
Form Methods Syst Des (2012) 41:178–210
DOI 10.1007/s10703-012-0161-5

A formal hierarchy of weak memory models

Jade Alglave

Published online: 27 June 2012
© Springer Science+Business Media, LLC 2012

Abstract We present in this paper a formal generic framework, implemented in the Coq
proof assistant, for defining and reasoning about weak memory models. We first present
the three axioms of our framework, with several examples as illustration and justification.
Then we show how to implement several existing weak memory models in our framework,
and prove formally that our implementation is equivalent to the native definition for each of
these models.

Keywords Weak memory models · Semantics · Formal proofs

1 Introduction

When writing a concurrent program, one often expects (or would like) it to behave according
to L. Lamport’s Sequential Consistency (SC) [30], where:

[. . . ] the result of any execution is the same as if the operations of all the proces-
sors were executed in some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by its program.

For example, most of the concurrent verification work supposes SC as the memory
model, probably because multiprocessors were not mainstream until recently. Nowadays
however, since multiprocessors are widespread, there is a recrudescent interest in such is-
sues. Indeed, as exposed by S. Adve and H.-J. Boehm in [6]:

J. Alglave (�)
INRIA, Rocquencourt, France
e-mail: jade.alglave@comlab.ox.ac.uk

J. Alglave
Oxford University, Oxford, UK

J. Alglave
Queen Mary University of London, London, UK

mailto:jade.alglave@comlab.ox.ac.uk


Form Methods Syst Des (2012) 41:178–210 179

(a) A program

(b) The three SC outcomes for this program and their associated interleavings

Fig. 1 An example

The problematic transformations (e.g., reordering accesses to unrelated variables
[. . . ]) never change the meaning of single-threaded programs, but do affect multi-
threaded programs [. . . ].

1.1 Weak memory models

As an illustration of the subtleties induced by modern multiprocessors on concurrent code,
consider the program given in Fig. 1(a), written in pseudo code. On P0, we start with a
store of value 1 to the memory location x, labeled (a), followed in program order by a load
from memory location y into register r1, labeled (b). On P1, we have a store of value 1 in
memory location y, labeled (c), followed in program order by a load from memory location
x into register r2, labeled (d). The registers are private to a processor, while the memory
locations are shared.

We wonder whether the specified outcome—where r1 on P0 and r2 on P1 hold 0 in
the end—can be observed if we assume SC as the execution model, given that the memory
locations x and y hold 0 initially. Observe that in any interleaving of the instructions, one
of the stores must go first, e.g., the store to x on P0, which means that the load from x on
the other thread cannot read 0. Thus SC authorizes only three final outcomes, depicted in
Fig. 1(b), together with the corresponding interleavings.

However, for matters of performance, modern processors may provide features that in-
duce behaviours a machine with a SC model would never exhibit, as L. Lamport already
exposed in [30]:

For some applications, achieving sequential consistency may not be worth the
price of slowing down the processors. In this case, one must be aware that con-
ventional methods for designing multiprocess algorithms cannot be relied upon to
produce correctly executing programs.

Consider for example the test given in Fig. 1(a). Although we expect only three possible
outcomes when running this test, an x86 machine may exhibit the one which was specified
in Fig. 1(a), because the store-load pairs on each processor may be reordered. Therefore,
the load (b) on P0 may occur before the store (c) on P1: in that case, the load (b) reads the
initial value of y, which is 0. Similarly, the load (c) on P1 may occur before the store (a)

on P0, in which case (c) reads the initial value of x, which is 0. Thus, we obtain r1=0
and r2=0 as the final state.



180 Form Methods Syst Des (2012) 41:178–210

Hence we cannot assume SC as the execution model of an x86 machine. A program run-
ning on a multiprocessor behaves w.r.t. the memory model of the architecture. The memory
models we studied are said to be weak, or relaxed w.r.t. to SC, because they allow more
behaviours than SC. For example, such models may allow instruction reordering [5, 14]:
reads and writes may not be preserved in the program order, as we just saw with the ex-
ample of Fig. 1(a). Some of them [2, 29] also relax the store atomicity [5, 14] constraint.
A write may not be available to all processors at once: it could be at first initiated by a given
processor, then committed to a store buffer or a cache, and finally globally performed to
memory [22], at which point only it will be available for all processors to see. Hence the
value of a given write may be available to certain processors sooner than to others.

Therefore one needs to understand precisely the definition and consequences of a given
memory model in order to predict the possible outcomes of a running program. But some
public documentation [2, 27] lack formal definitions of these models. The effort of writing
correct concurrent programs is increased by the absence of precise, if not formal, definitions.

1.2 Modelling

The goal of the present paper is to gather formal specifications of a handful of architectures
into a single document, along with a uniform presentation that allows for straightforward
comparison amongst them.

To do so, we tried to identify as few concepts as possible to describe a whole family of
architectures, because we wanted to be able to describe precisely the reason why a given
execution is allowed on a given architecture, and not on another one. From our reading of
the existing documentations (assuming that they are sound, which should not be taken for
granted, as explained for example in [40]) these reasons are often unclear, and sometimes
several reasons are entangled, due to the inherent lack of rigour of writing a specification
in natural language. Thus, explaining in clear and rigorous terms why an execution is al-
lowed becomes difficult because we do not have the appropriate language, or concepts, to
describe it.

This work is an attempt at providing clear, general concepts to describe and reason about
memory models. We provide three axioms (namely the consensus, uniproc and thin checks,
as described in Sects. 4 and 5) that are enough to describe a whole family of architectures.
We show that store atomic architectures, such as SC or TSO, belong to this family. Perhaps
surprisingly, we are also able to model the store atomicity relaxation as exhibited by very
relaxed architectures such as Power and ARM.

Modern architectures such as x86, Power and ARM, do not have a documentation that
is rigorous enough to lend themselves to immediate formalisation. Itanium [29] is a notable
exception. Yet, the style of formalisation of [29] is rather different from the one that we
adopt here. Hence we do not discuss this architecture here, leaving the comparison with this
framework for future work.

Other work by ourselves and colleagues address the validation of models w.r.t. actual
architectures, either via testing [11, 12], or discussion with processor vendors [33, 35]. At
the time of writing, x86 has been established to correspond to the TSO model, as exposed
in [33]. Since, as we show in Sect. 7.2.2.2, our framework embraces TSO, the results pre-
sented here apply to x86 as well. The formalisation of Power and ARM is still an ongoing
work [10, 11, 35]. We have proposed a Power model which is an instance of the framework
presented here, but we will refer the interested reader to the corresponding papers for more
details [10, 11].



Form Methods Syst Des (2012) 41:178–210 181

1.3 Contribution

We present here a generic framework designed to describe weak memory models. Although
memory models issues arise at all levels of the software implementation stack, we focus
here exclusively on the hardware level. Though some public documentation, e.g. Intel [27]
and Power [2], lack formal definitions of these models, others—such as Alpha [13] and
Sparc [1]—provide a precise definition of the model that their processors exhibit. Our
generic framework is widely inspired of the common style of Alpha and Sparc’s documen-
tations, in that we use a global time axiomatic model. However, Alpha and Sparc consider
the stores to be atomic. We adapted the style of their model to allow the store atomicity
relaxation, as does e.g. Power and ARM. In addition, we took care to minimise the number
and the complexity of our axioms, so that they are easier to understand.

We start with a presentation of some related work in Sect. 2. We present in Sects. 3, 4 and
6 the objects, terms and axioms of our framework. We illustrate in Sect. 7 how to instantiate
its parameters to produce several well known models, namely Sequential Consistency [30],
the Sparc hierarchy (i.e. TSO, PSO and RMO) [1], and Alpha [13].

This is an extended version of Sects. 2 and 3 of [11], which appeared as Part I (Chaps. 3,
4 and 5) of the author’s PhD thesis [8]. All our definitions and results are formalised in the
Coq proof assistant [15]. The associated development can be found at the following address:
http://moscova.inria.fr/~alglave/wmm.

2 Related work

In describing memory models, several styles of mathematical description coexist. We first
present several generic weak memory models. Then we examine related work according to
the view of memory they use, either a unique global-time view as in the present work, or
using one view order per processor. Finally, we distinguish models according to their style,
either axiomatic like our model, operational, or specifications of weak memory models as
program transformations.

Generic models The work that is the closest to ours is probably W. Collier’s [21]. He
presents several abstract models in terms of the relaxations (w.r.t. SC) they allow. However
he does not address the store atomicity relaxation.

S. Adve and K. Gharachorloo’s tutorial gives a categorisation of memory models, in
which they give intuition about the relaxations in terms of the actual hardware, i.e. store
buffers and cache lines. By contrast, we choose in the present work to abstract from hardware
implementation details.

S. Adve [4] and K. Gharachorloo [24] both present in their theses a generic framework.
S. Adve’s work focuses on the notion of data race freeness, and defines and studies models
which enforce the data race freeness guarantee. We do not address this issue in the present
work. In other work, e.g., [8, 10], we chose to examine this property on top of our frame-
work, and see which conditions enforce this guarantee for its instances, instead of building
a model with a hard-wired data race free guarantee. K. Gharachorloo’s work focuses on the
implementation and performance of several weak memory models. We choose to give an
abstract view of the memory, because we want to provide a model in which the program-
mer does not have to care about the minute details of the implementation—which are often
secret—to write correct programs.

Finally, the Nemos [39] framework covers a broad range of models including Itanium
as the most substantial example. Itanium [29] is rather different from the models that we

http://moscova.inria.fr/~alglave/wmm


182 Form Methods Syst Des (2012) 41:178–210

consider here, and from the Power model that we present in [11]; we do not know whether
the present work could handle such a model. Indeed, Itanium uses several events per in-
struction, whereas we represent here instructions by only one memory event. Moreover,
Itanium’s model specifies the semantics not only of stores, loads and fences, but also of
load-acquire and store-release instructions. By contrast, we chose to specify the semantics
of more atomic constructions, and build the semantics of derived constructions on top of
them, as developed in [10].

Global-time vs. view orders We can distinguish memory models w.r.t. the view of memory
they present. Such models are either in terms of a global time line in which the memory
events are embedded, or provide one view order per processor.

Most of the documentations that provide a formal model, e.g. Alpha [13] and Sun [1], are
in terms of a global time line. We believe this provides a usable model to the programmer,
because it abstracts from the implementation’s details. Moreover such a model allows the
vendor to provide a formal and usable model without revealing the secrets of the implemen-
tation.

Some memory models are in terms of view orders, e.g. [3] and the Power documentation
[2]. A. Adir et al.’s work focuses on the PowerPC model, and presents numerous axioms
describing a pre-cumulativity (pre Power 4) version of Power.

Axiomatic vs. operational Formal models roughly fall into two classes: operational models
and axiomatic models. Operational models, e.g., [17, 26, 38], are abstractions of actual ma-
chines composed of idealised hardware components such as queues. They seem appealingly
intuitive and offer a relatively direct path to simulation, at least in principle.

Axiomatic models focus on the segregation of allowed and forbidden behaviours, usually
by constraining various order relations on memory accesses; they are well adapted for model
exploration, as we do in [11]. Several of the most formal vendor specifications have been in
this style [1, 13, 29].

Memory models as program transformations Another style of weak memory models’
specification has recently emerged, e.g. in S. Burckhardt et al.’s work [19] or R. Ferreira et
al.’s [23]. This line of research specifies weak memory models as program transformations.
Instead of specifying a transition system as in an operational style, rewriting rules apply
to the program as a whole, to represent the effect of the memory model on this program’s
behaviour. This approach addresses only a limited store atomicity relaxation.

3 From events to execution witnesses

We start here by explaining the concepts that we use at a high level. We then define these
concepts formally in the forthcoming subsections.

3.1 Informal overview of our approach

Describing executions of programs We study concurrent programs such as the one given in
Fig. 1(a). Each of these programs gives an initial state describing the initial values in memory
locations and registers initially, e.g., x=0; y=0 in Fig. 1(a), meaning that we suppose
that the memory locations x and y hold the value 0 initially. In this paper, we write the
instructions in pseudo-code; for example x← 1 is a store of value 1 into memory location x,



Form Methods Syst Des (2012) 41:178–210 183

Fig. 2 An event structure and an execution witness for the program of Fig. 1

and r1 ← y is a load from memory location y into a register r1. We depict a concurrent
program as a table, where the columns are processors (e.g., P0 and P1 in Fig. 1(a)), and
the lines are labeled with letters—e.g., in Fig. 1(a), the first line, which holds x ← 1, is
labeled (a).

In addition, our test programs contain a constraint on the final state. For example, the
program in Fig. 1(a) shows the line “Observed? r1=0; r2=0”. We use several different
keywords to express the final state of our programs. The keyword “Observed” (or its coun-
terpart “Not observed”) refers to empirical results. This means that we actually observed an
execution satisfying the final state constraint on a given machine. When there is a question
mark, as in “Observed?”, this means that we question whether the outcome is observable or
not on a given machine. The keyword “Allowed” (or its counterpart “Forbidden”) refers to
whether a given model allows (or forbids) the specified outcome. This means that we can
deduce from the definition of the model that this outcome is allowed (or forbidden).

The fact that the specified final state of a given program—such as “Observed? r1=0;
r2=0” in Fig. 1(a)—is observable or allowed relates to the graphs describing the executions
of this program—such as the one given in Fig. 2(b).

We describe a candidate execution of a given program using memory events, correspond-
ing to the memory accesses yielded by executing the instructions of the program. For ex-
ample, we give in Fig. 2(a) the memory events of one candidate execution of the program
of Fig. 1(a): the write event (a) Wx1 corresponds to the store x ← 1 at line (a). In this
candidate execution both reads read value 0.

In addition to these memory events, a candidate execution of a program consists of sev-
eral relations over them. One of these relations represents the program order as given by
an unfolding of a control-flow path through the text of the program—in any execution of
the program Fig. 1(a), the execution of the instruction at line (a) is program-order-before
execution of the instruction at line (b). This is expressed as the po relation between the cor-
responding events in Fig. 2(a). Other relations represent the interaction with memory: the
reads-from relation rf indicates which write the value of each read event comes from; and
the write serialisation ws represents the coherence order for each location (for each location,
there is a total order over the writes to that location). Reads-from edges with no source or
target represent reads from the initial state or writes that appear in the final state respectively.

Defining the validity of an execution We consider an execution of a given program to be
valid when the read and write memory events associated with the instructions of the program
follow a single global consensus, i.e. can be embedded in a single partial order. Thus, we



184 Form Methods Syst Des (2012) 41:178–210

define the validity of a given candidate execution as acyclicity checks of certain unions of
these relations.

This consensus represents the order in which these events are globally performed, which
means that we embed them in the order when we reach the point in time where all pro-
cessors involved have to take these events into account. In this paper, we consider reads to
be globally performed at once, whereas writes may not become visible to all processors at
once. This allows us to model both store buffering and the store atomicity relaxation, as we
expose below.

However, many interesting candidate executions (and all the executions that we will show
in this paper) contain at least one cycle, such as that depicted in Fig. 2(b). Typically, this cy-
cle will exhibit the fact that the execution that we choose to depict is invalid in the Sequential
Consistency (SC) model [30]. The execution in Fig. 2(b) is allowed in TSO and in Power,
but not in SC, where at least one of the reads would have to read 1.

Let us examine the Allowed/Forbidden case first. As we said above, the validity of an
execution in the model we present here boils down to the presence of certain cycles in the
execution graph. Thus, if an execution graph contains a cycle, then we have to examine if the
model that we are studying allows some ‘relaxation’ of the relations that are involved in this
cycle. If some relaxations are allowed, then the cycle does not forbid the execution, and the
final state is allowed by the model. For example in Fig. 2(b), on a model such as SC where
no relaxation is allowed, the cycle forbids the execution. On a model such as x86, where
the program order between a write and a read may be relaxed, the cycle does not forbid the
execution, for the program order relation (written po in Fig. 2(a)) between (a) and (b) (and
similarly (c) and (d)) is relaxed.

For the Observed/Not observed case, we have to run the test against hardware to check
whether the specified final outcomes appears. If we observe a given final state, we sometimes
can deduce which is the feature of the hardware—as represented by our model—that allows
this outcome. For example, we were able to observe the final state of Fig. 1(a) on x86
machines. From this we deduce that the cycle in Fig. 2(b) does not forbid the execution on
some x86 machines, and furthermore that the x86 model allows the reordering of write-read
pairs.

In the present paper, we focus exclusively on the Allowed/Forbidden case. For the Ob-
served/Not observed case, we refer the interested reader to other work by ourselves and
colleagues, which address the validation of theoretical models, either via testing [11, 12], or
discussion with processor vendors [33, 35].

3.2 Events and program order

As sketched above, rather than dealing directly with programs, our models are expressed
in terms of the events E occurring in a candidate execution. A memory event m represents
a memory access, specified by its direction (write or read), its location loc(m), its value
val(m), its processor proc(m), and a unique label. For example, the store to x marked (a) in
Fig. 1(a) generates the event (a) Wx1 in Fig. 2. Henceforth, we write r (resp. w) for a read
(resp. write) event. We write M� (resp. R�, W�) for the set of memory events (resp. reads,
writes) to a location � (we omit � when quantifying over all of them). We give a table of
notations for these sets of events, and the corresponding Cartesian products in Appendix.

The models are defined in terms of binary relations over these events, and we give in
Appendix a table of the relations we use.



Form Methods Syst Des (2012) 41:178–210 185

The program order po is a linear order1 amongst the events from the same processor
that never relates events from different processors. It reflects the sequential execution of
instructions on a single processor: given two instruction execution instances i1 and i2 that

generate events e1 and e2, (e1, e2) ∈ po (or e1
po→ e2) means that a sequential processor would

execute i1 before i2. When instructions may perform several memory accesses, we take intra-
instruction dependencies [34] into account to build a more precise order.

Hence we describe a program by an event structure,2 which collects the memory events
issued by the instructions of this program, and the program order relation, which lifts the
program order between instructions to the events’ level:

Definition 1 (Event structure)

E � (E,po)

Consider for example the test given in Fig. 1(a). We give in Fig. 2(a) an associated event
structure. For example, to the store instruction marked (a) on P0, we associate the write
event (a) Wx in Fig. 2. To the load instruction marked (b) on P0, we associate the read event
(b) Ry in Fig. 2. Since these two instructions are in program order on P0, the associated
events are related by the po relation. The reasoning is similar on P1.

3.3 Execution witnesses

Although po conveys important features of a program execution, e.g., branch resolution, it
does not characterise an execution. Indeed, on a weak memory model, the events in program
order may be reordered in an execution. Moreover, we need to describe the communication
between distinct processors during the execution of a program. Hence, in order to describe
an execution, we postulate two relations rf and ws over memory events.

3.3.1 Read-from map

We write (w, r) ∈ rf (or w
rf→ r) to mean that r loads the value stored by w (so w and r must

share the same location). In any execution, given a read r there exists a unique write w such
that (w, r) ∈ rf (w can be an init store when r loads from the initial state). Thus, rf must be
well formed following the wf-rf predicate:

Definition 2 (Well-formed read-from map)

wf-rf(rf) �
(

rf ⊆
⋃
�,v

WR�,v

)
∧ (∀r.∃!w.(w, r) ∈ rf

)

Consider the example given in Fig. 3(a). In the associated execution given in Fig. 3(b),
the read (c) from x on P1 reads its value from the write (b) to x on P1. Hence we have a rf
relation between them, depicted in the execution: (b, c) ∈ rf.

1By linear order, we mean a relation r that is irreflexive (i.e. ∀x.¬((x, x) ∈ r)), transitive (i.e. ∀xyz.(x, y) ∈
r ∧ (y, z) ∈ r ⇒ (x, z) ∈ r) and total (i.e. ∀xy.(x, y) ∈ r ∨ (y, x) ∈ r).
2Note that these are not G. Winskel’s event structures.



186 Form Methods Syst Des (2012) 41:178–210

Fig. 3 A program and a candidate execution

Fig. 4 fr proceeds from rf and ws

3.3.2 Write serialisation

We assume all values written to a given location � to be serialised, following a coherence
order. This property is widely assumed by modern architectures. We define ws as the union
of the coherence orders for all memory locations, which must be well formed following the
wf-ws predicate, where linear(r, S) means that the relation r is a linear order over the set S:

Definition 3 (Well-formed write serialisation)

wf-ws(ws) �
(

ws ⊆
⋃
�

WW�

)
∧ (∀�. linear(ws.WW�)

)

Consider the example given in Fig. 3(a). In the associated execution given in Fig. 3(b),
the write (b) to x on P1 hits the memory before the write (a) to x on P0. Hence we have a
ws relation between them, depicted in the execution: (b, a) ∈ ws.

As we shall see in Sect. 4, we will embed the write events in our global consensus ac-
cording to the write serialisation.

3.3.3 From-read map

We define the derived relation fr [7] which gathers all pairs of reads r and writes w such
that r reads from a write that is before w in ws, as depicted in Fig. 4. Intuitively, a read r is
in fr with a write w when r reads from a write that hit the memory before w did:



Form Methods Syst Des (2012) 41:178–210 187

Definition 4 (From-read map)

(r,w) ∈ fr � ∃w′.
(
w′, r

) ∈ rf ∧ (
w′,w

) ∈ ws

Consider the example given in Fig. 3(a). In the associated execution given in Fig. 3(b),
the write (b) to x on P1 hits the memory before the write (a) to x on P0, i.e. (b, a) ∈ ws.
Moreover, the read (c) from x on P1 reads its value from the write (b) to x on P1, i.e.
(b, c) ∈ rf. Hence we have a fr relation between (c) and (a) (i.e. (c, a) ∈ fr) because (c)

reads from a write which is older than (a) in the write serialisation.
As we shall see in Sect. 4, we will use the fr relation to include the read events in our

global consensus.

3.3.4 All together

Given a certain event structure E, we call the rf, ws and fr relations the communication
relations, and we write com for their union:

Definition 5 (Communication)

com � rf ∪ ws ∪ fr

We define an execution witness X associated with an event structure E as:

Definition 6 (Execution witness)

X � (rf,ws)

For example, we give in Fig. 2 an execution witness associated with the program of
Fig. 1(a). The set of events is {(a), (b), (c), (d)}, the program order is (a, b) ∈ po, (c, d) ∈
po. Since the initial state is implicitly a write preceding any other write to the same location
in the write serialisation, the only communication arrows we have between the events of this
execution are (b, c) ∈ fr and (d, a) ∈ fr.

The well-formedness predicate wf on execution witnesses is the conjunction of those for
ws and rf. We write rf(X) (resp. ws(X), po(X)) to extract the rf (resp. ws, po) relation from
a given execution witness X. When X is clear from the context, we may write rf instead of
rf(X) for example.

Definition 7 (Well-formed execution witness)

wf(X) � wf-rf
(
rf(X)

) ∧ wf-ws
(
ws(X)

)

4 Global happens-before

We consider an execution to be valid when we can embed the memory events of this ex-
ecution is a single global consensus. By global we mean that the memory events are the
events relative to memory actions, in a way that every processor involved has to take them
into account. Therefore, we do not consider the events relative to store buffers or caches, but
rather we wait until these events hit the main memory. Thus, we focus on the history of the
system from the main memory’s point of view.



188 Form Methods Syst Des (2012) 41:178–210

Hence, an execution witness is valid if the memory events can be embedded in an
acyclic global happens-before relation ghb (together with two auxiliary conditions detailed
in Sect. 6). This order corresponds roughly to the vendor documentation concept of mem-
ory events being globally performed [2, 22]: a write in ghb represents the point in global
time when this write becomes visible to all processors; whereas a read in ghb represents the
point in global time when the read takes place. We will formalise this notion later on, at
Sect. 4.3.1.

In order to do so, we present first the choices as to which relations we include in ghb
(i.e. which we consider to be in global time). Thereby we define a class of models. In the
following, we will call a relation global when it is included in ghb. Intuitively, a relation
is considered global if the participants of the system have to take it into account to build a
valid execution.

In our class of models, ws is always included in ghb. Indeed, the write serialisation for a
given location � is by definition the order in which writes to � are globally performed. The
relation fr is also always included in ghb. Indeed, as (r,w) ∈ fr means that the write w′ from
which r reads is globally performed before w, it forces the read r to be globally performed
(since as we expose in the preamble of the present section a read is globally performed as
soon as it is performed) before w is globally performed.

Yet, rf is not necessarily global, as we explain below. In the following, we write grf for
the subrelation of rf included in ghb. We write rfi (resp. rfe) for the internal and external rf,
when the events in rf are on the same (resp. distinct) processor(s):

Definition 8 (Internal and external read-from map)

(w, r) ∈ rfi � (w, r) ∈ rf ∧ proc(w) = proc(r)

(w, r) ∈ rfe � (w, r) ∈ rf ∧ proc(w) = proc(r)

4.1 Preserved program order

In any given architecture, certain pairs of events in the program order are guaranteed to
occur in this order. We postulate a global relation ppo (for preserved program order)
gathering all such pairs. For example, the execution witness in Fig. 2 is only valid if the
writes and reads relative to different locations on each processor have been reordered. In-
deed, if these pairs were forced to be in program order, we would have a cycle in ghb:

(a)
ppo→ (b)

fr→ (c)
ppo→ (d)

fr→ (a). Such a cycle contradicts the validity of the execution,
hence the execution depicted in Fig. 2 is not valid on an architecture such as SC, which
maintains the write-read pairs in program order.

An example of load-load and store-store reordering Consider the example given in Fig. 5,
which appears in the Intel documentation [28, §8.2.3.2, pp. 8–13]. On P0, we write the value
1 into x, then write 1 into y. On P1, we load from y into register r3 and finally load from x

into register r4. On an architecture that allows the reordering of either write-write or read-
read pairs, e.g., RMO, Power and ARM, we can observe the specified outcome, where the
value of y written by P0 is seen by P1, as witnessed by the result r3=1, but not the value of
x, as witnessed by the result r4=0. This could happen if the two writes on P0 are reordered,
or if the two reads on P1 are reordered (i.e. not in ppo). This could also happen if the store
atomicity is relaxed, but we explain this later (see Sect. 4.2.2).

On the execution given in Fig. 5, we can see the cycle (a)
po→ (b)

rfe→ (c)
po→ (d)

fr→ (a). We
know that fr is always global by hypothesis. Let us now assume that we are on an architecture



Form Methods Syst Des (2012) 41:178–210 189

Fig. 5 An example of load-load
and store-store reordering

Fig. 6 An example of load-store
reordering

where the store atomicity is not relaxed (which we model by some fragment of rf being
global—see below, Sect. 4.2.2). Then, the only possibility for this execution to be allowed
(or in other terms for this cycle to be non-global), is for one of the po relations (a, b) or
(c, d) to be non-global. This corresponds to the reordering scenarios exposed above.

An example of load-store reordering Consider the example given in Fig. 6, which appears
in the Intel documentation [28, §8.2.3.3, pp. 8–13]. On P0, we load from x into register r1,
then write 1 into y. On P1, we load from y into register r2 and finally write 1 to x. On
an architecture that allows the reordering of either read-write pairs, e.g., RMO, Power and
ARM, we can observe the specified outcome, where the value of y written by P0 is seen
by P1, as witnessed by the result r2=1, and the value of x written by P1 is seen by P0, as
witnessed by the result r1=1. This could happen if the read-write pair on P0 is reordered, or
symmetrically on P1. This could also happen if the store atomicity is relaxed, but we explain
this later (see Sect. 4.2.2).

On the execution given in Fig. 6, we can see the cycle (a)
po→ (b)

rfe→ (c)
po→ (d)

rfe→ (a).
Let us now assume that we are on an architecture where the store atomicity is not relaxed
(which we model by the some fragment of rf being global—see below, Sect. 4.2.2). Then,
the only possibility for this execution to be allowed (or in other terms for this cycle to be
non-global), is for one of the po relations (a, b) or (c, d) to be non-global. This corresponds
to the reordering scenarios exposed above.



190 Form Methods Syst Des (2012) 41:178–210

Fig. 7 An example of store buffering

4.2 Read-from maps

Writes are not necessarily globally performed at once. Some architectures allow store buffer-
ing (or read own writes early [5]): the processor issuing a given write can read its value be-
fore any other participant has access to it. Other architectures allow two processors sharing
a cache to read a write issued by their neighbour w.r.t. the cache hierarchy before any other
participant that does not share the same cache (a case of store atomicity relaxation, or read
others’ writes early [5]).

We said above that ws and fr are always global, i.e. included in ghb, but that rf might not
be global. We now explain when rf is global or not.

4.2.1 Store buffering

We model the store buffering by rfi being not included in ghb. Indeed, the communication
between a write to a given processor’s store buffer and a read from this buffer does not
influence the execution of another processor, because the write has not hit the main memory
yet. Therefore, this communication, modelled by rfi, is private to the processor issuing the
write, and we do not embed it in our global consensus.

Consider the example given in Fig. 7, which appears in the Intel documentation [28,
§8.2.3.4, pp. 8–15]. On P0, we write the value 1 into x, then load it from x into register r1.
Then, we load the value from y into register r2. On P1, we write to y, then load its value
into register r3 and finally load the value from x into register r4. On an architecture that
allows store buffering, e.g., x86, Power and ARM, we can observe the specified outcome,
where the value of x written by P0 is immediately accessible to P0, as witnessed by the
result r1=1, but not yet to P1, as witnessed by the result r4=0. This could happen if P0

reads from x via its store buffer, which has not been flushed to commit the new value of x

to memory. The situation is symmetric with P1 and y.

On the execution given in Fig. 7, we can see the cycle (a)
rfi→ (b)

po→ (c)
fr→ (d)

rfi→ (e)
po→

(f )
fr→ (a). We know that fr is always global by hypothesis. Let us now assume that we are

on an architecture where the read-read pairs (b, c) and (e, f ) cannot be reordered (which
we model by the corresponding fragment of the program order po being global—see above
Sect. 4.1). Then, the only possibility for this execution to be allowed (or in other terms for
this cycle to be non-global), is for the rfi relation to be non-global. This corresponds to the
store buffering scenario exposed above.



Form Methods Syst Des (2012) 41:178–210 191

Fig. 8 An example of atomicity relaxation

4.2.2 Store atomicity relaxation

Similarly, we model the store atomicity relaxation by rfe being not global. Indeed, the com-
munication between two processors via a shared cache may not influence the execution of
another processor, because the write has not hit the main memory yet. Therefore, this com-
munication, modelled by rfe is private to the two communicating processors, and we do not
embed it in our global consensus.

Consider the example given in Fig. 8, which appears in [16]. On P0, we read from x then
from y. On P1, we read the same locations but in the converse order. On P2 we write 1 to x,
and on P3 we write 2 to y. On an architecture that relaxes store atomicity, e.g., Power and
ARM, we can observe the specified outcome, where the value of x written by P2 is already
accessible to P0, as witnessed by the result r1=1, but not yet to P1, as witnessed by the
result r4=0. This could happen if P0 reads from x via a cache that is shared by P0 and P2

only, so that the new value of x is not yet visible to the other pair of processors, namely P1

and P3. The situation is symmetric with P1 and P3 communicating via a value of y written
in a cache shared by them only.

On the execution given in Fig. 8, we can see the cycle (a)
po→ (b)

fr→ (f )
rfe→ (c)

po→ (d)
fr→

(e)
rfe→ (a). We know that fr is always global by hypothesis. Let us now assume that we are

on an architecture where the read-read pairs (a, b) and (c, d) cannot be reordered (which
we model by the corresponding fragment of the program order po being global—see above
Sect. 4.1). Then, the only possibility for this execution to be allowed (or in other terms for
this cycle to be non-global), is for the rfe relation to be non-global. This corresponds to the
communication via caches scenario exposed above.

Let us now revisit the example given in Fig. 6. In Fig. 6, suppose that we have means to
maintain the read-read pairs on P0 and P1, either because they are natively maintained by
the architecture, like in TSO, or because we put an arithmetic operation in between them to
create a dependency, as we could on Power or ARM. In this case, the only possibility for
this execution to be allowed (or in other terms for the cycle to be non-global), is for the rfe
relation to be non-global.

4.3 Architectures

4.3.1 Definition

We call a particular model of our class an architecture, written A. We model an architecture
by a tuple of functions over executions. Hence we consider an architecture as a filter over
executions, which determines which executions are valid and which are not. By abuse of



192 Form Methods Syst Des (2012) 41:178–210

notation, we write ppo (resp. grf) for the function returning the ppo (resp. grf) relation w.r.t.
A when given an event structure and execution witness:

Definition 9 (Architecture)

A � (ppo,grf)

We use in the following the notation fA for a function f over execution witnesses w.r.t.
the architecture A. For example, given an event structure E, an associated execution witness
X and two architectures A1 and A2, we write ghbA1

(E,X) for the ghb of the execution
(E,X) relative to A1, while ppoA2

(E,X) returns the ppo of the execution (E,X) relative to
A2. We omit the architecture when it is clear from the context. Finally, we define ghb as the
union of the global relations:

Definition 10 (Global happens-before)

ghb � ppo ∪ ws∪ fr∪grf

4.3.2 Examples of architectures

Sequential Consistency (SC) (see also Sect. 7.2.1) allows no reordering of events (ppo equals
po on memory events) and makes writes available to all processors as soon as they are issued
(rf is global, i.e. grf = rf). Thus, the outcome of Fig. 1 cannot be the result of a SC execution.

Indeed, the associated execution exhibits the cycle: (a)
po→ (b)

fr→ (c)
po→ (d)

fr→ (a). Since
fr is always in ghb, and since the program order po is included in SC’s preserved program
order, this cycle is a cycle in ghbSC, hence we contradict the validity of this execution on
SC.

Sun’s Total Store Ordering (TSO) (see also Sect. 7.2.2.2) allows two relaxations [5]: write
to read program order, and read own write early. The write to read program order relaxation
means that TSO’s preserved program order includes all pairs but the store-load ones. The
read own write early relaxation means that TSO’s internal read-from maps are not global,
i.e. rfi ⊆ ghbTSO. Moreover, TSO does not relax the atomicity of stores, i.e. rfe ⊆ ghbTSO.
Thus, the outcome of Fig. 1 can be the result of a TSO execution. Even if the associated

execution (E,X) exhibits the cycle (a)
po→ (b)

fr→ (c)
po→ (d)

fr→ (a), this does not form a
cycle in ghbTSO(E,X). Indeed, the write-read pairs in (a, b) ∈ po on P0 and (c, d) ∈ po on
P1 do not have to be maintained on TSO.

5 Healthiness conditions

We now describe two healthiness conditions (independent of the one presented in the pre-
vious section) that every execution, on any architecture of our framework, should satisfy. In
conjunction with the condition exposed in Sect. 4, they form the criterion to decide whether
an execution is valid on an architecture of our framework.

5.1 Uniprocessor behaviour

First, we require each processor to respect memory coherence for each location [20] (i.e. the
per-location write serialisation): if a processor writes e.g., v then v′ to the same location �,
then the associated writes w and w′ should be in this order in the write serialisation, i.e. w′
should not precede w in the write serialisation. We formalise this notion as follows.



Form Methods Syst Des (2012) 41:178–210 193

Fig. 9 Invalid execution
according to the uniproc criterion

Fig. 10 Load-load hazard example

5.1.1 Definition

We define the relation po-loc over accesses to the same location in program order:

(m1,m2) ∈ po-loc � (m1,m2) ∈ po ∧ loc(m1) = loc(m2)

We require po-loc to be compatible with com (i.e. rf ∪ ws ∪ fr):

Definition 11 (Uniprocessor check)

uniproc(E,X) � acyclic(com ∪ po-loc)

For example, in Fig. 9, we have (c, a) ∈ ws (by x final value) and (a, b) ∈ rf (by r1 final

value). The cycle (a)
rf→ (b)

po-loc→ (c)
ws→ (a) invalidates this execution: (b) cannot read from

(a) as it is a future value of x in ws.
Note that uniproc corresponds, as we shall see in Sect. 7.2.1, to checking that SC holds

per location. This observation is of crucial importance when proving that non-relational
data-flow analyses are sound on weak memory models, as we do in [9]. Indeed, this ax-
iom basically guarantees that if one examines a given program from the point of view of a
sole memory location, everything appears to be SC. Since non-relational analyses deal with
programs on a per-location basis, they are sound on any given model that enjoys this axiom.

5.1.2 Load-load hazard

Certain architectures such as RMO allow load-load hazard, i.e. two reads from the same
location in program order may be reordered. We give in Fig. 10 an example program of



194 Form Methods Syst Des (2012) 41:178–210

load-load hazard: the read (b) from x and the read (c) from x on P0 have been reordered.
The read (c) reads from the write (a) on P0, hence (a, c) ∈ rf, which is not depicted in Fig. 10
to ease the reading. The read (b) reads from the write (d) on P1, hence (d, b) ∈ rf. Suppose
(a, d) ∈ ws, then, since (a, c) ∈ rf, we have (c, d) ∈ fr. Since we have (b, c) ∈ po, we exhibit

a cycle which is a contradiction to uniproc: (b)
po→ (c)

fr→ (d)
rf→ (b). The program order

between the two reads (b) and (c) on P0 is not respected, even though they access the same
location x.

To allow load-load hazard, we define the relation po-locllh over accesses to the same
location in the program order as po-loc except for read-read pairs:

(m1,m2) ∈ po-locllh � (m1,m2) ∈ po ∧ loc(m1) = loc(m2) ∧ ¬(m1 ∈ R ∧ m2 ∈ R)

Then we slightly alter the definition of uniproc to:

Definition 12 (Load-load hazard uniproc)

uniprocllh(E,X) � acyclic(com ∪ po-locllh)

In the following, we will use the notation uniproc for uniprocllh. Thus, all our results
hold with this weak variant of the uniproc check. Note however that for all the architectures
presented here, as well as for Power [11, 35], except RMO, the full version of uniproc holds,
on any valid execution.

5.1.3 Discussion

Note that the uniproc check can spare the cost of including certain pairs of events in program
order in the preserved program order of an architecture. Consider for example two writes
to the same location in program order. They are necessarily (by uniproc) included in ghb.
Indeed, such a pair (x, y) is in po-loc, thus (by uniproc) in (com)+. Moreover, observe that
(com)+ is equal to (com ∪ (ws; rf) ∪ (fr; rf)) (because ws;ws = ws and fr;ws = fr). Hence, a
write-write pair to the same location is, by uniproc, in (com ∪ (ws; rf) ∪ (fr; rf)). The cases
(ws; rf) and (fr; rf) do not apply here because of the directions of the events. Hence a write-
write pair to the same location is in com, i.e. in ws ∪ rf ∪ fr. The cases rf and fr do not apply
because of the directions of the events, hence such a pair is in ws. We know, by hypothesis
of our framework, that ws is always global. Hence, there is no need to specify write-write
pairs to the same location in the preserved program order, since we know that they are in
ghb by the uniproc check.

The same reasoning applies for read-write pairs to the same location: such pairs are
necessarily in fr, thus in ghb.

Hence, the uniproc check can be viewed as a minimal condition imposed by a machine:
the write-write and read-write pairs to the same location in the program order are necessarily
preserved globally in the order specified by the program.

5.2 Thin air

Second, we rule out programs where values come out of thin air [32]. This means that we
forbid the causal loops, as illustrated in Fig. 11. In this example, the write (b) to y on P0

depends on the read (a) from x on P0, because the xor instruction between them does a
calculation on the value written by (a) in r1, and writes the result into r9, later used by



Form Methods Syst Des (2012) 41:178–210 195

Fig. 11 Invalid execution according to the thin criterion

(b). Similarly on P1, (d) depends on (c). Suppose the read (a) from x on P0 reads from the
write (d) to x on P1, and similarly the read (c) from y on P1 reads from the write (b) to y

on P0, as depicted by the execution in Fig. 11. In this case, the values read by (a) and (c)

seem to come out of thin air, because they cannot be determined.
We model the dependencies between instructions with the dp relation. This relation is

a subrelation of po, and always has a read at its source. Note that we suppose here that
the definition of dp is independent of the architecture that we are studying. We express the
absence of causal loop in a valid execution via the following check, directly inspired by
Alpha’s documentation [13, (I) 5–15, p. 245]:

Definition 13 (Thin air check)

thin(E,X) � acyclic
(
rf(X) ∪ dp(E)

)

6 Validity of an execution

We can now define what it means for an execution (E,X) to be valid on an architecture
A of our framework. Then we state a notion of comparison between architectures, and two
simple theorems relating two architectures.

6.1 Definition

We define the validity of an execution w.r.t. an architecture A as the conjunction of four
checks. The first three, namely wf(X), uniproc(E,X) and thin(E,X) are independent of the
architecture. The last one, i.e. the acyclicity of ghbA(E,X), characterises the architecture.
We write validA(E,X) when the execution (E,X) is valid on the architecture A:

Definition 14 (Validity)

validA(E,X) � wf(X) ∧ uniproc(E,X) ∧ thin(E,X) ∧ acyclic
(
ghbA(E,X)

)

For example, the execution of Fig. 2 is invalid on SC. Indeed the ghbSC(E,X) of this

execution contains po and fr, therefore has a cycle: (a)
po→ (b)

fr→ (c)
po→ (d)

fr→ (a). On the
contrary, the ghbTSO(E,X) of this execution does not contain any po arrow whose source is
a write and target a read, hence does not contain (a, b) ∈ po and (c, d) ∈ po. Thus, there is
no cycle in ghbTSO(E,X), which means that this execution is not forbidden on TSO.



196 Form Methods Syst Des (2012) 41:178–210

6.2 Comparing architectures

From our definition of architecture arises a simple notion of comparison amongst them.
A1 ≤ A2 means that A1 is weaker than A2:

Definition 15 (Weaker)

A1 ≤ A2 � (ppo1 ⊆ ppo2) ∧ (grf1 ⊆ grf2)

As an example, TSO is weaker than SC. In the following two theorems, we suppose
A1 ≤ A2.

6.2.1 Validity is decreasing

The validity of an execution is decreasing w.r.t. the strength of the predicate; i.e. a weak
architecture exhibits at least all the behaviours of a stronger one:

Theorem 1 (Validity is decreasing)

∀EX.validA2(E,X) ⇒ validA1(E,X)

Proof From A1 ≤ A2, we immediately have ghbA1
⊆ ghbA2

, thus if ghbA2
is acyclic, so is

ghbA1
. �

For example, since TSO is weaker than SC, all the executions valid on SC are valid on
TSO.

6.2.2 Monotonicity of validity

The converse is not always true. However, some programs running on an architecture A1

exhibit executions that would be valid on a stronger architecture A2. To characterise all such
executions, we first define checkA2(E,X) as follows:

Definition 16 (Strong execution on weak architecture)

checkA2(E,X) � acyclic(grf2 ∪ ws ∪ fr ∪ ppo2)

We show that executions satisfying this criterion are valid on A1 if and only if they are
valid on A2:

Theorem 2 (Characterisation)

∀EX.
(
validA1(E,X) ∧ checkA2(E,X)

) ⇔ validA2(E,X)

Proof

⇒ (E,X) being valid on A1, we have all requirements—well-formedness, uniproc and
thin—to guarantee that (E,X) is valid on A2, except validA2(E,X), which holds by the
hypothesis checkA2 .



Form Methods Syst Des (2012) 41:178–210 197

Fig. 12 Inclusion of some
architectures

⇐ (E,X) being valid on A2 gives us all requirements—well-formedness, uniproc and
thin—to guarantee its validity on A1 except the last one validA1(E,X). As A1 ≤ A2,
we know that ghbA1

⊆ ghbA2
, thus the acyclicity requirement for ghbA1

holds if ghbA2

is acyclic. �

For example, consider the execution of the test of Fig. 2 where P0 executes its instruc-

tions before P1 does: (a)
po→ (b)

fr→ (c)
po→ (d) and (a, d) ∈ rf. It is valid on TSO since

there is no cycle in ghbTSO(E,X). It also satisfies checkSC(E,X) since there is no cycle in
ghbSC(E,X). Hence it is valid on SC as well.

These theorems, though fairly simple, are useful to compare two models and to restore a
strong model from a weaker one, as we do in [8, 10].

7 Classical models

We expose here how we implement several classical models in our framework, namely Se-
quential Consistency (SC) [30], the Sparc hierarchy (i.e. TSO, PSO and RMO [1]) and
Alpha [13]. We prove our implementations equivalent to the original definitions. We present
the models from the stronger (w.r.t. the order ≤), namely SC, to the weaker, namely RMO
and Alpha. We show in Fig. 12 the inclusion of these models w.r.t. each other. The inclusion
is here in terms of the behaviours that each model authorizes, therefore is in the converse
order that the order ≤ induces, as expressed by Theorem 1.

7.1 Implementing an architecture

The native definitions of the models presented here roughly follow the same generic form.
In these definitions, an execution ex is valid on an architecture A if it is an order on events
which contains a certain subrelation rA of the program order. Intuitively, the order ex corre-
sponds to our global happens-before relation, and rA to our preserved program order.

To show that the original specifications of the architectures that we study here corre-
spond to their implementations in our framework, we need to express the definitions of our
framework within the same shape as the original specifications. This means that from an
execution witness (E,X) valid on A (as defined in our framework) we have to build an exe-
cution order ex which contains rA (as given by the documentation), and conversely that from
an execution order ex containing rA (as given by the documentation), we need to extract an
execution witness (E,X) valid on A (as defined in our framework).



198 Form Methods Syst Des (2012) 41:178–210

Fig. 13 A program and a non-SC execution

Fig. 14 A SC execution for the
test of Fig. 13(a)

7.1.1 Building an execution witness from an order

Consider e.g. the event structure ({(a), (b), (c), (d)}, {(a, b) ∈ po, (c, d) ∈ po}) associated
with the program of Fig. 13(a). On SC we have (a, b) ∈ ppo and (c, d) ∈ ppo. Hence we can
build a valid SC execution from the order (a)

ex→ (b)
ex→ (c)

ex→ (d), which is the one we give
in Fig. 14. The first write in the order ex is (b), a write to y, which is immediately followed
by the read (c) to y, hence we have (b, c) ∈ rf. There is no write preceding the read (a) from
x, hence (a) reads from the initial state. Moreover, this initial write to x precedes the write
(d) in ws, hence (a, d) ∈ fr.

We need to build an execution witness from a given order ex. In order to do so, we need
to extract rf and ws from an order ex.

We write ws(ex) (resp. rf(ex)) for the ws (resp. rf) extracted from ex. We have (x, y) ∈
ws(ex) when x and y are writes to the same location and (x, y) ∈ ex. We have (x, y) ∈ rf(ex)

when x is a write and y a read, both to the same location, such that x is a maximal previous
write to this location before y in ex. Formally, writing pw(ex, r) for the set of writes to the
same location that precede the read event r in an order ex, we extract our rf and ws relations
from ex as follows:



Form Methods Syst Des (2012) 41:178–210 199

Definition 17 (Extraction of ws and fr from an order ex)

ws(ex) �
(⋃

�

WW�

)
∩ ex

rf(ex) �
{
(w, r) ∈ ex | loc(w) = loc(r) ∧ ¬(∃w′.

(
w,w′) ∈ ex ∧ (

w′, r
) ∈ ex ∪ po

)}

We derive the from-read map as in Sect. 3.3.3:

Definition 18 (Extracted fr)

(r,w) ∈ fr(ex) � ∃w′.
(
w′, r

) ∈ rf(ex) ∧ (
w′,w

) ∈ ws(ex)

We show that the extracted read-from maps rf(ex), write serialisation ws(ex) and from-
read maps fr(ex) are included in ex:

Lemma 1 (Inclusion of extracted communication in ex)

∀ex. rf(ex) ⊆ ex ∧ ws(ex) ⊆ ex ∧ fr(ex) ⊆ ex

Proof

– The read-from maps and write serialisation extracted from ex are included in ex by defi-
nition.

– Inclusion of from-read maps: Consider two events x and y such that (x, y) ∈ fr(ex). We
want to show that (x, y) ∈ ex. Since ex is a linear order, we know that either (x, y) ∈ ex, in
which case we have the result, or (y, x) ∈ ex. Suppose this last possibility, i.e. (y, x) ∈ ex.
We know that y is a write to x’s location, since it is the target of a fr which source is x.
Therefore, if (y, x) ∈ ex, we know that y is a previous write to x in ex. Hence we have
y ∈ pw(ex, x). Moreover, since (x, y) ∈ fr(ex), we know by definition that there exists wx

such that (wx, x) ∈ rf(ex) and (wx, y) ∈ ws(ex). Since ws(ex) is included in ex, we have
(wx, y) ∈ ex. But by definition of rf(ex), and since (wx, x) ∈ rf(ex), wx is the maximal
previous write to x in ex. Since (wx, y) ∈ ex and y is also a previous write, this contradicts
the maximality of wx . �

7.1.2 Lifting the constraints of an architecture to an order

Now that we know how to extract an execution witness from an order, we would like to
express the constraints of an architecture A over this order, and prove the equivalence of the
two notions of validity (the one over execution witnesses and the one over orders). Formally,
writing wit(ex) for the execution witness built from ex, and nativeA(E,ex) when ex is valid
on A in the sense of the documentation (a notion formalised below), we would like to show
that:

∀Eex.validA

(
E,wit(ex)

) ⇔ nativeA(E,ex)

To do so, in the following, we interpret the relation rA from the documentation as our
preserved program order ppoA, and the order ex as our global happens-before ghbA. The
order ex is defined as partial in Alpha’s documentation [13], or early versions of the Sparc’s
[36]. In the current version of Sparc documentation [37], it is defined as a linear order. We



200 Form Methods Syst Des (2012) 41:178–210

suppose that we are in a setting where a partial order can be extended into a linear order, and
define the native versions of the models in terms of a linear order.

Yet, all the criteria that we presented so far to decide the validity of an execution are in
terms of execution witnesses. Thus, to ease the proofs, it helps to find an intermediate for-
mulation of our framework that is closer to the native definitions as given by the documenta-
tions. Hence, for a given architecture A of our framework, we write linearisedA(E,ex) when
an order ex satisfies the conditions imposed by A. This merely corresponds to adapting the
uniproc, thin and acyclicity of ghbA checks to an order instead of an execution witness. Thus
we use the same notations as for an execution witness, e.g. com(ex) for the communication
relations extracted from the order ex. Formally, we have:

Definition 19 (Linearised definition of an architecture)

linearisedA(E,ex) � acyclic
(
com(ex) ∪ po-loc(E)

)
∧ acyclic

(
rf(ex) ∪ dp(E)

)
∧ acyclic

(
ws(ex) ∪ fr(ex) ∪ grfA(ex) ∪ ppoA(E)

)

We want to show that the validity of an execution on A corresponds to the definition
above. This means that whenever an execution ex is valid on A according to the definition
above, we can build an execution witness (E,X) which is valid on A, such that ex and
(E,X) have the same events and the same communication relations. Conversely, from an
execution (E,X) valid on A, we are able to build an execution ex valid on A with the same
events and communication relations.

7.1.3 From the linearised definition to ours

Let us consider the first part of this equivalence. Consider an order ex satisfying the lin-
earised definition. The extracted rf and ws are well formed in a finite execution, hence an
execution witness built from these relations is well formed. Let us now show that the exe-
cution witness built out of ex is valid on a given architecture A. This means that we have to
show that the extracted execution witness respects the uniproc, thin and acyclicity of ghbA

checks.
Let us first show that an extracted execution witness respects uniproc:

Lemma 2 (Extracted execution witness respects uniproc)

∀Eex.acyclic
(
com(ex) ∪ po-loc(E)

) ⇒ uniproc
(
E,wit(ex)

)

Proof Let us write X for wit(ex). The uniproc check implies that ∀xy, (x, y) ∈ pio(E) ⇒
¬((y, x) ∈ (com)+(X)). Let us suppose as a contradiction two events x and y such that
(x, y) ∈ po-loc(E) and (y, x) ∈ (com)+(X). We know that (com)+ = rf ∪ ws∪ fr∪(ws; rf) ∪
(fr; rf). Let us do a case disjunction on (y, x) ∈ (com)+:

– if (y, x) ∈ rf(X), we have (y, x) ∈ rf(ex) by hypothesis. Therefore, since (x, y) ∈ po-loc,
we have a cycle in com(ex) ∪ po-loc, a contradiction.

– if (y, x) ∈ ws(X), we have (y, x) ∈ ws(ex) by hypothesis. Since (x, y) ∈ po-loc, we have
a cycle in com(ex) ∪ po-loc, a contradiction.

– if (y, x) ∈ fr(E,X), we have (y, x) ∈ fr(ex) by definition. Since (x, y) ∈ po-loc, we have
a cycle in com(ex) ∪ po-loc, a contradiction.



Form Methods Syst Des (2012) 41:178–210 201

– if (y, x) ∈ ws(X); rf(X), there exists wx such that (y,wx) ∈ ws(X) and (wx, x) ∈ rf(X).
Since (wx, x) ∈ rf(X), we have (wx, x) ∈ rf(ex) by hypothesis. Similarly, we have
(y,wx) ∈ ws(ex). Hence we have a cycle in com(ex) ∪ po-loc.

– if (y, x) ∈ fr(E,X); rf(X), there exists wx such that (y,wx) ∈ fr(E,X) and (wx, x) ∈
rf(X). Since (wx, x) ∈ rf(X), we have (wx, x) ∈ rf(ex) by hypothesis. By definition we
have (y,wx) ∈ fr(ex), hence a cycle in com(ex) ∪ po-loc. �

Let us now show that the extracted execution witness respects the thin check:

Lemma 3 (Extracted execution witness respects thin)

∀Eex.acyclic
(
rf(ex) ∪ dp(E)

) ⇒ thin
(
E,wit(ex)

)

Proof We have rf(wit(ex)) = rf(ex), hence the result. �

Using these two lemmas, we show the validity of the extracted witness:

Lemma 4 (Validity of extracted execution witness)

∀Eex.linearisedA(E,ex) ⇒ validA

(
E,wit(ex)

)

Proof Let us write X = wit(ex). By Sect. 6.1, X is valid on A if X is well formed, respects
the uniproc and thin checks, and ghbA(X) is acyclic.

– Well-formedness: rf(ex) and ws(ex) are trivially well formed, hence (rf(ex),ws(ex)) is
well formed as well.

– Uniproc: we want to show that X respects the uniproc check. Since we know by hypoth-
esis that acyclic(com(ex) ∪ po-loc), Lemma 2 applies directly.

– Thin: we want to show that X respects the thin check. Since we know by hypothesis that
acyclic(rf(ex) ∪ dp), Lemma 3 applies directly.

– Acyclicity of ghb: we want to show that ghbA(X) is acyclic. Since X = wit(ex), we know
that ws(ex) = ws(X) and rf(ex) = rf(X). By definition, we have fr(ex) = fr(E,X). Thus,
ghb(X) = (grf(ex) ∪ ws(ex) ∪ fr(ex) ∪ ppoA), which is acyclic by hypothesis. This entails
the acyclicity of ghbA. �

This is enough to show that the linearised notion of validity entails our definition of
validity, for a given architecture A.

7.1.4 From our implementation to the linearised one

Conversely, to show that one of our execution witnesses corresponds to a linearised execu-
tion, we need to build an order from an execution witness. This order will typically be the
ghb of our execution witness, or more precisely a linear extension of it, so as to build a linear
order. Formally, we want to show:

Lemma 5 From A to its linearised definition

∀Eex.validA

(
E,wit(ex)

) ⇒ linearisedA(E,ex)

Proof From (E,wit(ex)) being valid on A, we know that:



202 Form Methods Syst Des (2012) 41:178–210

Name Arch Section

SC (MM, rf) 7.2.1
TSO (λ(E,X).(RM(E,X) ∪ WW(E,X)), rfe) 7.2.2.2
PSO (λ(E,X) · RM(E,X), rfe) 7.2.2.3
RMO (λ(E,X) · dp(E,X), rfe) 7.2.2.4
Alpha (λ(E,X) · (⋃� RR�(E,X)), rfe) 7.2.3

Fig. 15 Summary of models

– (E,wit(ex)) passes the uniproc check, thus acyclic(com(ex) ∪ po-loc(E));
– (E,wit(ex)) passes the thin check, from which we have acyclic(rf(ex) ∪ dp(E));
– ghbA(E,wit(ex)) is acyclic, from which we have the last requirement. �

This is enough to conclude that our notion of validity entails the linearised one. Thus, the
two notions of validity are equivalent. In the following, we will use the linearised notion to
relate more easily to the architectures’ definitions given by documentations.

7.2 A hierarchy of classical models

We now describe how we implement several classical models, namely SC, the Sparc hierar-
chy, and Alpha. We give in Fig. 15 a table summarising the implementation of these models
in our framework. Note that all of these models consider the stores to be atomic. The reader
will find an instance of our framework that relaxes store atomicity in [11], where we present
a model of the Power architecture.

We define notations to extract pairs of memory events from the program order in
Appendix. For example, WW represents the function which extracts the write-write pairs
in the program order of an execution. We write WW� when the writes have the same loca-
tion �.

7.2.1 Sequential Consistency (SC)

SC has been defined in [30] as follows:

[. . . ] the result of any execution is the same as if the operations of all the proces-
sors were executed in some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by its program.

SC allows no reordering of events (ppo equals po on memory events) and makes writes
available to all processors as soon as they are issued (rf is global). Note that any architecture
definable in our framework is weaker than SC:

Definition 20 (Sequential Consistency)

SC � (po, rf)

The following criterion characterises, as shown in Sect. 6.2, valid SC executions on any
architecture:



Form Methods Syst Des (2012) 41:178–210 203

Definition 21 (SC check)

checkSC(E,X) = acyclic(com ∪ po)

In [30], a SC execution is an order ex which includes the program order:

nativeSC(E,ex) � po ⊆ ex

The implicit execution model of [30] states that a read r takes its value from the most
recent write that precedes it in ex. Hence we extract rf and ws from ex following Sect. 7.1,
and build one of our execution witnesses from ex.

Finally, we show, following the proof given in Sect. 7.1.3, that each execution witness
built as above corresponds to a valid execution in our SC model. Indeed, since ex contains
all of po, it contains in particular the read-write and write-write pairs to the same location,
which is enough to ensure uniproc. Similarly, since it contains the dp relation, it ensures the
thin check:

Theorem 3 (SC is SC)

∀Eex.validSC(E,ex) ⇔ nativeSC(E,ex)

7.2.2 The Sparc hierarchy

We present here the definitions of Sun’s TSO, PSO and RMO.

7.2.2.1 The Value axiom The execution model of the Sparc architectures is provided by
the Value axiom of [1, V8; App. K; p. 283], which states that a read (La for Sparc) reads
from the most recent write (Sa) before La in the global ordering relation (which they note
≤) or in the program order (which they note ;):

Val(La) = Val
(

max≤ {Sa | Sa ≤ La ∨ Sa;La}
)

The fact that the store from which a load reads is specified to come either from the global
ordering relation or the program order means that the program order is not included in the
global ordering. This means that an rf relation occurs in the global order if and only if it is
an rf between two events from distinct processors. Therefore, we deduce that for each of the
Sparc architecture, the external rf are global, and the internal rf are not.

7.2.2.2 Total Store Order (TSO) TSO allows two relaxations [5]: write to read program
order, and read own write early. The write to read program order relaxation means that
TSO’s preserved program order includes all pairs but the store-load ones. The read own
write early relaxation means TSO’s internal read-from maps are not global, which is also
expressed by the Value axiom.

Definition 22 (TSO)

ppoTSO �
(
λ(E,X).

(
RM(E,X) ∪ WW(E,X)

))
TSO � (ppoTSO, rfe)



204 Form Methods Syst Des (2012) 41:178–210

Section 6.2 shows that the following criterion characterises valid executions (w.r.t. any
A ≤ TSO) that would be valid on TSO, e.g., in Fig. 2:

Definition 23 (TSO check)

checkTSO(E,X) = acyclic(ws∪ fr∪ rfe∪ppoTSO)

Sparc [1, V. 8, Appendix K] defines a TSO execution as an order ex on memory events
constrained by some axioms. We formulate those axioms as follows:3

nativeTSO(E,ex) � (RM ∪ WW) ⊆ ex

Finally, we show, following the proof given in Sect. 7.1.3, that an order ex satisfying the
axioms of Sun’s TSO’s specification corresponds to a valid execution in our TSO model.
Indeed, since ex contains the read-write and write-write pairs to the same location, this is
enough to ensure uniproc. Similarly, since it contains the dp relation, it ensures the thin
check:

Theorem 4 (TSO is TSO)

∀Eex.validTSO(E,ex) ⇔ nativeTSO(E,ex)

7.2.2.3 Partial Store Ordering (PSO) PSO maintains only the write-write pairs to the same
location and all read-read and read-write pairs [1]. However, there is no need to specify the
write-write pairs to the same location in PSO’s preserved program order. Indeed, according
to Sect. 5.1.1, we know that two writes in program order to the same location are in ws. We
know, by hypothesis of our framework, that ws is always global. Hence, there is no need to
specify write-write pairs to the same location in PSO’s preserved program order, since we
know that they are preserved globally (i.e. in ghb) by the uniproc check. As the Value axiom
holds for PSO as well, PSO’s external rf are global whereas its internal rf are not:

Definition 24 (PSO)

ppoPSO � λ(E,X).RM(E,X)

PSO � (ppoPSO, rfe)

Section 6.2 shows that the following criterion characterises valid executions (w.r.t. any
A ≤ PSO) that would be valid on PSO, e.g., in Fig. 2:

Definition 25 (PSO check)

checkPSO(E,X) = acyclic(ws∪ fr∪ rfe∪ppoPSO)

Sparc [1, V. 8, Appendix K] defines a PSO execution as an order ex on memory events
constrained by some axioms. We formulate those as follows:

nativePSO(E,ex) �
(

RM ∪
⋃
�

WW�

)
⊆ ex

3We omit the axioms Atomicity and Termination.



Form Methods Syst Des (2012) 41:178–210 205

We show, following the proof given in Sect. 7.1.3, that an order ex satisfying Sun PSO’s
specification corresponds to a valid execution of our PSO model. Indeed, since ex contains
the read-write and write-write pairs to the same location, this is enough to ensure uniproc.
Similarly, since it contains the dp relation, it ensures the thin check:

Theorem 5 (PSO is PSO)

∀Eex.validPSO

(
E,wit(ex)

) ⇔ nativePSO(E,ex)

7.2.2.4 Relaxed Memory Order (RMO) RMO preserves the program order between the
write-write and read-write pairs to the same location, and the read-read and read-write pairs
in the dependency relation [1]. However, there is no need to specify the write-write and read-
write pairs to the same location in RMO’s preserved program order, as exposed in Sect. 5.1.1.
Indeed, the write-write pairs to the same location are in ws, hence in ghb. Moreover, by the
same reasoning, the read-write pairs to the same location are in fr, hence in ghb.

The Value axiom holds for RMO as well. Hence we have (writing dp(E,X) for the pairs
in dependency in an execution (E,X)):

Definition 26 (RMO)

ppoRMO � λ(E,X).dp(E,X)

RMO � (ppoRMO, rfe)

Section 6.2 shows that the following criterion characterises valid executions (w.r.t. any
A ≤ RMO) that would be valid on RMO, e.g., in Fig. 2:

Definition 27 (RMO check)

checkRMO(E,X) = acyclic(ws∪ fr∪ rfe∪ppoRMO)

Sparc [1, V. 8, Appendix K] defines a RMO execution as an order ex on memory events
constrained by some axioms:

nativeRMO(E,ex) �
(

dp ∪
⋃
�

MW�

)
⊆ ex

We show, following the proof given in Sect. 7.1.3, that an order ex satisfying Sun RMO’s
specification corresponds to a valid execution of our RMO model. Indeed, since ex contains
the read-write and write-write pairs to the same location, this is enough to ensure uniproc.
Similarly, since it contains the dp relation, it ensures the thin check:

Theorem 6 (RMO is RMO)

∀Eex.validRMO(E,ex) ⇔ nativeRMO(E,ex)

7.2.3 Alpha

Alpha maintains the write-write, read-read and read-write pairs to the same location [13].
We exposed in Sect. 5.1.1 why there is no need to include the write-write pairs to the same



206 Form Methods Syst Des (2012) 41:178–210

location in ppo (they are in ws thus in ghb by uniproc), and why the read-write pairs to the
same location are exempted as well (they are in fr thus in ghb by uniproc). However, we do
need to specify the read-read pairs to the same location in Alpha’s preserved program order,
because such a relation may not be global, if not specified in the ppo. Moreover, Alpha
specifies, for every read, the write from which it reads as the last one either:

– in processor issue sequence, i.e. our program order, or
– in the BEFORE order, which corresponds to our global happens-before order.

Thus, similarly to the Sun models, external rf are global whereas internal are not:

Definition 28 (Alpha)

ppoAlpha � λ(E,X).

(⋃
�

RR�(E,X)

)

Alpha � (ppoAlpha, rfe)

Section 6.2 shows the following criterion characterises valid executions (w.r.t. any A ≤
Alpha) that would be valid on Alpha, e.g., in Fig. 2:

Definition 29 (Alpha check)

checkAlpha(E,X) = acyclic(ws∪ fr∪ rfe∪ppoAlpha)

Alpha [13] formally defines an Alpha execution as an order ex on memory events con-
strained by some axioms. We formulate those axioms as follows:

nativeAlpha(E,ex) �
(⋃

�

RM� ∪ WW�

)
⊆ ex ∧ acyclic

(
rf(ex) ∪ dp(E)

)

Finally, we show, following the proof given in Sect. 7.1.3, that any order ex satisfying Al-
pha’s axioms corresponds to a valid execution in our Alpha model. Indeed, since ex contains
the read-write and write-write pairs to the same location, this is enough to ensure uniproc.
Moreover, the thin check is literally given:

Theorem 7 (Alpha is Alpha)

∀Eex. validAlpha(E,ex) ⇔ nativeAlpha(E,ex)

7.2.4 RMO and Alpha are incomparable

We saw in Sect. 5.1.2 that RMO authorizes load-load hazard, where two reads on the same
processor from the same location can be reordered. We illustrated this by explaining why
the test of Fig. 10(a) can exhibit its outcome on a RMO machine.

However, Alpha preserves read-read pairs to the same location in program order, as ex-
posed in Sect. 7.2.3. Therefore the read-read pair (b, c) ∈ po to the same location on P0 is in-
cluded in Alpha’s preserved program order. Moreover, we know that the external read-from
maps are global on Alpha, hence the relation (d, b) ∈ rf is global as well. Hence the execution

(E,X) depicted in Fig. 10(b) exhibits a cycle in ghbAlpha(E,X): (b)
ppo→ (c)

fr→ (d)
rfe→ (b),

which forbids this execution.



Form Methods Syst Des (2012) 41:178–210 207

Fig. 16 The iriw example

Fig. 17 A non-SC execution of
iriw

Hence, RMO authorizes load-load hazard whereas Alpha does not.
Consider now the iriw (for Independent Reads of Independent Writes) example given in

Fig. 16, and suppose that there is a dependency between the pairs of reads on P0 and P1, i.e.
(a, b) ∈ dp and (c, d) ∈ dp. We can enforce these pairs to be in dependency by adding for
example a logical operation between them, such as a xor operating on the registers of the
load instructions associated to the read events.

The specified outcome may be revealed by an execution such as the one we depict in
Fig. 17. Suppose that each location and register initially hold 0. If r1 holds 1 on P0 in
the end, the read (a) has read its value from the write (e) on P2, hence (e, a) ∈ rf. On the
contrary, if r2 holds 0 in the end, the read (b) has read its value from the initial state,
thus before the write (f ) on P3, hence (b, f ) ∈ fr. Similarly, we have (f, c) ∈ rf from r2
holding 1 on P1, and (d, e) ∈ fr from r1 holding 0 on P1. Hence, if the specified outcome
is observed, it ensures that at least one execution of the test contains the cycle depicted in

Fig. 17: (a)
dp→ (b)

fr→ (f )
rfe→ (c)

dp→ (d)
fr→ (e)

rf→ (a).
This cycle is not global on Alpha whereas it is on RMO. This means that the associated

execution is authorised on Alpha whereas it is forbidden on RMO. Indeed on RMO, the
pairs in dependency are included in the preserved program order, hence the pairs (a, b) ∈ dp

and (c, d) ∈ dp are included in ppo, hence in ghb. Moreover, the external read-from maps
are global on RMO (see Sect. 7.2.2.4), and fr is always global. However on Alpha, these
pairs are not preserved globally, therefore this execution is authorised.

Hence, Alpha authorizes iriw with dependencies whereas RMO does not.



208 Form Methods Syst Des (2012) 41:178–210

8 Conclusion

We presented here a formal generic framework for defining weak memory models. We min-
imised the number of our axioms to make any specification of a model in our framework
concise. We demonstrated the strength and semantical scope of our axioms by equivalences
proofs of several existing weak memory models and their native definition, amongst which
Sequential Consistency and Sun’s TSO, which is also known to be the memory model ex-
hibited by x86 processors [33].

We hope that we have highlighted by these proofs, in a precise and formal way, the
ingredients (i.e. our axioms) necessary to the definition and study of weak memory models
in the same generic terms.

The characterisation we propose in Theorem 2 is simple, since it is merely an acyclicity
check of the global happens-before relation. This check is already known for SC [31], and
recent verification tools use it for architectures with store buffer relaxation [18, 25]. Our
work extends the scope of these methodologies to models relaxing store atomicity.

Finally, even though we do not expose these results in the present paper, we have demon-
strated the generality and applicability of our framework in an experimental way. As pre-
sented in [11], we have indeed tested several Power machines, which allowed us to design a
model of the Power architecture, which is an instance of the present framework. Given the
complexity and subtlety of the Power architecture, this demonstrates (in conjunction with
the formal proofs presented here) the generality, the expressivity, as well as the preciseness
of our framework.

In addition, we also prove formally (in [8, 10]) results about where to place synchroni-
sation primitives in a piece of code, and how to optimise this placement. Our formal proofs
demonstrate the useability of our framework, for example as a basis for defining program-
ming disciplines for concurrent programs.

Acknowledgements We thank the anonymous reviewers of several versions of this paper for their helpful
and insightful reviews. We thank Gérard Boudol, Damien Doligez, Matthew Hague, Maurice Herlihy, Xavier
Leroy, Luc Maranget, Susmit Sarkar and Peter Sewell for invaluable discussions and comments, Assia Mah-
boubi and Vincent Siles for advice on the Coq development, and Thomas Braibant, Matt Lewis, Jules Villard
and Boris Yakobowski for comments on a draft.

Appendix: Tables of notations

Table 1 Table of notations for events and pairs of events

Name Notation Comment

Memory events M All memory events

Memory events to the same location M� Memory events relative w/location �

Read events, reads R Memory events that are reads

Reads from the same location R� Reads from the location �

Write events, writes W Memory events that are writes

Writes to the same location W� Writes to the location �

Memory pairs MM Pairs of any memory events in program order

Memory pairs to the same location MM� Pairs of any memory events to the same location
in program order



Form Methods Syst Des (2012) 41:178–210 209

Table 1 (Continued)

Name Notation Comment

Read-read pairs RR Pairs of reads in program order

Read-read pairs to the same location RR� Pairs of reads from the same location in
program order

Read-write pairs RW Read followed by write in program order

Read-write pairs to the same location RW� Read followed by write to the same location in
program order

Write-write pairs WW Pairs of writes in program order

Write-write pairs to the same location WW� Pairs of writes to the same location in program
order

Write-read pairs WR Write followed by read in program order

Write-read pairs to the same location WR� Write followed by read from the same location
in program order

Table 2 Table of relations

Name Notation Comment Section

Program order (m1,m2) ∈ po Per-processor linear order 3.2

Dependencies (m1,m2) ∈ dp Included in po, source is a read 5.2

Po-loc (m1,m2) ∈ po-loc po restricted to the same location 5.1.1

Preserved program order (m1,m2) ∈ ppo Pairs maintained in program order (⊂ po) 4.1

Read-from map (w, r) ∈ rf Links a write to a read reading its value 3.3.1

External read-from map (w, r) ∈ rfe rf between events from distinct processors 4

Internal read-from map (w, r) ∈ rfi rf between events from the same processor 4

Global read-from map (w, r) ∈ grf rf considered global 4

Write serialisation (w1,w2) ∈ ws Linear order on writes to the same location 3.3.2

From-read map r frw r reads from a write preceding w in ws 3.3.3

Global happens-before (m1,m2) ∈ ghb Union of global relations 4.3.1

Communication (m1,m2) ∈ com Shorthand for (m1,m2) ∈(rf ∪ ws ∪ fr) 3.3.4

Table 3 Notations to extract pairs from po

Function Comment

MM � λ(E,X).((MM) ∩ po(X)) Two memory events in program order

RM � λ(E,X).((RM) ∩ po(X)) A read followed by a memory event in program order

WW � λ(E,X).((WW) ∩ po(X)) Two writes in program order

MW � λ(E,X).((MW) ∩ po(X)) A memory event followed by a write in program order

References

1. Sparc Architecture Manual (1992 and 1994) Versions 8 and 9
2. Power ISA (2009) Version 2.06
3. Adir A, Attiya H, Shurek G (2003) Information-flow models for shared memory with an application to

the powerPC architecture. In: TPDS



210 Form Methods Syst Des (2012) 41:178–210

4. Adve SV (1993) Designing memory consistency models for shared-memory multiprocessors. PhD thesis,
1993

5. Adve SV, Gharachorloo K (1995) Shared memory consistency models: a tutorial. IEEE Comput 29:66–
76

6. Adve SV, Boehm H-J (2012) Memory models: a case for rethinking parallel languages and hardware.
Commun ACM. doi:10.1145/1787234.1787255

7. Ahamad M, Bazzi RA, John R, Kohli P, Neiger G (1993) The power of processor consistency. In: SPAA
8. Alglave J (2010) A shared memory poetics. PhD thesis, Université Paris 7 and INRIA. http://moscova.

inria.fr/~alglave/these
9. Alglave J, Kroening D, Lugton J, Nimal V, Tautschnig M (2011) Soundness of data flow analyses on

weak memory models In: APLAS 11
10. Alglave J, Maranget L (2011) Stability in weak memory models. In: CAV
11. Alglave J, Maranget L, Sarkar S, Sewell P (2010) Fences in weak memory models. In: CAV
12. Alglave J, Maranget L, Sarkar S, Sewell P (2011) Litmus: running tests against hardware. In: TACAS
13. Alpha Architecture Reference Manual, 4th edn (2002)
14. Arvind, Maessen J-W (2006) Memory model = instruction reordering + store atomicity. In: ISCA
15. Bertot Y, Casteran P (2004) Coq’Art, EATCS texts in theoretical computer science. Springer, Berlin
16. Boehm H-J, Adve SV (2008) Foundations of the C++ concurrency memory model. In: PLDI
17. Boudol G, Petri G (2009) Relaxed memory models: an operational approach. In: POPL
18. Burckhardt S, Musuvathi M (2008) Effective program verification for relaxed memory models. In: CAV
19. Burckhardt S, Musuvathi M, Singh V (2010) Verifying local transformations of concurrent programs.

In: CC
20. Cantin J, Lipasti M, Smith J (2003) The complexity of verifying memory coherence. In: SPAA
21. Collier WW (1992) Reasoning about parallel architectures. Prentice Hall, New York
22. Dubois M, Scheurich C (1990) Memory access dependencies in shared-memory multiprocessors. IEEE

Trans Softw Eng 16(6). doi:10.1109/32.55094
23. Ferreira R, Feng X, Shao Z (2010) Parameterized memory models and concurrent separation logic. In:

ESOP
24. Gharachorloo K (1995) Memory consistency models for shared-memory multiprocessors. WRL Res Rep

95(9). doi:10.1.1.37.3026
25. Hangal S, Vahia D, Manovit C, Lu J-YJ, Narayanan S (2004) TSOTool: a program for verifying memory

systems using the memory consistency model. In: ISCA
26. Higham L, Kawash J, Verwaal N (1998) Weak memory consistency models part I: definitions and com-

parisons. Technical report 98/612/03, Department of Computer Science, The University of Calgary
27. Intel 64 Architecture Memory Ordering White Paper, August 2007
28. Intel 64 and IA-32 Architectures Software Developer’s Manual, vol 3A, October 2011
29. A Formal Specification of Intel Itanium Processor Family Memory Ordering, October 2002. Intel Docu-

ment 251429-001
30. Lamport L (1979) How to make a correct multiprocess program execute correctly on a multiprocessor.

IEEE Trans Comput 46(7):779–782
31. Landin A, Hagersten E, Haridi S (1991) Race-free interconnection networks and multiprocessor consis-

tency. Comput Archit News 19(3):106–115
32. Manson J, Pugh W, Adve SV (2005) The Java memory model. In: POPL
33. Owens S, Sarkar S, Sewell P (2009) A better x86 memory model: x86-TSO. In: TPHOL
34. Sarkar S, Sewell P, Zappa Nardelli F, Owens S, Ridge T, Braibant T, Myreen M, Alglave J (2009) The

semantics of x86-CC multiprocessor machine code. In: POPL
35. Sarkar S, Sewell P, Alglave J, Maranget L, Williams D (2011) Understanding power multiprocessors. In:

PLDI 11
36. Sparc Architecture Manual Version 8 (1992)
37. Sparc Architecture Manual Version 9 (1994)
38. Yang Y, Gopalakrishnan G, Lindstrom G (2007) UMM: an operational memory model specification

framework with integrated model checking capability. In: CCPE
39. Yang Y, Gopalakrishnan G, Linstrom G, Slind K (2004) Nemos: a framework for axiomatic and exe-

cutable specifications of memory consistency models. In: IPDPS
40. Zappa Nardelli F, Sewell P, Sevcik J, Sarkar S, Owens S, Maranget L, Batty M, Alglave J (2009) Relaxed

memory models must be rigorous. In: EC2 09

http://dx.doi.org/10.1145/1787234.1787255
http://moscova.inria.fr/~alglave/these
http://moscova.inria.fr/~alglave/these
http://dx.doi.org/10.1109/32.55094
http://dx.doi.org/10.1.1.37.3026

	A formal hierarchy of weak memory models
	Abstract
	Introduction
	Weak memory models
	Modelling
	Contribution

	Related work
	Generic models
	Global-time vs. view orders
	Axiomatic vs. operational
	Memory models as program transformations

	From events to execution witnesses
	Informal overview of our approach
	Describing executions of programs
	Defining the validity of an execution

	Events and program order
	Execution witnesses
	Read-from map
	Write serialisation
	From-read map
	All together


	Global happens-before
	Preserved program order
	An example of load-load and store-store reordering
	An example of load-store reordering

	Read-from maps
	Store buffering
	Store atomicity relaxation

	Architectures
	Definition
	Examples of architectures


	Healthiness conditions
	Uniprocessor behaviour
	Definition
	Load-load hazard
	Discussion

	Thin air

	Validity of an execution
	Definition
	Comparing architectures
	Validity is decreasing
	Monotonicity of validity


	Classical models
	Implementing an architecture
	Building an execution witness from an order
	Lifting the constraints of an architecture to an order
	From the linearised definition to ours
	From our implementation to the linearised one

	A hierarchy of classical models
	Sequential Consistency (SC)
	The Sparc hierarchy
	7.2.2.1 The Value axiom
	7.2.2.2 Total Store Order (TSO)
	7.2.2.3 Partial Store Ordering (PSO)
	7.2.2.4 Relaxed Memory Order (RMO)

	Alpha
	RMO and Alpha are incomparable


	Conclusion
	Acknowledgements
	Appendix: Tables of notations
	References


