
name id to e.

The �nal verdict at top level in Figure 2 gets rid of the enviro nment and returns the com-
munication relations obtained by �nding the value of the communication relation identi�ers id
in the environment.

41

Requirements

requirements 2 requirements
requirements ::= statement

j statement requirements

j with id from expr requirements

JrequirementsK 2 Candidate ! R ! } (R)

JrequirementsKX error , error

JrequirementsKX hj; f; �; ! i , if j = forbidden then hj; f; �; ! i
else match requirements with

j statement _ f JstatementKX hallowed ; f; �; ! ig

j statement requirements0 _
let r = JstatementKX hallowed ; f; �; ! i in

if (r = error) then error

else lethj; f 0; � 0; ! 0i = r in

if (j = allowed) then

Jrequirements0KX hallowed ; f [f 0; � 0; ! 0i
else f r g

j with id from expr requirements0 _
let type: S = JexprKX � in

if (type 6= set) then error

else
[

e2 S

Jrequirements0KX hallowed ; f; � [id := e]; ! [f id gi

Figure 25: Semantics of requirements

42

5 cat library functions

For reference, we give the code of three library functions that operate over relations and sets
(fold , mapand cross).

5.1 De�nition of fold

Given a function f , a set S = f e1; e2; : : : ; en g and an element y, the call fold f (S, y)
returns the value f (ei 1 ; f (ei 2 ; : : : f (ei n ; y))) , where i 1; i 2; : : : ; i n is a permutation of 1; 2; : : : ; n:

let fold f =
let rec fold_rec (es,y) = match es with
|| {} -> y
|| e ++ es -> fold_rec (es, f(e,y))
end in
fold_rec

5.2 De�nition of map

Given a function f and a setS = f e1; : : : ; en g, the call map f S returns the set f f (e1); : : : ; f (en)g.
This function can be implemented directly or more conciselyby calling the fold function:

let map f = fun es -> fold (fun (e,y) -> f e ++ y) (es,{})

5.3 De�nition of cross

The function cross takes a set of setsS = f S1; S2; : : : ; Sn g as argument and returns all possible
unions built by picking elements from each of theSi :

f e1 [e2 [� � � [en j e1 2 S1; e2 2 S2; : : : ; en 2 Sn g

Note that if S is empty, then cross should return one relation exactly: the empty relation ; ,
i.e., the neutral element of the union operator. This choice forcross (;) = ; is natural when
we de�ne cross inductively:

cross (S1 ++S) =
[

e1 2 S1 ;t 2 cross (S)

f e1 [tg

In this speci�cation, we simply build cross (S1 ++S) by building the set of all unions of
one relation e1 picked in S1 and of one relation t picked in cross (S). From this inductive
speci�cation for cross , one writes the following concise code:

let rec cross S = match S with
|| {} -> { 0 }
|| S1 ++ S ->

let yss = cross S in
fold

(fun (e1,r) -> map (fun t -> e1 | t) yss | r)
(S1,{})

end

43

References

P. Aczel. Non-well-founded sets, volume 14 ofCSLI Lecture Notes. Stanford University, Center
for the Study of Language and Information, 1988.

J. Alglave and P. Cousot. Syntax and analytic semantics of LISA. CoRR, abs/1608.06583, 2016.
URL http://arxiv.org/abs/1608.06583 .

J. Alglave and L. Maranget. herd7. virginia.cs.ucl.ac.uk/herd , 31 Aug. 2015.

J. Alglave, M. Batty, A. F. Donaldson, G. Gopalakrishnan, J. Ketema, D. Poetzl, T. Sorensen,
and J. Wickerson. GPU concurrency: Weak behaviours and programming assumptions. In
ASPLOS, 2015a.

J. Alglave, P. Cousot, and L. Maranget. Syntax and semantics of the
cat language. HSA Foundation, Version 1.1:38 p., 16 Oct 2015b. URL
http://www.hsafoundation.com/?ddownload=5382 .

M. Batty, J. Wickerson, and A. F. Donaldson. Overhauling SC atomics in C11 and OpenCL.
In POPL, 2016.

HSA Foundation. Hsa platform system architecture speci�cation 1.0. HSA-SysArch-1.01.pdf ,
cat_ModelExpressions-1.1.pdf , 15 Jan. 2015.

L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Computers, 28(9):690�691, 1979.

X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon. The OCaml system,
release 4.02, Documentation and user's manual .caml.inria.fr , 24 Sept. 2014.

R. Milner and M. Tofte. Co-induction in relational semantic s. Theor. Comput. Sci., 87(1):
209�220, 1991.

A. Tarski. A lattice theoretical �xpoint theorem and its app lications. Paci�c J. of Math. , 5:
285�310, 1955.

44

	Introduction
	Abstraction to candidate executions
	The cat language
	Objects and expressions
	Types.
	Definitions in binding statements
	Functions
	Events.
	Sets
	Relations between events
	Tuples
	Tags.
	Scopes.

	Constraint statements
	Checks
	Procedures. (see Appendix ?? and Figure ?? for their formal semantics)
	Iteration.
	Candidate execution extension (with ... from ...)

	Evaluation of a cat file on a candidate execution

	Syntax and formal semantics of the cat language
	Analytic semantics
	Consistent semantics specification by cat files
	Analytic semantics specified by an anarchic semantics and a cat specification
	Candidate executions
	Events
	Program order,
	Read-from,
	Initial writes
	Scope relation,

	Program scope relation defined by a scope tree and cat scope hierarchy
	Values
	Consistency specifications
	Evaluating a hyper:catfilehyper:nonterminal:catcatcatcatcat1mu specification
	Specifications
	The final verdict

	Statements
	Typed values and semantic domains
	Auxiliaries
	Expressions
	Identifiers

	Primitives to manipulate sets and relations over events
	Tags
	Scopes.
	Functions
	Sets and tuples.
	Bindings
	Operators on sets and relations

	Constraints
	Checks
	Procedures
	Iteration over sets

	Requirements
	Statements
	Candidate extension via hyper:catwithttwith binding

