
Noname manuscript No.
(will be inserted by the editor)

Fences in Weak Memory Models (Extended Version)

Jade Alglave1,3
· Luc Maranget1 · Susmit Sarkar2

· Peter Sewell2

the date of receipt and acceptance should be inserted later

Abstract We present a class of relaxed memory models, defined in Coq, parame-
terised by the chosen permitted local reorderings of reads and writes, and by the
visibility of inter- and intra-processor communications through memory (e.g. store
atomicity relaxation). We prove results on the required behaviour and placement
of memory fences to restore a given model (such as Sequential Consistency) from
a weaker one. Based on this class of models we develop a tool, diy, that system-
atically and automatically generates and runs litmus tests. These tests can be
used to explore the behaviour of processor implementations and the behaviour of
models, and hence to compare the two against each other. We detail the results of
experiments on Power and a model we base on them.

1 Introduction

Most multiprocessors exhibit subtle relaxed-memory behaviour, with writes from
one thread not immediately visible to all others; they do not provide sequentially
consistent memory [21]. For some, such as x86 [2,1,26,24,28] and Power [25], the
vendor documentation is in inevitably-ambiguous informal prose, leading to con-
fusion. Thus we have no foundation for software verification of concurrent systems
code, and no target specification for hardware verification of microarchitecture.
To remedy this state of affairs, we take a firmly empirical approach, developing,
in tandem, testing tools and models of multiprocessor behaviour—the test results
guiding model development and the modelling suggesting interesting tests. In this
paper we make five contributions:

1. We introduce a class of axiomatic memory models, defined in Coq [13], which
we show how to instantiate to produce Sequential Consistency (SC), Sparc
Total Store Order (TSO) [30], and a Power model (see item 4 below).

2. We describe our diy testing tool. Much discussion of memory models has been
in terms of litmus tests (e.g. iriw [14]): ad-hoc multiprocessor programs for
which particular final states may be allowed on a given architecture. Given a

1 INRIA 2 University of Cambridge 3 Oxford University

2 Jade Alglave et al.

potential violation of SC , diy systematically and automatically generates litmus
tests (including classical ones such as iriw) and runs them on the hardware.
These tests can be used to explore the behaviour of processor implementations
and also the outcomes permitted by a model, and hence to compare the two;
we illustrate this by our exploration of Power machines.

3. We use diy to generate about 800 tests, running them up to 1e12 times on
three Power machines. They identified a rarely occurring implementation error
in Power 5 memory barriers (for which IBM is providing a workaround), and
further suggest that Power 6 does not suffer from this.

4. Based on these, and on other test results, we developed an axiomatic memory
model (the CAV 2010 model) for Power which captures several important as-
pects of the processor’s behaviour. Notably, it describes the lack of multi-copy

store atomicity [5,12], despite being in a simple global-time style rather than
the per-processor timelines implied by the architecture text. It also models
the ordering relaxations we observe and A-cumulative barriers [25]. The model
is sound with respect to all our experimental results, though for some of the
Power barriers it is weaker than one might like; we discuss this in detail.

5. We prove in Coq theorems about the strength and placement of memory bar-
riers required to regain a strong model from a weaker model.

The experimental details and the sources and documentation of diy are avail-
able online1, as are the Coq development and typeset outlines of the proofs2, which
are further described in the first author’s PhD thesis [7]. This paper extends a con-
ference paper in CAV 2010 [9], adding more explanation and more details of diy

and of the axiomatic Power model introduced there.

2 Our class of models

A memory model determines whether a candidate execution of a program is valid.
For example, Fig. 1(a) shows a simple litmus test, comprising an initial state
(which gathers the initial values of registers and memory locations used in the
test), a program in pseudo- or assembly code, and a final condition on registers
and memory (we write x, y for memory locations and r1, r2 for registers). If each
location initially holds 0 (henceforth we omit the initial state if so), then, e.g. on
x86 processors, there are valid executions with the specified final state [24].

2.1 Informal overview of our approach

We start here by explaining the concepts that we use at a high level. We then
define these concepts formally in the forthcoming subsections.

Describing executions of programs We study concurrent programs such as the one
given in Fig. 1(a). Each of these programs gives an initial state describing the
initial values in memory locations and registers initially, e.g. x=0; y=0 in Fig. 1(a),
meaning that we suppose that the memory locations x and y hold the value 0

1 http://diy.inria.fr/
2 http://diy.inria.fr/wmm/

Fences in Weak Memory Models (Extended Version) 3

Init: x=0; y=0;

P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

Observed? r1=0; r2=0;

(a) Wx1

(b) Ry0

(c) Wy1

(d) Rx0

po:0 po:1

(a) Wx1

(b) Ry0

(c) Wy1

(d) Rx0

po:0 rf

fr

po:1rf

fr

rf

rf

(a) Program (b) Events and Program Order (c) An execution witness

Fig. 1 A program and a candidate execution

initially. Except when the examples are specific to our study of the Power archi-
tecture, i.e. in Sec. 6 and 7, we write the instructions in pseudo-code; for example
x ← 1 is a store of value 1 into memory location x, and r1 ← y is a load from
memory location y into a register r1. We depict a concurrent program as a table,
where the columns are processors (e.g. P0 and P1 in Fig. 1(a)), and the lines are
labelled with letters—for example in Fig. 1(a), the first line, which holds x← 1, is
labelled (a).

We describe a candidate execution of a given program using memory events,
corresponding to the memory accesses yielded by executing the instructions of the
program. For example, we give in Fig. 1(b) the memory events of one candidate
execution of the program of Fig. 1(a): the write event (a) W x 1 corresponds to
the store x← 1 at line (a). In this candidate execution both reads read value 0.

In addition to these memory events, a candidate execution of a program con-
sists of several relations over them. One of these relations represents the program
order as given by an unfolding of a control-flow path through the text of the
program—in any execution of the program Fig. 1(a), the execution of the instruc-
tion at line (a) is program-order-before execution of the instruction at line (b).

This is expressed as the
po
→ relation between the corresponding events in Fig. 1(b).

Other relations represent the interaction with memory: the reads-from relation
rf
→

indicates which write the value of a each read event comes from; and the write
serialisation

ws
→ represents the coherence order for each location (for each location,

there is a total order over the writes to that location). Reads-from edges with no
source or target represent reads from the initial state or writes that appear in the
final state respectively.

Defining the validity of an execution We then define the validity of a given candidate
execution as acyclicity checks of certain unions of these relations.

Many interesting candidate executions (and all the executions that we will
show in this paper) contain at least one cycle, such as that depicted in Fig. 1(c).
Typically, this cycle will exhibit the fact that the execution that we choose to
depict is invalid in the Sequential Consistency (SC) model [21]. The execution in
Fig. 1(c) is allowed in TSO and in Power, but not in SC, where at least one of the
reads would have to read 1.

4 Jade Alglave et al.

In addition, our test programs contain a constraint on the final state. For
example, the program in Fig. 1(a) shows the line ”Observed? r1=0;r2=0”. We use
several different keywords to express the final state of our programs. The keyword
”Observed” (or its counterpart ”Not observed”) refers to empirical results. This
means that we actually observed an execution satisfying the final state constraint
on a given machine. When there is a question mark, as in ”Observed?”, this means
that we question whether the outcome is observable or not on a given machine.
The keyword ”Allowed” (or its counterpart ”Forbidden”) refers to whether a given
model allows (or forbids) the specified outcome. This means that we can deduce
from the definition of the model that this outcome is allowed (or forbidden).

The fact that the specified final state of a given program—such as ”Observed?
r1=0; r2=0” in Fig. 1(a)—is observable or allowed relates to the graphs describing
the executions of this program—such as the one given in Fig. 1(c).

Let us examine the Allowed/Forbidden case first. As we said above, the validity
of an execution in the model we present here boils down to the presence of certain
cycles in the execution graph. Thus, if an execution graph contains a cycle, then
we have to examine if the model that we are studying allows some ‘relaxation’ of
the relations that are involved in this cycle. If some relaxations are allowed, then
the cycle does not forbid the execution, and the final state is allowed by the model.
For example in Fig. 1(c), on a model such as SC where no relaxation is allowed,
the cycle forbids the execution. On a model such as x86, where the program order
between a write and a read may be relaxed, the cycle does not forbid the execution,
for the program order relation (written

po
→ in Fig. 1(c)) between (a) and (b) (and

similarly (c) and (d)) is relaxed.

For the Observed/Not observed case, we have to run the test against hard-
ware to check whether the specified final outcomes appears. If we observe a given
final state, we sometimes can deduce which is the feature of the hardware—as
represented by our model—that allows this outcome. For example, we were able
to observe the final state of Fig. 1(a) on x86 machines. From this we deduce that
the cycle in Fig. 1(c) does not forbid the execution on some x86 machines, and fur-
thermore that the x86 model allows the reordering of write-read pairs. Of course,
as usual with black-box testing, one cannot deduce anything with certainty from
the absence of an empirical observation.

2.2 Events and program order

As sketched above, rather than dealing directly with programs, our models are
in terms of the events E occurring in a candidate program execution. A memory

event m represents a memory access, specified by its direction (write or read),
its location loc(m), its value val(m), its processor proc(m), and a unique label.
The store to x with value 1 marked (a) in Fig. 1(a) generates the event (a) W x 1
in Fig. 1(b). Henceforth, we write r (resp. w) for a read (resp. write) event. We
write Mℓ,v (resp. Rℓ,v, Wℓ,v) for the set of memory events (resp. reads, writes) to
a location ℓ with value v (we omit ℓ and v when quantifying over all of them). A
barrier instruction generates a barrier event b; we write B for the set of all such
events.

Fences in Weak Memory Models (Extended Version) 5

Name Notation Comment Sec.

program order m1
po
→ m2 per-processor total order 2.2

dependencies m1
dp
→ m2 dependencies 2.2

po-loc m1
po-loc
→ m2 program order restricted to the same location 2.5

preserved program order m1
ppo
→ m2 pairs maintained in program order 2.4

read-from map w
rf
→ r links a write to a read reading its value 2.3

external read-from map w
rfe
→ r

rf
→ between events from distinct processors 2.4

internal read-from map w
rfi
→ r

rf
→ between events from the same processor 2.4

global read-from map w
grf
→ r

rf
→ considered global 2.4

write serialisation w1
ws
→ w2 total order on writes to the same location 2.3

from-read map r
fr
→ w r reads from a write preceding w in

ws
→ 2.3

barriers m1
ab
→ m2 ordering induced by barriers 2.4

global happens-before m1
ghb
→ m2 union of global relations 2.4

communication m1
com
→ m2 (m1, m2) ∈(

rf
→ ∪

ws
→ ∪

fr
→) (written

hb-seq
→ in [9]) 2.5

Fig. 2 Table of relations

The models are defined in terms of binary relations over these events, and
Fig. 2 has a first table of the relations we use. The relations given in Fig. 2 are
entirely generic; we give some more relations that are specific to Power in Fig. 17.

As usual, the program order
po
→ is a total order amongst the events from the

same processor that never relates events from different processors. It reflects the
sequential execution of instructions on a single processor: given two instruction
execution instances i1 and i2 that generate events e1 and e2, e1

po
→ e2 means that

a sequential processor would execute i1 before i2. When instructions may perform
several memory accesses, we take intra-instruction dependencies [26] into account
to build a total order.

We postulate a
dp
→ relation to model the dependencies between instructions,

such as data or control dependencies [25, pp. 653-668]. This relation is a subrelation

of
po
→, and always has a read as its source.

2.3 Execution witnesses

Although
po
→ conveys important features of program execution, e.g. branch reso-

lution, it does not characterise an execution. To do so, we postulate, as part of

the data of a candidate execution, two additional relations
ws
→ and

rf
→ over memory

events.

Write serialisation We assume all values written to a given location ℓ to be seri-
alised, following a coherence order. This means, following the Power documentation
[25, p.657, 1st col, last §], that all stores to a given memory location ℓ are totally
ordered:

Memory coherence refers to the ordering of stores to a single location.
Atomic stores to a given location are coherent if they are serialised in some
order, and no processor or mechanism is able to observe any subset of those
stores as occurring in a conflicting order.

6 Jade Alglave et al.

This property is widely assumed by modern architectures, including for example
Sparc TSO [30] and x86-TSO [24].

Consequently, we define
ws
→ as the union of the coherence orders for all memory

locations, which must be well formed following the wf-ws predicate:

wf-ws(
ws
→) ,

„

ws
→ ⊆

[

ℓ

(Wℓ ×Wℓ)

«

∧
“

∀ℓ. total-order
“

ws
→, (Wℓ ×Wℓ)

””

Reads-from map We write w
rf
→ r to mean that r loads the value stored by w (so

w and r must share the same location and value). Given a read r there exists a

unique write w such that w
rf
→ r. The write w can be an init store when r loads

from the initial state. The initial store to a location x is defined as the first write
in the coherence order for x. Thus,

rf
→ must be well formed following the wf-rf

predicate:

wf-rf(
rf
→) ,

„

rf
→ ⊆

[

ℓ,v

(Wℓ,v × Rℓ,v)

«

∧ (∀r, ∃!w. w
rf
→ r)

From-read map It is useful to define a derived relation
fr
→ (as in [6]) which gathers

all pairs of reads r and writes w such that r reads from a write that is before w

in
ws
→ (as in Fig. 3):

r
fr
→ w , ∃ w

′
. w

′ rf
→ r ∧ w

′ ws
→ w

The significance of
fr
→ is as follows. Some of the weaknesses of multiprocessor

memory models arises from the fact that a write is not necessarily made available
to all potential reading threads in one atomic step. In TSO models (e.g. for Sparc
and x86-TSO), this is true in a relatively benign way: the writing thread might
read ‘early’ from its own write before that is propagated to all other threads.
In more relaxed models (e.g. for Power and ARM) there may be more complex
behaviour, for example with a write being made available first to the writing thread
itself, then to near-neighbours of that thread (that share some level of the cache
hierarchy), and later to other threads. If one thinks of a write event as representing
the point in time when a write has been made available to all threads, and a read

event as the point when the value of the read is determined, then reads-from
rf
→

edges are not necessarily forwards in time (a read can have read from a write

before the write is made available to all), but a from-read
fr
→ edge, from a read

to a coherence-successor of the write it read from, is necessarily forwards in time
(otherwise the read would have to read from the coherence-later write).

Execution witnesses We define an execution witness X as follows:

X , (E,
po
→,

dp
→,

rf
→,

ws
→)

The well-formedness predicate wf on execution witnesses is the conjunction of

those for
ws
→ and

rf
→:

wf(X) , wf-ws(
ws
→) ∧wf-rf(

rf
→)

Fences in Weak Memory Models (Extended Version) 7

r ws

w0

w1

w2

ws
fr

fr

rf

Fig. 3 The
fr
→ relation is derived from

ws
→ and

rf
→

Init: x=0; y=0;

P0 P1

(a) x← 1 (b) x← 2

Allowed x=1 ∨ x=2

(a) Wx1

(b) Wx2

ws

(a) Wx1

(b) Wx2

ws

(a) Program
(b) An execution witness

for the final state x=1

(c) An execution witness for
the final state x=2

Fig. 4 A program and its two different write serialisations

Fig. 1(c) shows one particular execution witness for the test of Fig. 1(a). The
load (d) reads the initial value of x, later overwritten by the store (a). Since the

initial store to x comes first in
ws
→, hence before (a), we have (d)

fr
→ (a).

Note that an execution witness describes only one candidate execution of a
program. A given program can have many candidate execution witnesses, with
different control-flow paths, different values read from memory, different reads-
from relations, and different write serialisations; a memory model will permit some
of these and forbid others. Consider for example the program given in Fig. 4(a).
The processors P0 and P1 both write to the same location x. This program has two
candidate executions, shown in Fig. 4(b) and (c), with different write serialisations.
The one in Fig. 4(b) covers the case where P0’s write is coherence-before P1’s. The
second one, in Fig. 4(c), covers the converse.

For an example of candidate executions differing in the writes that are the
sources of a read-from edge, consider the program in Fig. 5(a). The processors P0

and P1 both write the value 1 into memory location x. The processor P2 reads
from x. Hence, this program can have at least two distinct execution witnesses,
given in Fig. 5(b) and (c). The one in Fig. 5(b) covers the case where P2 reads
from P0. The second one, given in Fig. 5(c), covers the case where P2 reads from
P1.

2.4 Global Happens-Before

In the family of memory models we use in this paper, a candidate execution witness
is valid if the memory events can be embedded in an acyclic global happens-before

relation
ghb
→ (together with two auxiliary conditions detailed in Sec. 2.5). Each

8 Jade Alglave et al.

Init: x=0;

P0 P1 P2

(a) x← 1 (b) x← 1 (c) r1← x

Allowed r1=1;

(a) Program

(a) Wx1

(b) Wx2

(c) Rx1ws

rf

fr

(a) Wx1

(b) Wx2

(c) Rx2ws

rf

fr

(b) An execution witness where P2 reads
from P0

(c) An execution witness where P2 reads
from P1

Fig. 5 A program and two possible read-from maps

model is determined by the choice of relations which we include in this global
happens-before relation. The position of a write in

ghb
→ represents a point in global

time when this write becomes visible to all processors (we say it is globally per-

formed then); whereas the position of a read in
ghb
→ represents the point in global

time when the read takes place. Note that these are concepts associated with the
model; the precise relationship between the model events and concrete microar-
chitectural events in processor implementations may be subtle — for example, in
an implementation write might never actually be propagated to threads that do
not read the associated cache line. There remain key choices as to which relations
we include in

ghb
→ (i.e. which we consider to be in global time), which leads us to

define a class of models.

Globality Writes are not necessarily made available to all processors at once, so
rf
→ edges are not necessarily included in

ghb
→ . Let us distinguish between internal

(resp. external)
rf
→, when the two events in

rf
→ are on the same (resp. distinct)

processor(s), written
rfi
→ (resp.

rfe
→) : w

rfi
→ r , w

rf
→ r ∧ proc(w) = proc(r) and

w
rfe
→ r , w

rf
→ r ∧ proc(w) 6= proc(r). Some architectures allow store forwarding (or

read own writes early [5]): the processor issuing a given write can read its value

before any other participant accesses it. Then
rfi
→ is not included in

ghb
→ . Other

architectures allow two processors sharing a cache to read a write issued by their
neighbour w .r .t . the cache hierarchy before any other participant that does not
share the same cache—a particular case of read others’ writes early [5]. Then

rfe
→ is

not considered global. We write
grf
→ for the subrelation of

rf
→ included in

ghb
→ .

In our class of models,
ws
→ and

fr
→ are always included in

ghb
→ . Indeed, the write

serialisation for a given location ℓ is the order in which writes to ℓ are globally

performed. Moreover, as r
fr
→ w expresses that the write w′ from which r reads is

globally performed before w, it forces the read r to be globally performed (since

Fences in Weak Memory Models (Extended Version) 9

a read is globally performed as soon as it is performed) before w is globally per-
formed.

Preserved program order In any given architecture, certain pairs of events in the
program order are guaranteed to occur in that order. We postulate a global relation
ppo
→ gathering all such pairs. For example, the execution witness in Fig. 1(c) is only
valid if the writes and reads to different locations on each processor have been
reordered. Indeed, if these pairs were forced to be in program order, we would

have a cycle in
ghb
→ : (a)

ppo
→ (b)

fr
→ (c)

ppo
→ (d)

fr
→ (a).

Barrier constraints Architectures also provide barrier instructions, e.g. the Power
sync (discussed in Sec. 3) to enforce ordering between pairs of events. We postulate

a global relation
ab
→ gathering all such pairs.

Architectures We call a particular model of our class an architecture, written A (or

Aǫ when
ab
→ is empty). Let ppo (resp. grf , ab, ghb) be the function returning the

ppo
→ (resp.

grf
→,

ab
→ and

ghb
→) relation when given an execution witness. Thus, we have:

A , (ppo, grf , ab)

We define
ghb
→ as the union of the global relations:

ghb
→ ,

ppo
→ ∪

ws
→ ∪

fr
→ ∪

grf
→ ∪

ab
→

2.5 Validity of an execution w .r .t . an architecture

We now add two sanity conditions to the above.

Uniprocessor First, we require each processor to respect memory coherence for
each location [16]. If a processor writes e.g. v to ℓ and then reads v′ from ℓ, v′

should not precede v in the write serialisation. We define the relation
po-loc
→ over

accesses to the same location in the program order, and require
po-loc
→ ,

rf
→,

ws
→ and

fr
→ to be compatible (writing

com
→ for

rf
→ ∪

ws
→ ∪

fr
→):

m1
po-loc
→ m2 , m1

po
→ m2 ∧ loc(m1) = loc(m2)

uniproc(X) , acyclic(
com
→ ∪

po-loc
→)

For example, in Fig. 6 (a), the final value of x shows that the write (a) is the
last one in coherence order. Since

ws
→ is a total order of the writes to x, we have

(c)
ws
→ (a). Similarly, the final value of r1 shows that the read (b) read its value

from the write (a), hence (a)
rf
→ (b). The uniproc check on this program formalises

the fact that the cycle (a)
rf
→ (b)

po-loc
→ (c)

ws
→ (a) invalidates this execution: (b)

cannot read from (a) as it is a future value of x in
ws
→.

10 Jade Alglave et al.

P0 P1

(a) x← 1 (b) r1← x

(c) x← 2

(a) uniproc Forbidden: x=1; r1=1;

P0 P1

(a) r1← x (c) r4← y

r9← xor r1,r1 r9← xor r4,r4

(b) y← 1+r9 (d) x← 1+r9

(b) thin Forbidden: r1=1; r4=1;

(a) Wx1

(b) Rx1

(c) Wx2

rf rf

po:1 po-loc

ws

(a) Rx1

(b) Wy1

(c) Ry1

(d) Wx1

dp

rf

rf

dp

rf

rf

Fig. 6 Invalid executions according to the uniproc and thin criteria

Thin air Second, we rule out programs where values come out of thin air [23]. This
means that we forbid certain causal loops, following the terminology employed in
the Alpha documentation [10].

Consider the test given in Fig. 6 (b). In this example, the write (b) to y on P0

is dependent on the read (a) from x on P0, because the xor instruction between
them does a calculation on the value written by (a) in r1, and writes the result
into r9, later used by (b). Similarly on P1, (c) and (d) are dependent. Suppose the
read (a) from x on P0 reads from the write (d) to x on P1, and similarly the read
(c) from y on P1 reads from the write (b) to y on P0, as depicted by the execution
in Fig. 6 (b). In this case, the values read by (a) and (c) seem to come out of thin
air, because they cannot be determined. We formalise the check that forbids such
a scenario as follows:

thin(X) , acyclic(
rf
→ ∪

dp
→)

All together We define the validity of an execution w .r .t . an architecture A as
the conjunction of three checks independent of the architecture, namely wf(X),
uniproc(X) and thin(X) with a last one that characterises the architecture:

A.valid(X) , wf(X) ∧ uniproc(X) ∧ thin(X) ∧ acyclic(ghb(X))

2.6 Comparing architectures via validity predicates

From our definition of validity arises a simple notion of comparison among archi-
tectures. A1 ≤ A2 means that A1 is weaker than A2:

A1 ≤ A2 , (
ppo1→ ⊆

ppo2→) ∧ (
grf1→⊆

grf2→)

The validity of an execution is decreasing w .r .t . the strength of the predicate;
i.e. a weak architecture exhibits at least all the behaviours of a stronger one:

Theorem 1 (Validity is decreasing)

∀A1A2, (A1 ≤ A2)⇒ (∀X, A
ǫ
2.valid(X)⇒ A

ǫ
1.valid(X))

Fences in Weak Memory Models (Extended Version) 11

Programs running on an architecture Aǫ
1 exhibit executions that would be valid

on a stronger architecture Aǫ
2; we characterise all such executions as follows:

A1.checkA2
(X) , acyclic(

grf2→ ∪
ws
→ ∪

fr
→ ∪

ppo2→)

Then, we show that executions that are valid on A1 and that satisfy this
predicate are valid on A2 and conversely:

Theorem 2 (Characterisation)

∀A1A2, (A1 ≤ A2)⇒ (∀X, (Aǫ
1.valid(X) ∧A1.checkA2

(X))⇔ A
ǫ
2.valid(X))

These two theorems, though fairly simple, will be useful to compare two models
and to restore a strong model from a weaker one, as in Sec. 3.

2.7 Examples

We propose here alternative formulations of Sequential Consistency (SC) [21]
and Sparc’s Total Store Ordering (TSO) [30] in our framework, which we proved
equivalent to the original definitions. We omit proofs and the formal details for
brevity, but they can be found at http://diy.inria.fr/wmm. We write po(X)

(resp. rf(X), rfe(X)) for the function extracting the
po
→ (resp.

rf
→,

rfe
→) relation

from X. We define notations to extract pairs of memory events from the pro-
gram order: MM , λX. ((M×M) ∩ po(X)), RM , λX. ((R×M) ∩ po(X)) and
WW , λX. ((W×W) ∩ po(X)).

SC allows no reordering of events (
ppo
→ equals

po
→ on memory events). In addition,

SC makes writes available to all processors as soon as they are issued (
rf
→ are

global). By this we mean that write events take immediately their place in the
global-happens before relation, i.e. that once they become to one processor, they
are visible to all processors. Thus, there is no need for barriers, and any architecture
is weaker than SC:

SC , (MM , rf, λX.∅).

The following criterion characterises, as in Sec. 2.6, valid SC executions on any
architecture: A.checkSC (X) = acyclic(

com
→ ∪

po
→). Thus, the outcome of Fig. 1 will

never be the result of an SC execution, as it exhibits the cycle: (a)
po
→ (b)

fr
→ (c)

po
→

(d)
fr
→ (a).

TSO allows two relaxations [5]: write to read program order, meaning its
ppo
→ includes

all pairs but the store-load ones (ppotso , (λX. (RM (X) ∪WW (X))) and read

own write early (
rfi
→ are not global). We elide barrier semantics, detailed in Sec. 3:

TSOǫ , (ppotso, rfe, λX.∅). Sec. 2.6 shows the following criterion characterises
valid executions (w .r .t . any A ≤ TSO) that would be valid on TSOǫ, e.g. in Fig. 1:

A.checkTSO (X) = acyclic(
ws
→ ∪

fr
→ ∪

rfe
→ ∪

ppo-tso
→).

12 Jade Alglave et al.

3 Semantics of barriers

In this section we characterise the semantics and placement in the code that bar-
riers should have to restore a stronger model from a weaker one.

It is clearly enough to have w
ab1→ r whenever w

grf
2\1→ r holds to restore store

atomicity, i.e. a barrier ensuring
rf
→ is global. But then a processor holding such

a barrier placed after r would have to wait until w is globally performed before
executing the read. We provide a less costly requirement: consider the case where

w
rf
→ r

po
→ m, where r may take its value before w is visible to all processors.

Inserting a barrier instruction that has our semantics between the instructions
generating r and m only forces the processor generating r and m to delay m until
w is globally performed.

We give here an intuition of the strength that the barriers of the architecture
A1 should have to restore the stronger A2. They should:

1. restore the pairs that are preserved in the program order on A2 and not on A1,
which is a static property;

2. compensate for the fact that some writes may not be globally performed at

once on A1 while they are on A2, which we model by (some subrelation of)
rf
→

not being global on A1 while it is on A2; this is a dynamic property.

Formally, we write
r

2\1→ ,
r2→ \

r1→ for the set difference. In addition, we write
x

r1→;
r2→ y , ∃z. x

r1→ z ∧ z
r2→ y for the sequence of two relations. Given A1 ≤ A2,

we define the predicate fb (fully barriered) on executions X by

A1.fbA2
(X) ,

`

(
ppo

2\1→) ∪ (
grf

2\1→ ;
ppo2→)

´

⊆
ab1→

We can then prove that the above condition on
ab1→ is sufficient to regain Aǫ

2

from A1:

Theorem 3 (Barrier guarantee)

∀A1A2, (A1 ≤ A2)⇒ (∀X, A1.valid(X) ∧A1.fbA2
(X)⇒ A

ǫ
2.valid(X))

The static property of barriers is expressed by the condition
ppo

2\1→ ⊆
ab1→ . A barrier

provided by A1 should ensure that the events generated by a same processor are
globally performed in program order if they are on A2. In this case, it is enough
to insert a barrier between the instructions that generate these events.

The dynamic property of barriers is expressed by the condition
grf

2\1→ ;
ppo2→ ⊆

ab1→ . A
barrier provided by A1 should ensure store atomicity to the write events that have
this property on A2. This is how we interpret the cumulativity of barriers, as stated
by Power [25], in our framework: the A-cumulativity (resp. B-cumulativity) property

applies to barriers that enforce ordering of pairs in
rf
→;

po
→ (resp.

po
→;

rf
→). We consider

a barrier that only preserves pairs in
po
→ to be non-cumulative. Thm. 3 states that,

to restore A2 from A1, it suffices to insert an A-cumulative barrier between each
pair of instructions such that the first one in the program order reads from a write
which is to be globally performed on A2 but is not on A1.

Fences in Weak Memory Models (Extended Version) 13

iriw

P0 P1 P2 P3

(a) r1← x (c) r2← y (e) x← 1 (f) y← 2

(b) r2← y (d) r1← x

Observed? 0:r1=1; 0:r2=0; 1:r2=2; 1:r1=0;

(a) Rx1(b) Ry0

(f) Wy2

(c) Ry2 (d) Rx0

(e) Wx1

po:0

fr

po:1

fr

rf

rf

Fig. 7 The iriw test and a non-SC execution

Restoring SC We model an A-cumulative barrier as a function returning an order-
ing relation when given a placement of the barriers in the code:

m1
fenced
→ m2 , ∃b. m1

po
→ b

po
→ m2

A-cumul(X,
fenced
→) ,

fenced
→ ∪

rf
→;

fenced
→

The following corollary of Thm. 3 (with A1 = A and A2 = SC) shows that inserting

such a barrier between all
po
→ pairs restores SC :

Corollary 1 (Barriers restoring SC)

∀A X, (A.valid(X) ∧A-cumul(X,MM) ⊆
ab
→)⇒ SC .valid(X)

Consider e.g. the iriw test depicted in Fig. 7. The specified outcome may be
the result of a non-SC execution on a weak architecture in the absence of barriers,
as shown in Fig. 7. Our A-cumulative barrier placed between each pair of reads on
P0 and P1 forbids this outcome, as shown in Fig. 8. The non-cumulative property
of the barrier (expressed formally by

fenced
→ being included in the definition of A-

cumulative) ensures that none of the two pairs of reads can be reordered. The A-

cumulative property of the barrier (expressed formally by
rf
→;

fenced
→ being included

in the definition of A-cumulative) also ensures that the write (e) on P2 (resp. (y)
P3) is globally performed before the second read (b) on P0 (resp. (d) on P1).

Thus, we force a program to have an SC behaviour by fencing all pairs in
po
→.

Yet, it would be enough to invalidate non-SC executions, by fencing only the
po
→

pairs in the
com
→ ∪

po
→ cycles of these executions. We believe the static analysis of [29]

(based on compile-time approximation of
com
→ ∪

po
→ cycles) applies to architectures

relaxing store atomicity, if their barriers offer A-cumulativity.

14 Jade Alglave et al.

iriw

P0 P1 P2 P3

(a) r1← x (c) r2← y (e) x← 1 (f) y← 2

fence fence

(b) r2← y (d) r1← x

Observed? 0:r1=1; 0:r2=0; 1:r2=2; 1:r1=0;

(a) Rx1(b) Ry0

(f) Wy2

(c) Ry2 (d) Rx0

(e) Wx1

fenced

fr

fenced

fr

rf
A cumul

rf
A cumul

Fig. 8 Study of iriw with A-cumulative barriers

4 diy: a testing tool

We now present our diy (do it yourself) tool, which generates litmus tests in x86
or Power assembly code by enumerating possible violations of SC in terms of
our axiomatic model, i.e., cycles in

com
→ ∪

po
→. A diy tutorial is available at http:

//diy.inria.fr.

4.1 Informal overview of our method

We start here by explaining the idea of the method employed by diy at a high
level, then give further details in the following subsections.

As we described in the previous section, the outcome of the iriw test in Fig. 7
leads to the

com
→ ∪

po
→ cycle depicted there. Conversely, that test can be built from

the sequence
rfe
→;

po
→;

fre
→;

rfe
→;

po
→;

fre
→. The specified outcome ensures that the input

cycle appears in at least one of the execution witnesses of the test. If that outcome
is observed, then, in terms of our framework, at least one subsequence in the cycle
is not global, i.e. not in

ghb
→ : in the case of Fig. 7, either the

po
→ or the

rfe
→ relations

might not be included in
ghb
→ .

More precisely, a global cycle in an execution graph forbids the specified out-
come of a test in the model, as we explained in Sec. 2. This means that if a machine
implements exactly the studied model, then the outcome of this test should not
be observed. To check this, we thus build tests from cycles in execution graphs.
If the outcome of a test is observed, we conclude that the cycle from which it is
generated does not actually forbid the outcome.

In addition, to make the analysis of the results of such tests feasible, we generate
our cycles so that there can be only one possible reason—in the model—why the

Fences in Weak Memory Models (Extended Version) 15

outcome can be exhibited. For example, in the cycle
rfe
→;

po
→;

fre
→;

rfe
→;

po
→;

fre
→, there can

be several reasons why this cycle is not global: either
rfe
→ is not global, or the

po
→

relation between two reads is not preserved, or both. Hence, if we want to state
precisely why a given outcome is exhibited, we need to pick one relation to test,
for example

rfe
→, and build a cycle where

rfe
→ is the only non-global relation possible.

Of course, this practice supposes that the other relations from which a cycle
is built are global. We check this assumption by generating cycles where all the
relations are global in the model, and run them to check that their outcomes are
not observed.

4.2 Candidate Relaxations

We wrote the diy testing tool to automatically generate litmus tests that exercise
relations specified by the user. When given a certain sequence of relations, diy

produces tests such that one of their executions contains at least one occurrence
of the given sequence. Hence, if we want to check whether the external read-from
maps are relaxed on a given machine, we specify

rfe
→ to be relaxed to diy, following

the concrete syntax we give in Fig. 9.

We write Po for a program order candidate relaxation and Dp for a dependency.
We handle the communication relaxations as follows: we write Rf for a read-from,
Ws for a write serialisation, Fr for a from-read. We also deal with barrier candidate
relaxation: thus, we write Fence for a non-cumulative barrier, ACFence for an A-
cumulative one, BCFence for a B-cumulative one, and ABCFence for the sequence
of an A- and a B-cumulative ones.

We specify if the two accesses related by the candidate relaxation access the
same location by the letter s; we use the letter d if they access different locations.
We specify the directions of the accesses related by the candidate relaxation, using
W for write and R for read. Note that in the case of a dependency relation Dp, we
just need to specify the direction of the target access, since dependency candidate

relaxations always have a read as their source, following the definition of the
dp
→

relation given in Sec. 2.2.

For communication candidate relaxations such as Rf, Fr or Ws, we specify
whether the candidate relaxation is internal (resp. external)—i.e. relating two
accesses that belong to the same processor (resp. distinct processors)— by the
letter i (resp. e).

Thus Rfe represents a
rfe
→ arrow and Fre a

fre
→ arrow. The candidate relaxation

DpdR should be read as (1) Dp, which means that we generate a
dp
→ arrow, (2) R,

which means that this arrow targets a read, and (3) d, which means that the two
accesses have different source and target locations. For Power, we instantiate the
barrier candidate relaxation Fence with either Sync or LwSync.

Note that some of the candidate relaxations might be redundant. For example
PosWW (two write events to the same location in program, hence on the same
processor) is a particular case of Wsi (internal write serialisation). Yet, we ac-
tually care for this redundancy, for two reasons. First, this helps us covering all
possibilities in enumerating test cases for model exploration. Second, it helps us
to spot precisely the reason why a given test might reveal a bug in a hardware
implementation.

16 Jade Alglave et al.

Name Notation

program order Po(s|d)(W|R)(W|R)

dependencies Dp(s|d)(W|R)

read-from map Rf(i|e)

write serialisation Ws(i|e)

from-read map Fr(i|e)

barriers Fence(s|d)(W|R)(W|R)

A-cumulativity ACFenceld1d2 , [Rfe; Fenceld1d2]

B-cumulativity BCFenceld1d2 , [Fenceld1d2; Rfe]

AB-cumulativity ABCFenceld1d2 , [Rfe; Fenceld1d2; Rfe]

Fig. 9 Table of Candidate Relaxations

#rfe PPC conf file

-arch PPC

-nprocs 4

-size 6

-name rfe

-safe Fre DpdR

-relax Rfe

Fig. 10 Example Configuration File for diy

4.3 Input and Output of the diy tool

In practice, the diy tool takes as input a configuration file such as the one in
Fig. 10. This configuration file forces diy to generate tests in Power assembly up to
4 processors, as specified by the -arch PPC and -nprocs 4 arguments, so that the
number of relations involved in the generated cycles is 6 at most, because of the
-size 6 argument. Moreover, the candidate relaxations Fre (external from-read
map) and DpdR (data dependency between two reads from distinct locations) are
considered global, and Rfe is considered relaxed, as specified by the -safe Fre

DpdR and -relax Rfe arguments. Finally, all the tests generated by diy running on
this configuration file will have the prefix rfe in their name, followed by a fresh
number, as specified by the -name rfe argument.

The tool outputs x86 or Power assembly tests. More precisely, the tool inter-
nally generates cycles from the candidate relaxations supplied as argument to the
-safe and -relax specifications, up to the specified bounds on cycle length and
number of processors. Each cycle then commands the generation of one test.

4.4 Exercising One Relaxation at a Time

So as to make the analysis of the testing results feasible, we focus on tests which
exercise a single weakness of the memory model at a time. Hence, if the outcome
of a given test is exhibited, we know that the feature we tested is used by the
machine on which we ran the test.

For example, suppose that we modify the test of Fig. 7 and impose depen-
dencies between the pairs of reads on P0 and P1, so that these dependencies are
global, e.g . by being included in

ppo
→ . Hence (a) is in data dependency with (b),

Fences in Weak Memory Models (Extended Version) 17

{ 0:r2=y; 0:r5=x; 1:r2=x; 2:r2=x; 2:r5=y; 3:r2=y; }

P0 | P1 | P2 | P3

(c) lwz r1,0(r2) | li r1,1 | (a) lwz r1,0(r2) | li r1,1

xor r3,r1,r1 | (e) stw r1,0(r2) | xor r3,r1,r1 | (f) stw r1,0(r2)

(d) lwzx r4,r3,r5 | | (b) lwzx r4,r3,r5 |

exists (0:r1=1 /\ 0:r4=0 /\ 2:r1=1 /\ 2:r4=0)

Fig. 11 iriw with dependencies in Power assembly

and so is (c) with (d), resulting in the cycle
rfe
→;

ppo
→ ;

fre
→;

rfe
→;

ppo
→ ;

fre
→. This corresponds

to the test given in Fig. 11, written in Power assembly code. The xor r3,r1,r1

between the load (b) and the load (c) on P0 implements such a dependency.
In this case the only reason why the specified outcome may arise is the non-

globality of external read-from maps. Hence, the test of Fig. 11 is significant to
check whether an architecture relaxes the atomicity of stores. More generally, we
say that a test built from a cycle containing global relations only and a relation r

targets r, because it can exhibit its outcome only because of r being relaxed. We
shall also make use of tests built from global relations only, such a test is called a
safe test.

4.5 Cycle Generation

The input to diy must specify which candidate relaxations are to be assumed not

relaxed (considered global, or safe) and which are to be investigated. When given a
pool of safe candidate relaxations, a single potential relaxation to be investigated,
and a size n (i.e. the number of arrows in the cycle, e.g. 6 for the iriw test of Fig. 7),
diy generates cycles up to size n that contains at least one occurrence of the non-
global candidate relaxation. If no non-global candidate relaxation is specified, diy

generates cycles up to size n that contain the specified global candidate relaxations.
We do not generate tests for all these cycles: we eliminate some sequences

of candidate relaxations. First, we eliminate any sequence of two candidate re-
laxations when the target of the first one is incompatible with the source of the

second one: for example, we eliminate a sequence
Rfe
−→;

Rfe
−→ because the target of

the first
Rfe
−→ is a read, whereas the source of the second one is a write. Notice that

no assembly program exists that corresponds to such cycles. However, eliminating
impossible sequences early accelerates the production of cycles. More significantly,
diy eliminate some additional sequences of candidate relaxations:

1. For communication candidate relaxations (i.e. Ws, Fr and Rf), we do not gen-
erate the sequence [Ws ;Ws] for it reduces to Ws in the model. Similarly,
we do not generate the sequence [Ws ;Fr], for it reduces to Fr in the model.
Hence we generate only five sequences of communication candidate relaxations,
namely Ws , Fr , Rf , [Ws ;Rf] and [Fr ;Rf].

2. For program order candidate relaxations, we do not generate sequences [po1;po2]
when the sequence is subsumed by another safe candidate relaxation (where
po1 and po2 range over Po, Dp, Fence, and internal communication (i.e. Rfi,
Fri and Wsi)). This means for example that, if FencedWR and Fence WW

18 Jade Alglave et al.

Init: x=0; y=0;

P0 P1 P2

(a) x← 1 (e) y← 2 (c) y← 1

(b) r1← y (d) r2← x

Observed? r1=0; r2=0;

(a) Wx1

(b) Ry0

(d) Rx1

(e) Wy2

(c) Wy1

po:0

rf

fr

fr

ws

po:2

(a) Program (b) An execution witness

Fig. 12 A program and a candidate execution

are safe, we do not generate [FencedWR;PodRW], for it reduces to Fence WW
(assumed safe).

As a result, we do not generate all cycles up to a given size. However, the
executions associated to the cycles we discard (for example a cycle involving a se-
quence [Fr ;Ws] feature other shorter cycles (the cycle where [Fr ;Ws] is reduced
to Fr), which are generated.

Consider for example the test given in Fig. 12(a), which corresponds to the test
of Fig. 1(a), where we added a new processor holding the store (e) y← 2. In this
case, the final state of interest to us is still the one specified in Fig. 1, i.e. r1=0;

r2=0;. This final state corresponds to the execution witness given in Fig. 12(b).

More precisely, this final state corresponds to the cycle (a)
PodWR
−→ (b)

Fre
−→ (e)

Wse
−→

(c)
PodWR
−→ (d)

Fre
−→ (a).

Observe that the read from y at line (b) on P0 is in
fr
→ with the write (e) to y on

P2, because of the final value of register r1. Moreover, in this particular execution,
the write (e) to y on P1 is in

ws
→ before the write (c) to y on P2. Therefore, by

definition of
fr
→ and since

ws
→ is transitive, we know that (b)

fr
→ (c) as well. Thus,

the final state corresponds to the shorter cycle (a)
PodWR
−→ (b)[

Fre
−→;

Wse
−→](c)

PodWR
−→

(d)
Fre
−→ (a), i.e. (a)

PodWR
−→ (b)

Fre
−→ (c)

PodWR
−→ (d)

Fre
−→ (a), from which we generate

the test of Fig. 1(a). Thus in such a case, we would generate only the test of
Fig. 1(a), and not the test of Fig. 12(a).

4.6 Code Generation

diy interprets a sequence of candidate relaxations as a cycle from which it either
computes a litmus test or fails. The final condition of a generated test is a con-
junction of equalities on the values held by registers and memory locations in the

Fences in Weak Memory Models (Extended Version) 19

final state, which ensures that at least one of the execution witnesses of this test
includes a cycle following the input sequence.

4.6.1 Algorithm

Test generation performs the following successive steps:

1. We map the edge sequence to a circular double-linked list. The cells represent
memory events, with direction, location, and value fields, together with the
edge starting from the event. This list represents the input cycle and will appear
in at least one of the execution witnesses of the produced test.

2. A linear scan sets the directions (write or read) of the events, by comparing
each target direction with the following source direction. When they are equal,
the in-between cell direction is set to the common value; otherwise (e.g. Rfe;
Rfe), the generation fails.

3. We pick an event e which is the target of a candidate relaxation specifying a
location change. If there are none, the generation fails. Otherwise, a linear scan
starting from e sets the locations of each event. At the end of the scan, if e and

its predecessor have the same location (e.g.
Rfe
−→ e

PodRW
−→), the generation fails,

since we picked e to correspond to a location change.
4. We cut the input cycle into maximal sequences of events with the same location,

each being scanned w .r .t . the cycle order: we give the value 1 to the first write in
this sequence, 2 to the second one, etc. For each location in cycle, the sequence
of values 0, 1, etc. defines a certain write serialisation order, which the final
condition of test will characterise (step 7 below).

5. We define significant reads as the sources of
fr
→ edges and the targets of

rf
→ edges.

We associate each significant read with the write on the other side of the edge.

In the
rf
→ case, the value of the read is the one of its associated write. In the

fr
→ case, the value of the read is the value of the predecessor of its associated
write in

ws
→, i.e. by construction the value of its associated write minus 1 (see

step 4). Non-significant reads do not appear in the test condition.
6. We cut the cycle into maximal sequences of events from the same processor,

each being scanned, generating load instructions to (resp. stores from) fresh
registers for reads (resp. writes). We insert some code implementing a depen-

dency in front of events targeting
dp
→ and the appropriate barrier instruction for

events targeting
fenced
→ edges. We build the initial state at this step: stores and

loads take their addresses from fresh registers, and their contents (addresses of
memory locations) are defined in the initial state. Part of the final condition is
also built: for any significant read with value v resulting in a load instruction
to register r, we add the equality r = v.

7. We complete the final condition to characterise write serialisations. The write
serialisation for a given location x is defined by the sequence of values 0 (initial
value of x), . . . , n, where n is the last value allocated for location x at step 4.
If n is 0 or 1 then no addition to the final condition needs to be performed,
because the write serialisation is either a singleton or a pair. If n is 2, we add
the equality x = 2. Otherwise (n > 2), we add an observer to the program, i.e.

we add a thread performing n loads from x to registers r1, . . ., rn and add the
equalities r1 = 1 ∧ . . . ∧ rn = n to the final condition.

20 Jade Alglave et al.

4.6.2 Example

We show here how to generate a Power litmus test from a given cycle of candidate
relaxations by an example. We write for the information not yet set by diy:
is an undetermined event, W a write with as-yet unset location and value, and
Rx a read from x with undetermined value.

1. Consider e.g. the input cycle, issued by diy’s cycles generation phase, with the
input being the configuration file given in Fig. 10:

(a)
Rfe
−→ (b)

DpdR
−→ (c)

Fre
−→ (d)

Rfe
−→ (e)

DpdR
−→ (f)

Fre
−→ (a)

2. A linear scan sets the directions from the edges. Observe e.g. the last edge;
Fre
−→

requires a R source and a W target:

(a)W
Rfe
−→ (b)R

DpdR
−→ (c)R

Fre
−→ (d)W

Rfe
−→ (e)R

DpdR
−→ (f)R

Fre
−→ (a)

3. As
DpdR
−→ specifies a location change, we pick (c) to be the first event and rewrite

the cycle as:

(c)R
Fre
−→(d)W

Rfe
−→(e)R

DpdR
−→ (f)R

Fre
−→(a)W

Rfe
−→(b)R

DpdR
−→ (c)

We set the locations starting from (c), with a change of location e.g . between
(e) and (f) since

DpdR
−→ specifies a location change:

(c)Rx
Fre
−→(d)Wx

Rfe
−→(e)Rx

DpdR
−→ (f)Ry

Fre
−→(a)Wy

Rfe
−→(b)Ry

DpdR
−→ (c)

4. We cut the input cycle into maximal sequences of events with the same location
(i.e. (c)(d)(e) and (f)(a)(b)), each being scanned w .r .t . the cycle order. The
values then reflect the write serialisation order for the specified location:

(c)Rx
Fre
−→(d)Wx1

Rfe
−→(e)Rx

DpdR
−→ (f)Ry

Fre
−→(a)Wy1

Rfe
−→(b)Ry

DpdR
−→ (c)

5. All the reads are significant here; we set their values according to step 5:

(c)Rx0
Fre
−→(d)Wx1

Rfe
−→(e)Rx1

DpdR
−→ (f)Ry0

Fre
−→(a)Wy1

Rfe
−→(b)Ry1

DpdR
−→ (c)

6. We generate the litmus test given in Fig. 11 for Power according to the steps 6
and 7 given in Sec. 4.6.1. For example on P0, we add a xor instruction between
the instructions lwz r1,0(r2) and lwzx r4,r3,r5 associated with the events
(b) and (c) to implement the dependency required by the

DpdR
−→ relation between

them. The events (d) and (e), associated respectively to stw r1,0(r2) on P1

and lwz r1,0(r2) on P2, are specified in the cycle to be in
rfe
→. Hence, we specify

in the final state that the register r1 on P2 holds finally 1. Indeed the store
associated with (d) writes 1 into the address x addressed by r2 on P1 , since
the contents of the register r1 on P1 is 1 (because of the preceding li r1, 1

instruction). Since (d)
rfe
→ (e), the load associated with (e) on P2 reads the value

1 from the address x addressed by r2, and writes 1 into the register r2.

The test in Fig. 11 is a Power implementation of iriw [14] with dependencies.
It can be obtained by running diy on the configuration file given in Fig. 10.

4.7 Coverage

Given a test generation tool such as diy, one should ask in what sense it provides
good coverage and whether it generates useful tests.

One way to assess coverage is to check that it can generate ‘classical’ lit-
mus tests in the literature. We just explained how one can generate the iriw

Fences in Weak Memory Models (Extended Version) 21

rwc

P0 P1 P2

(a) x← 1 (b) r1← x (d) y← 1

(c) r2← y (e) r3← x

Observed? 1:r1=1; 1:r2=0; 2:r3=0

(a) Wx1

(b) Rx1

(c) Ry0

(d) Wy1

(e) Rx0

rf

po:1

fr

po:2

fr

(a) The rwc test (b) An Execution Witness

Fig. 13 The rwc Test and a Candidate Execution

wrc
P0 P1 P2

(a) x← 1 (b) r1← x (d) r1← y

(c) y← 2 (e) r2← x

Observed? 1:r1=1; 2:r1=2; 2:r2=0;

(a) Wx1

(b) Rx1

(c) Wy2

(d) Ry2

(e) Rx0

rf

po:1

rf

po:2

fr

(a) The wrc test (b) An Execution Witness

Fig. 14 The wrc Test and a Candidate Execution

from [14]. The rwc test of [14], given in Fig. 13(a) can be obtained from the

cycle
Rfe
−→;

PodRR
−→ ;

Fre
−→;

PodWR
−→ ;

Fre
−→, as one can deduce from the execution given in

Fig. 13(b). The wrc test of [14], given in Fig. 14(a) can be obtained from the cycle
Rfe
−→;

PodRW
−→ ;

Rfe
−→;

PodRR
−→ ;

Fre
−→, as shown by the execution of Fig. 14(b).

Further, it generates all the variations of such tests with different choices of
barriers and dependencies (e.g. 56 variations of wrc), and several families of tests
that we have not previously seen. There are some interesting classes of tests that
it does not generate, e.g. tests exhibiting observable register shadowing [3], where
we still rely on hand-written tests.

In general, diy will be able to generate any classical litmus test, as soon as this
test can be generated from a cycle of candidate relaxations as defined in Sec. 4.2,
and is not subject to the restrictions described in Sec. 4.5.

Comparing directly with the tests used within processor vendors is difficult, as
those are commercially sensitive. However, the fact that we have found issues in
deployed processors (as detailed in Sec. 5) is indicative.

Another sense in which it is demonstrably useful (indeed, indispensable) in
practice has been in our model-building work, as illustrated for example in Sec. 6.2.
Our initial explorations relied on several hundred hand-written tests, and it was
hard to maintain consistency and ensure coverage of these. Using diy, while we still
use some hand-written tests, most of our work can be done with automatically

22 Jade Alglave et al.

Relaxation Definition hpcx squale vargas

PosRR rℓ

po
→ r′

ℓ
2/40M 3/2M 0/4745M

PodRR rℓ

po
→ r′

ℓ
′ 2275/320M 12/2M 0/16725M

PodRW rℓ

po
→ w′

ℓ
′ 0/6000M 0/6000M 0/6000M

PodWW wℓ

po
→ w′

ℓ
′ 2029/4M 2299/2M 2092501/32M

PodWR wℓ

po
→ r′

ℓ
′ 51085/40M 178286/2M 672001/32M

Rfi
rfi
→ 7286/4M 1133/2M 145/32M

Rfe
rfe
→ 177/400M 0/1776M 9/32M

LwSyncsWR wℓ

lwsync
→ r′

ℓ
243423/600M 2/40M 385/32M

LwSyncdWR wℓ

lwsync
→ r′

ℓ
′ 103814/640M 11/2M 117670/32M

ACLwSyncsRR wℓ

rfe
→ r′

ℓ

lwsync
→ r′′

ℓ
11/320M 0/960M 1/21M

ACLwSyncdRR wℓ

rfe
→ r′

ℓ

lwsync
→ r′′

ℓ
′ 124/400M 0/7665M 2/21M

BCLwSyncsWW wℓ

lwsync
→ w′

ℓ

rfe
→ r′′

ℓ
68/400M 0/560M 2/160M

BCLwSyncdWW wℓ

lwsync
→ w′

ℓ
′

rfe
→ r′′

ℓ
′ 158/400M 0/11715M 1/21M

Fig. 15 Selected Results of the diy Experiment Matching Our Model

generated tests. In addition, as we explain in our more recent work on modelling
the behaviour of Power multiprocessors [27], some key issues of the model were
identified with these automatically generated tests.

5 Using diy: The Phat Experiment

We ran a case study for the diy tool, the Phat Experiment, from December 2009
to January 2010. We tested three Power machines, and present here a summary of
the experimental results. More details can be found online at http://diy.inria.

fr/phat.

5.1 Relaxations Observed on squale, vargas and hpcx

We used diy to generate 800 Power tests and run them up to 1012 times each on
three machines: squale, a 4-processor Power G5 running Mac OS X; hpcx, a Power
5 with 16 processors per node and vargas, a Power 6 with 32 processors per node,
both of them running AIX.

We ran the tests supposed to exhibit relaxations, i .e. the tests targeting any
possible relation of Fig. 9 that our CAV 2010 model (see Fig. 22) does not include
in

ghb
→ . We observed all of them at least on one machine, except PodRW. Not

observing a given candidate relaxation does not contradict our model, since our
model should authorise at least all the behaviours that we observed on hardware.
We give in Fig. 15 the number of times the outcome was observed (where M stands
for million). For each relaxation observed on a given machine, we write the highest
number of outcomes. When a candidate relaxation was not observed, we write the
total of outcomes: thus we write e.g. 0/16725M for PodRR on vargas.

For a given candidate relaxation, we generated tests with diy by writing a simple
configuration file setting its relax list to this candidate relaxation, and some of the
candidate relaxations that we considered to be safe.

Fences in Weak Memory Models (Extended Version) 23

Cycle hpcx In [14]

Rfe SyncdRR Fre Rfe SyncdRR Fre 2/320M iriw

Rfe SyncdRR Fre SyncdWR Fre 3/400M rwc

DpdR Fre Rfe SyncsRR DpdR Fre Rfe SyncsRR 1/320M

Wse LwSyncdWW Wse Rfe SyncdRW 1/800M

Wse SyncdWR Fre Rfe LwSyncdRW 1/400M

Fig. 16 Anomalies Observed on Power 5

We did not observe the PodRW relaxation; but the documentation does not
specify this candidate relaxation to be safe, therefore we still consider it to be
relaxed.

5.2 Safe Relaxations

Following our informal model, we assumed that the candidate relaxations corre-

sponding to
ws
→,

fr
→, dependencies and barriers were global and tested this assump-

tion by computing safe tests in which the input cycles only include candidate

relaxations that we supposed global, e.g.
SyncdWW
−→ ;

Wse
−→;

SyncdWR
−→ ;

Fre
−→.

For each machine, we observed the number of runs required to exhibit the least
frequent relaxation (e.g. 160M for BCLwSyncsWW on vargas), and ran the safe
tests at least 20 times this number. The outcomes of the safe tests have not been
observed on vargas and squale, which increases our confidence in the safe set we
assumed.

However, hpcx does exhibit non-SC behaviours for some A-cumulativity tests
(albeit rarely), including classical tests [14] such as iriw with sync instructions on
P0 and P1. These results are in contradiction with our model. We summarise these
contradictions in Fig. 16.

We understand that this is due to a rare erratum in the Power 5 implemen-
tation. IBM is providing a software workaround, replacing the sync barrier by a
short code sequence [Personal Communication], and our testing suggests that this
does regain SC behaviour for the examples in question (e.g. with 0/4e10 non-SC

results for iriw). We understand also that Power 6 is not subject to the erratum,
which is consistent with our testing on vargas, and that it should not affect the
correctness of code using conventional lock primitives.

6 The CAV 2010 Axiomatic Power Model

In the light of the black-box experimental testing described in Sec. 5, we have
instantiated the formalism of Sec. 2 for Power. The resulting model (which we refer
to as the CAV 2010 model) captures several important aspects of the processor’s
behaviour:

– it describes the lack of store atomicity on Power, despite being in the simple
global-time style of our framework rather than the per-processor- timeline style
implied by the architecture text;

24 Jade Alglave et al.

Name Notation Comment Sec.

intra instruction causality
order

m1
iico
→ m2 constraints arising from instruction

semantics
6.1.1

register read-from map w
rf-reg
→ r links a register write to a register read

reading its value
6.1.1

data dependency m1
dd
→ m2 (m1, m2) ∈ (

rf-reg
→ ∪

iico
→)+ 6.2.1

control dependency r
ctrl
→ w read-write pair separated by a branch 6.2.1

isync dependency r
isync
→ m read-read or read-write pair separated

by a branch+isync sequence
6.2.1

dependency m1
dp
→ m2 (m1, m2) ∈

ctrl
→ ∪

isync
→

∪
``dd
→ ∪ (

po-loc
→ ∩ (W× R))

´
+

∩ (R ×

M)
´

6.2.1

sync m1
sync
→ m2 pairs maintained by sync 6.2.3

lwsync m1
lwsync
→ m2 pairs maintained by lwsync 6.2.3

Fig. 17 Table of Power specific relations

– it also models the thread-local ordering relaxations we observe; and
– it models A-cumulative barriers [25].

The model is sound (modulo the anomalies described in the previous section) with
respect to all our experimental results for Power G5, 5, and 6. However, for some
of the Power barriers it is weaker than one might like, and for some examples it
appears to be stronger than the architectural intent. We discuss this in detail in the
next section. Moreover, being primarily based on black-box testing, its relationship
to microarchitectural views or the architecture specifications of the processors is
less clear than one might like. Accordingly, we do not regard it as definitive, but
as a necessary step towards more definitive models.

6.1 Auxiliary Definitions

To define the CAV 2010 model (more specifically, to specify its preserved program
order relation), we first need some auxiliary definitions to describe how dependen-
cies and barriers arise from the instruction semantics.

We give in Fig. 18 a table of the fragment of the Power instruction set that we
use to describe the forthcoming examples.

6.1.1 Register Events

We first add register events to reflect register accesses [26]. Loads and stores now
yield additional register events, as depicted in Fig. 19.

For example, consider two registers r1 and r2, such that r1 initially holds the
value 0, r2 initially holds an address x, and x holds the value 1. In this case, an
instruction lwz r1,0(r2) creates a read event Rr2x from register r2, with label
(b) in Fig. 19. This event reads the address x in r2; this leads to a read event
Rx1 from x labelled (a) in Fig. 19. The event (a) was previously the only event
we considered. Finally, the value read from x by the event (a) being 1, the lwz

Fences in Weak Memory Models (Extended Version) 25

Name Code Comment Doc. [25] (p. in pdf)

load word and zero lwz rt,d(ra) let x be the address in ra; this instructions loads
into rt from the address x + d

p. 76

load word and zero
indexed

lwzx rt,ra,rb let xa be the address in ra and xb the address
in rb; this instruction loads into rt from the
address xa + xb

p. 76

store word stw rs,d(ra) let x be the address in ra; this instruction stores
from rs into the address x + d

p. 81

store word indexed stwx rs,ra,rb let xa be the address in ra and xb the address
in rb; this instruction stores from rs into the
address xa + xb

p. 81

branch if not equal bne L checks if register cr0 (the same as the one
that indicates whether a stwcx. has succeeded)
holds 0, if not branches to L

p. 63

compare word im-
mediate

cmpwi rx, v compares the value in rx with v and writes 1 if
equal (resp. 0 if not) in cr

p. 102

xor xor rd,ra,rb let va be the content of ra and vb be the content
of rb; this instruction writes va xor vb into rd

p. 107

isync isync when placed after a bne, forms a read-write,
read-read non-cumulative barrier

p. 661

lwsync lwsync read-write, read-read and write-write A- and
B-cumulative barrier

p. 700

sync sync read-write, read-read, write-write and write-
read A- and B-cumulative barrier

p. 700

Fig. 18 Table of the Power assembly instructions used in this paper

[lwz r1,0(r2)]

(a) Rx1

(c) Wr1 1

(b) R r2 x

iico

iico

rf

rf

rf

[stw r1,0(r2)]

(a) Wx1

(b) R r1 1 (c) R r2 x

rf

iico iico

rf rf

Fig. 19 Semantics of lwz and stw

26 Jade Alglave et al.

r1,0(r2) creates a write event Wr11 to register r1 with value 1, labelled (c) in
Fig. 19.

Similarly, consider two registers r1 and r2, such that r1 initially holds the
value 1, r2 initially holds an address x, and x holds the value 0. In this case, an
instruction stw r1,0(r2) creates a read event Rr2x from register r2, with label
(c) in Fig. 19. This event reads the address x in r2. In parallel, the store creates a
read event Rr11 from r1, reading 1, labelled (c) in Fig. 19. Finally, the value read
from r1 by the event (b) being 1, the stw r1,0(r2) creates a write event Wx1 to x

with value 1, labelled (a) in Fig. 19. The event (a) previously was the only event
we considered.

Intra-Instruction Causality An execution witness now includes an additional intra-

instruction causality relation
iico
→ , as in [26,8].

For example, executing the load lwz r1, 0(r2)—which semantics is given in
Fig. 19 (r2 holding the address of a memory location x containing 1)—creates
three events (a) R r2 x, (b) R x 1 and (c) W r1 1, such that (a)

iico
→ (b)

iico
→ (c). The

iico
→ relation between (a) and (b) indicates that the load instruction has to perform
the read (a) from r2 before the read (b) from x. Before reading x from r2 via the
event (a), the address x is undetermined. Similarly, (b) and (c) are related by

iico
→ ,

since the write (c) determines the value it has to write into r1 from the value read
by (b).

Stores are less constrained, as depicted in Fig. 19. Indeed the read events (b)
and (c) may be performed independently. However, the write event (a) determines
its target x and its value 1 from the reads (c) and (b) respectively, hence (b)

iico
→ (a)

and (c)
iico
→ (a).

Read-From Map Naturally,
rf
→ now also relates register events: we write

rf-reg
→ the

subrelation of
rf
→ relating register stores to register loads that read their values.

6.1.2 Commit Events

We also add commit events in order to express branching decisions. We write C for
the set of commits, and c for an element of C.

Consider for example the test given at the left of Fig. 20, written in PowerPC
assembly. Suppose that the register r5 initially holds the address x, and the register
r6 the address y. The lwz r1,0(r5) at line (1) and the stw r2,0(r6) at line (4)
are separated at lines (2)–(3) by a compare and branch sequence, written cmpwi

r1,0 then bne L0.
In the execution of this test, given at the right of Fig. 20, the lwz r1,0(r5)

leads to the read event Rx0 from x labelled (a). The stw r2,0(r6) leads to the write
event Wy1 to y labelled (b). At runtime, the compare instruction of line (2) yields
equality and writes its result 2 (value 2 encodes equality) in the control register
CR0, as depicted by the event (f). The conditional branch instruction reads CR0
(read event (g)) whose value determines the branching decision (commit event (h)):
bne being “branch not-equal”, the branch is not taken. Observe that the execution
itself of the store at line (4) depends upon the branching decision. This is depicted
in the execution we give here by the events yielded by this store being present
and following the commit event (h) in program order. To summarise, we witness a

Fences in Weak Memory Models (Extended Version) 27

PPC ctrl

{

0:r5=x; 0:r6=y;0:r2=1;

x=0; y=0;

}

P0 ;

(1) lwz r1,0(r5) ;

(2) cmpwi r1,0 ;

(3) bne L0 ;

(4) stw r2,0(r6) ;

L0: ;

[lwz r1,0(r5)]

[cmpwi r1,0]

[bne L0]

[stw r2,0(r6)]

(a) Rx0

(d) Wr1 0

(b) Wy1

(c) R r5 x

(e) R r1 0

(f) WCR02

(g) RCR02

(h) Commit

(i) R r2 1 (j) R r6 y

iico

ctrl

iico

rf po

iico

rf po

iico

po po

iico iico

Fig. 20 A Test For Control Dependency in PowerPC Assembly

chain of dependencies through registers from the read (a) to the commit (h) that

is
po
→-before the write (b). This situations defines a control dependency depicted by

the
ctrl
→ arrow at the right of Fig. 20.

6.1.3 Barrier Events

We add barrier events in order to indicate the presence of a barrier in the code.
We handle three barrier instructions : isync, sync and lwsync. The sync barrier
is Power’s heavyweight barrier, sometimes written hwsync. The lwsync barrier is

28 Jade Alglave et al.

PPC isync

{

0:r5=x; 0:r6=y;0:r2=0;

x=0; y=1;

}

P0 ;

(1) lwz r1,0(r5) ;

(2) cmpwi r1,0 ;

(3) bne L0 ;

(4) isync ;

(5) lwz r2,0(r6) ;

L0: ;

[lwz r1,0(r5)]

[cmpwi r1,0]

[bne L0]

[isync]

[lwz r2,0(r6)]

(a) Rx0

(d) Wr1 0

(b) Ry1

(c) R r5 x

(e) R r1 0

(f) WCR02

(g) RCR02

(h) Commit

(i) I s ync

(j) R r6 y

(k) Wr2 1

iico

isync

iico

rf po

iico

rf po

iico

po

po

iico

iico

Fig. 21 An Example Use of the isync Barrier

Fences in Weak Memory Models (Extended Version) 29

a lightweight version of the sync barrier. The isync barrier is even lighter, and
mainly used after branching instructions. We distinguish the corresponding events
by the eponymous predicates, is-sync, is-lwsync, and is-isync.

Consider for example the test given at the left of Fig. 21, written in PowerPC
assembly. Suppose that the register r5 initially holds the address x, and the register
r6 the address y.

The lwz r1,0(r5) at line (1) and the lwz r2,0(r6) at line (5) are separated at
line (2) by a compare instruction, written cmpwi r1,0, which influences the taking
of the following branch at line (3), written bne L0. The branch is followed by an
isync barrier at line (4).

In the execution of this test we give at the right of Fig. 21, the lwz r1,0(r5)

at line (1) leads to the read event Rx0 from x labelled (a). The lwz r2,0(r6) at
line (5) leads to the read event Ry1 from y labelled (b). These two instructions
are separated by a branch followed by an isync. This is depicted in the execution

we give here by the commit event labelled (h), in
po
→ with the isync event labelled

(i). Hence the read (a) from x and the read (b) from y are globally ordered by
the isync barrier, as depicted by the

isync
→ arrow between them. Notice that the

isync
→ notation can be slightly misleading, since an isync barrier alone between

two reads does not suffice to enforce global ordering. Instead, the global ordering
results from the combination of the the data dependency from the read (a) to the
commit (h) and from the presence of the isync barrier between the commit (h)
and the second read (b). In Fig. 21, we only depict the ordering between (a) and
(b), for this corresponds to the semantics of the

isync
→ relation as defined in Fig. 22.

6.2 Description of the Model

We now describe the preserved program order, global reads-from maps, and barrier
relation of the CAV 2010 Power model. The full definition of this model is collected
in Fig. 22.

6.2.1 Preserved Program Order

We present in Fig. 22(a) the definition of
ppo-ppc
→ , induced by lifting the ordering

constraints of a processor to the global level (where (
r
→)

+
stands for the transitive

closure of a given relation
r
→). This is a formal presentation of the data dependencies

(
dd
→) and control dependencies (

ctrl
→ and

isync
→) of [25, p. 661] which allow loads to be

speculated if no isync is added after the branch but prevents stores from being
speculated in any case.

Data Dependencies More precisely, we consider that there is a data dependency

between two events, written m1
dd
→ m2, when:

– they are in
rf-reg
→ , i .e. m1 is a register write and m2 a register read reading from

m1, or
– they are in

iico
→ , i .e. they both come from the same instruction and the execution

of m2 depends on m1, e.g . when using the value m1 read, or
– there is a path of

rf-reg
→ ∪

iico
→ between m1 and m2.

30 Jade Alglave et al.

Control Dependencies We consider that there is a control dependency between two
events, written m1

ctrl
→ m2, when:

– m1 is a read,
– m2 is a write, and
– there exists a commit event c between them in the program order, such that c

has a data dependency on m1.

If there is a control dependency between two events m1 and m2, it means
that they form a read-write pair separated by a conditional jump, and that the
condition of the jump is data-dependent on m1.

Two events separated by a conditional jump may be reordered if:

– the first one is a write, or
– they are both reads, and there is no isync between the branch and the second

read (c.f . Sec. 6.2.1, semantics of isync)

The test and the associated execution of Fig. 20 give an example of control
dependency between the read (a) associated to the lwz r1,0(r5) at line (1) and
the write (b) associated to the stw r2,0(r6) at line (3).

Semantics of the isync Barrier We now give the CAV 2010 model of the isync

barrier. The ordering induced by isync is similar to a control dependency on read-
read pairs. We consider that two events m1 and m2 are ordered by an isync barrier
when:

– m1 is a read, and
– there exists a commit event c in data dependency with m1, separated from m2

by an isync barrier in the program order.

In particular, this means that two events m1 and m2 separated by an isync

can be reordered if:

– m1 is a write, or
– there is no commit between m1 and m2.

The test and the execution of Fig. 21 give an example of isync ordering between
the read (a) associated to lwz r1,0(r5) at line (1) and the read (b) associated to
lwz r2,0(r6) at line (5).

All Together Finally, we consider that two events m1 and m2 are in Power’s pre-
served program order, written m1

ppo-ppc
→ m2 when:

– there is a control dependency between them, i .e. m1
ctrl
→ m2, or

– they are ordered by an isync barrier, i .e. m1
isync
→ m2, or

– m1 is a read, and there is a path of
dd
→∪ (

po-loc
→ ∩ (W× R)) between m1 and m2.

Resemblance to Sparc Relaxed Memory Order’s Preserved Program Order The pre-
served program order that we suggest for Power is similar to the one of Sparc
Relaxed Memory Order (RMO) [30, V9, p. 293]. Writing S(X) (resp. L(X)) when
the memory transaction X is a store (resp. load), Sparc’s documentation defines
the dependence order as follows:

Fences in Weak Memory Models (Extended Version) 31

Dependence order is a partial order that captures the constraints that hold be-

tween instructions that access the same processor register or memory location.

[. . .] Two memory transactions [i .e. accesses] X and Y are dependence ordered,

denoted by X <d Y , if and only if they are program ordered, [written] X <p Y

, and at least one of the following conditions is true:

(1) The execution of Y is conditional on X, and S(Y) is true. [i .e. they are in

control dependency: in particular, Y is a write.]

(2) Y reads a register that is written by X. [This corresponds to our
rf-reg
→ rela-

tion.]

(3) X and Y access the same memory location, and S(X) and L(Y) are both

true. [This corresponds to the
po-loc
→ ∩ (W× R) part of Power’s

ppo
→ defini-

tion.]

[. . .] It is important to remember that partial ordering is transitive.

The items (1) and (2) correspond to our
ctrl
→ and

dd
→ relations, while the item

(3) corresponds to the
po-loc
→ ∩ (W× R) part of Power’s

ppo
→ definition. Moreover,

as mentioned in the excerpt above, that order should be transitive. Hence we take
the transitive closure of the relation formed by the union of these two relations.

Finally, we take the intersection of (
dd
→∪ (

po-loc
→ ∩ (W× R)))

+

and R×W, exactly
as in RMO [30, V9, p.295]. Writing M(X, Y) when X and Y are separated by a
barrier, and Xa when X accesses memory location a, Sparc’s documentation defines
the legality of a RMO memory order as follows:

A memory order [written <m] is legal [in RMO] if and only if:

(1) X <d Y & L(X) ⇒ X <m Y [i .e. X and Y are in dependence order as

defined above, and X is a read.]

(2) M(X, Y) ⇒ X <m Y [i .e. X and Y are separated by a barrier; we treat

this via
ab
→, not

ppo
→ .]

(3) Xa <p Y a & S(Y) ⇒ X <m Y [Y is a write, and they are both relative to

the same memory location a. This corresponds to the fact that we consider
wsi
→ and

fri
→ to be global.]

The first item indicates that RMO also only considers the dependency chains
starting from a load, which explains why we take the intersection with R×M.

Discussion of Power’s
ppo
→ We include in

ppo
→ any chain of data dependencies and

rfi
→

starting from a read, by the ((
dd
→∪ (

po-loc
→ ∩ (W× R)))

+

∩ (R×M) part. However,
we do not authorise control dependencies in such a chain. Indeed, consider the
example given in Fig. 23, which we observed to be exhibited on a Power 5 for
example.

On P0, the lwz r1,0(r7) at line (1) is in control dependency with the stw

r3,0(r9) at line (5), because of the compare and branch sequence between them
(lines (2) to (4)). The lwz r2,0(r9) at line (6) is in data dependency with the lwzx

r4,r10,r8 at line (8), because of the xor r10,r2,r2 between them, at line (7).
Since the lwz r1,0(r7) at line (1) on P0 reads 1 (see the final state, 0:r1=1),

there is a
rfe
→ between the stw r2,0(r7) at line (3) on P1 and the lwz r1,0(r7) at

line (1) on P0. Because of the A-cumulativity of the sync barrier on P1, the stw

r1,0(r8) at line (1) on P1 is in
ab
→ with the lwz r1,0(r7) at line (1) on P0.

32 Jade Alglave et al.

dd
→, (

rf-reg
→ ∪

iico
→)+ r

ctrl
→ w , ∃c ∈ C. r

dd
→ c

po
→ w

r
isync
→ e , ∃c ∈ C. r

dd
→ c ∧ ∃b. is-isync(b) ∧ c

po
→ b

po
→ e

dp
→,

ctrl
→ ∪

isync
→ ∪

``dd
→ ∪ (

po-loc
→ ∩ (W× R))

´
+

∩ (R×M)
´ ppo-ppc

→ ,
dp
→

(a) Preserved program order

m1
sync
→ m2 , ∃b. is-sync(b) ∧m1

po
→ b

po
→ m2

m1
ab-sync
→ m2 , m1

sync
→ m2

∨ ∃r. m1
rf
→ r

ab-sync
→ m2

∨ ∃w. m1
ab-sync
→ w

rf
→ m2

(b) Barrier sync

m1
lwsync
→ m2 , ∃b. is-lwsync(b) ∧m1

po
→ b

po
→ m2

m1
ab-lwsync
→ m2 , m1

lwsync
→ m2 ∩ ((W×W) ∪ (R×M))

∨ ∃r. m1
rf
→ r

ab-lwsync
→ m2 ∧m2 ∈W

∨ ∃w. m1
ab-lwsync
→ w

rf
→ m2 ∧m1 ∈ R

(c) Barrier lwsync

ab-ppc
→ ,

ab-sync
→ ∪

ab-lwsync
→

Power , (
ppo-ppc
→ , ∅,

ab-ppc
→)

Fig. 22 The CAV 2010 Power Model

{

0:r7=y; 0:r8=z; 0:r9=x; 0:r3=1;

1:r7=y; 1:r8=z; 1:r1=1; 1:r2=1;

}

P0 | P1 ;

(1) lwz r1,0(r7) | stw r1,0(r8) ;

(2) cmpwi r1,0 | sync ;

(3) beq L0 | stw r2,0(r7) ;

(4) L0: | ;

(5) stw r3,0(r9) | ;

(6) lwz r2,0(r9) | ;

(7) xor r10,r2,r2 | ;

(8) lwzx r4,r10,r8 | ;

exists (0:r1=1 /\ 0:r4=0)

Fig. 23 Contradiction with the View Order Formulation

Fences in Weak Memory Models (Extended Version) 33

PPC rfi000

"DpdR Fre Rfi DpdR Fre Rfi"

Cycle=DpdR Fre Rfi DpdR Fre Rfi

Relax=Rfi

Safe=Fre DpdR

{

0:r2=x; 0:r6=y;

1:r2=y; 1:r6=x;

}

P0 | P1 ;

li r1,1 | li r1,1 ;

stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r2) | lwz r3,0(r2) ;

xor r4,r3,r3 | xor r4,r3,r3 ;

lwzx r5,r4,r6 | lwzx r5,r4,r6 ;

exists

(0:r3=1 /\ 0:r5=0 /\ 1:r3=1 /\ 1:r5=0)

Fig. 24 A diy PowerPC Test for the Rfi Relaxation

Since the lwzx r4,r10,r8 at line (8) on P0 reads 0 (see the final state, 0:r4=0),

there is a
fr
→ between this load and the stw r1,0(r8) at line (1) on P1.

Hence we have a cycle of relations as follows, starting from lwz r1,0(r7) at
line (1) on P0 (writing (i : j) for the instruction at line (j) on Pi):

(0 : 1)
CtrldW
−→ (0 : 5)

PosWR
−→ (0 : 6)

DpdR
−→ (0 : 8)

Fre
−→ (1 : 1)

ACSyncdWW
−→ (0 : 1)

Since the specified outcome is exhibited, we know that there is a subsequence
of this cycle which is not global. The only possible relaxation here is the PosWR
one between the stw r3,0(r9) at line (5) and the lwz r2,0(r9) at line (6). If we
added

ctrl
→ to the transitive part of Power’s

ppo
→ , the outcome would be forbidden

in our model. We deduce from this example that
ctrl
→ cannot be included in such

chains.

6.2.2 Read-From Maps

Internal Read-From Maps The internal read-from maps are not global, since Power
allows store buffering. Running the test given in Fig. 24 confirms this hypothesis.

Indeed this test, generated by diy, proceeds from a cycle
DpdR
−→ ;

Fre
−→;

Rfi
−→;

DpdR
−→ ;

Fre
−→

;
Rfi
−→. We know that

dp
→ is global, since included in

ppo
→ , and

fr
→ is global as well.

Thus in this test, the only possible relaxation is
rfi
→. Since the outcome is exhibited,

as shown in Fig. 15, we know that
rfi
→ is actually relaxed on Power.

Store buffering is a fairly common relaxation. Indeed, the models TSO, PSO,
RMO and Alpha also relax their internal read-from maps, i .e. allow store buffering.

External Read-From Maps The external read-from maps are not global either, as
revealed by running iriw with data dependencies (Fig. 11) on a Power machine.

This test is associated with the cycle
Fre
−→;

Rfe
−→;

DpdR
−→ ;

Fre
−→;

Rfe
−→;

DpdR
−→ . We know that

fre
→ is always considered global in our framework, an hypothesis which has not been

invalidated by the experiment we present in Sec. 5. We also know that
dp
→ is global

34 Jade Alglave et al.

in Power, since
ppo
→ is equal to

dp
→. Therefore, the only possible relaxation in the

test of Fig. 11 is
rfe
→. Since the specified outcome is exhibited as shown in Fig. 15,

rfe
→ is relaxed.

This is probably the main particularity of the Power architecture: the models
SC, TSO, PSO, RMO and Alpha do not relax the atomicity of stores. Another
model relaxing store atomicity may be Itanium [20]. However, we do not know
whether Itanium could be described by the generic framework we presented in
Sec. 2.

6.2.3 Barriers

The sync Barrier The sync barrier is defined in Fig. 22 (b) as a full A- and B-
cumulative barrier. We saw in Cor. 1 that such a barrier restores SC from a weaker
model.

The lwsync Barrier The lwsync barrier is defined in Fig. 22 (b). lwsync acts as
sync except on store-load pairs, in both the base and cumulativity cases.

7 Discussion of the Model

The Power model presented here was based largely on black-box testing. It is, to
the best of our knowledge and following reasonably thorough experiment, sound
with respect to the Power implementations we have tested. We consider it a suc-
cess: it is the first non-trivial attempt towards the formalisation of the Power
architecture with cumulative barriers; is is also notable in being an axiomatic
model of a non-multi-copy-atomic architecture in a global-time style. Moreover,
our test generation demonstrably generates interesting and useful tests that can
be used in the context of other models, and can be reused for other architectures
(we have also applied it to x86).

However, as mentioned, we do not claim this model to be definitive. In partic-
ular, it gives weaker semantics for the Power lwsync barrier than it should, and
(we have recently learnt) it gives stronger semantics than the architectural intent
in some cases.

For the lwsync issue, consider the common programming idiom given at the
left of Fig. 25 in C-like syntax: P0 first stores the value 1 into the location x, and
then communicates a pointer to x (by storing it into another location p); P1 reads
that pointer and dereference it. In the SC model, if P1 reads x from p, one can
be sure that dereferencing x will always yield 1 (i.e. will never yield 0, the initial
contents of x). The Power documentation suggests that inserting a lwsync barrier
between the two stores of P0 suffices to forbid the non-SC behaviour, due to the
effective address of P1 second load depending on the value loaded by P1 first load.
Our model is unable to explain this, because our semantics for the lwsync barrier
is rather weak.

To see this, consider the PowerPC example we give at the right of Fig. 25, which
corresponds to the idiom, where we have replaced the “true” address dependency
by a “false” one, whose effect is identical, according to the documentation. That
example could, according to our Power model, exhibit the execution given in Fig. 26
since there is no cycle in

ghb
→ . More specifically, the B-cumulativity of the lwsync

Fences in Weak Memory Models (Extended Version) 35

P0 P1

(a) x← 1 (c) r1← p

(b) p← & x (d) r2← *r1

Observed? r1=x; r2=0;

{0:r5=x; 0:r6=y;

1:r5=x; 1:r6=y;

x=0; y=0;}

P0 | P1 ;

li r3,1 | (c) lwz r1,0(r6) ;

(a) stw r3,0(r5) | xor r9,r1,r1 ;

lwsync | (d) lwzx r2,r9,r5 ;

li r4,1 | ;

(b) stw r4,0(r6) | ;

exists? (1:r1=1 /\ 1:r2=0)

Fig. 25 A Common Programming Idiom and a Corresponding Test in PowerPC Assembly

(a) Wx1

(b) Wy1

(c) Ry1

(d) Rx0

po:0 lwsync

rf

po:1 ppo

fr

Fig. 26 Weakness of Our lwsync Semantics

barrier does not apply in this case, which means that the sequence (a)
lwsync
→ (b)

rf
→

(c) is not global. Indeed, we observed BCLwSyncWW to be relaxed, as shown by
the last line of Fig. 15. Hence this behaviour is not forbidden by our model, though
it is expected to be, as confirmed by intensive experiments on the test of Fig. 25.

The per-processor view of the memory promoted by the Power documentation
helps to explain why the execution of Fig. 26 is guaranteed not to happen. Indeed,
the definition of lwsync of the documentation specifies (since the pair ((a), (b)) is a
write-write pair, hence an “applicable pair” for lwsync) that “the memory barrier
ensures that [(a)] will be performed with respect to any processor [. . .] before [(b)]
is performed with respect to that processor [. . .].” Hence the pair ((a), (b)) has to
be seen in the same order by P0 and P1, because there is a lwsync between (a) and
(b). Therefore, if the read (c) on P1 reads 1 from the write (b) on P0, then P1 has

also seen the write (a) to x on P0, hence we cannot have (d)
fr
→ (a) as in Fig. 26.

For the other issue, the model forbids the final result of a test R01 [27], which
is apparently intended to be architecturally allowed. We have not observed that
result in experimental testing, so this does not contradict the soundness of the

36 Jade Alglave et al.

model with respect to the implementations we have tested, but in principle might
be an issue with respect to future Power implementations, which might permit
that final result, so compilers and software verification work should not assume
that it is forbidden.

More recently, we have built another Power model [27], based not just on
black-box testing but also on extensive discussion with IBM staff about the rele-
vant aspects of the microarchitecture and of the architectural intent. That model
resolves both of these issues: as far as we know, it captures the architectural intent
precisely, and (as far as we know) is also experimentally sound with respect to
Power 6 and Power 7 implementations. However, to do so we had to abandon the
attractive simplicity of the global-time axiomatic model presented here — the new
model is in an abstract-machine style, with a microarchitectural flavour (e.g., with
explicit speculation in the core), though abstracting from implementation detail
as much as we can. That is both good and bad: the abstract-machine model may
be more intuitive for practicing engineers, but is mathematically more complex to
work with. Ideally, we would also have an equivalent axiomatic model.

8 Related Work

Formal memory models roughly fall into two classes: operational models and ax-
iomatic models. Operational models, e.g. [31,19], are abstractions of actual ma-
chines composed of idealised hardware components such as queues. They can be ap-
pealingly intuitive and offer a relatively direct path to simulation, at least in prin-
ciple. Axiomatic models focus on segregating allowed and forbidden behaviours,
usually by constraining various order relations on memory accesses; they are par-
ticularly well adapted for model exploration, as we do here. Several of the more
formal vendor specifications have been in this style [10,30,20].

One generic axiomatic model related to ours is Nemos [32]. This covers a broad
range of models including Itanium as the most substantial example. Itanium is
rather different to Power; we do not know whether our framework could handle
such a model or whether a satisfactory Power model could be expressed in Nemos.
By contrast, our framework owes much to the concept of relaxation, informally
presented in [5]. As regards tools, Nemos calculates the behaviour of example
programs w.r.t. to a model, but offers no support for generating or running tests
on actual hardware.

Previous work on model-building based on experimental testing includes that
of Collier [17], Adir et al. [4,3], and Sarkar et al. [26,24,28]. The former is based
on hand-coded test programs and Collier’s model, in which the cumulativity of the
Power barriers does not seem to fit naturally. Adir et al. developed an axiomatic
model for a version of Power before cumulative barriers [3]; their testing [4] aims
to produce interesting collisions (accesses to related locations) with knowledge of
the microarchitecture, using an architecture model as an oracle to determine the
legal results of tests rather than (as we do) generating interesting tests from the
memory model. Sarkar et al. developed models for the x86 based in part on litmus
testing with hand-written tests, using a version of the same tool as we use here
for running them on hardware.

Fences in Weak Memory Models (Extended Version) 37

9 Conclusion

We present here a general class of axiomatic memory models, extending smoothly
from SC to very relaxed models. It even extends to a model for Power processors,
which does not have store atomicity. This is despite the fact that our models
are simple global-time models, without complex structures such as multiple write
events per store [20], or a view order per processor [17,3,25,11]. Our principal
validity condition is simple, just an acyclicity check of the global happens before
relation. This check is already known for SC [22], and recent verification tools use
it for architectures with store buffer relaxation [18,15].

Our model lends itself well to exploration by automatic and systematic test
generation. This is a significant advance over reliance on hand-crafted litmus tests,
the current state of the art. Our diy tool has discovered several interesting corner
cases which would have been easy to miss in a less systematic exploration. We also
believe that extensive tests of actual hardware is a crucial component of building
axiomatic models, and we provide a tool suite for both generation and running
of tests. Such testing can also discover problems of the implementation, and our
testing revealed a rare Power 5 implementation erratum for barriers.

Our Power model captures key aspects of the behaviour of cumulative barriers.
It can be used as a basis for reasoning, particularly about the placement of heavy-
weight barriers hwsync. However, we do not regard it as definitive: there are known
tests for which the model is too weak w.r.t. our perception of the architectural in-
tent (particularly involving the lightweight barrier lwsync) and also cases where it
is too strong w.r.t. the architectural intent (though sound w.r.t. current implemen-
tations). A desirable direction for future work would be to develop an axiomatic
model that is equivalent to our more recent abstract-machine model [27].

Acknowledgements We thank Damien Doligez and Xavier Leroy for invaluable dis-
cussions and comments, Assia Mahboubi and Vincent Siles for advice on the Coq
development, Thomas Braibant, Jules Villard and Boris Yakobowski for com-
ments on a draft, and the anonymous referees for comments on the presentation.
We thank the HPCx (UK) and IDRIS(.fr) high-performance computing services.
We acknowledge support from EPSRC grants EP/F036345, EP/H005633, and
EP/H027351/1, and ANR grant ANR-06-SETI-010-02.

References

1. AMD64 Architecture Programmer’s Manual. Advanced Micro Devices, September 2007.
(3 vols).

2. Intel 64 and IA-32 Architectures Software Developer’s Manual (5 vols). Intel Corporation,
March 2010. rev. 34.

3. A. Adir, H. Attiya, and G. Shurek. Information-Flow Models for Shared Memory with an
Application to the PowerPC Architecture. In TPDS, 2003.

4. A. Adir and G. Shurek. Generating Concurrent Test-Programs with Collisions for Multi-
Processor Verification. In HLDVT, 2002.

5. S. V. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorial. IEEE
Computer, 29:66–76, 1995.

6. M. Ahamad, R. A. Bazzi, R.John, P. Kohli, and G. Neiger. The Power of Processor
Consistency. In SPAA, 1993.

7. J. Alglave. A Shared Memory Poetics. PhD thesis, Université Paris 7 and INRIA, 26
November 2010. http://diy.inria.fr/alglave-thesis.pdf.

38 Jade Alglave et al.

8. J. Alglave, A. Fox, S. Ishtiaq, M. O. Myreen, S. Sarkar, P. Sewell, and F. Zappa Nardelli.
The semantics of Power and ARM multiprocessor machine code. In DAMP, 2009.

9. J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in Weak Memory Models. In
CAV, 2010.

10. Alpha Architecture Reference Manual, Fourth Edition, 2002.
11. ARM Architecture Reference Manual (ARMv7-A and ARMv7-R), April 2008.
12. Arvind and J.-W. Maessen. Memory Model = Instruction Reordering + Store Atomicity.

In ISCA. IEEE Computer Society, 2006.
13. Y. Bertot and P. Casteran. Coq’Art. Springer Verlag, EATCS Texts in Theoretical Com-

puter Science, 2004.
14. H.-J. Boehm and S.V. Adve. Foundations of the C++ Concurrency Memory Model. In

PLDI, 2008.
15. S. Burckhardt and M. Musuvathi. Effective Program Verification for Relaxed Memory

Models. In CAV, 2008.
16. J. Cantin, M. Lipasti, and J. Smith. The Complexity of Verifying Memory Coherence. In

SPAA, 2003.
17. W. W. Collier. Reasoning About Parallel Architectures. Prentice-Hall, 1992.
18. S. Hangal, D. Vahia, C. Manovit, J.-Y. J. Lu, and S. Narayanan. TSOTool: A Program

for Verifying Memory Systems Using the Memory Consistency Model. In ISCA, 2004.
19. L. Higham, J. Kawash, and N. Verwaal. Weak memory consistency models part I: Defi-

nitions and comparisons. Technical Report98/612/03, Department of Computer Science,
The University of Calgary, January, 1998.

20. A Formal Specification of Intel Itanium Processor Family Memory Ordering, October
2002. Intel Document 251429-001.

21. L. Lamport. How to Make a Correct Multiprocess Program Execute Correctly on a Mul-
tiprocessor. IEEE Trans. Comput., 46(7):779–782, 1979.

22. A. Landin, E. Hagersten, and S. Haridi. Race-free interconnection networks and multi-
processor consistency. SIGARCH Comput. Archit. News, 19(3):106–115, 1991.

23. J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In POPL, 2005.
24. S. Owens, S. Sarkar, and P. Sewell. A Better x86 Memory Model: x86-TSO. In TPHOL,

2009.
25. Power ISA version 2.06, January 2009.
26. S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge, T. Braibant, M. Myreen, and

J. Alglave. The Semantics of x86-CC Multiprocessor Machine Code. In POPL, 2009.
27. Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. Under-

standing Power Multiprocessors. In PLDI, 2011.
28. Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O.

Myreen. x86-TSO: A rigorous and usable programmer’s model for x86 multiprocessors.
Communications of the ACM, 53(7):89–97, July 2010. (Research Highlights).

29. D. Shasha and M. Snir. Efficient and Correct Execution of Parallel Programs that Share
Memory. ACM Trans. Program. Lang. Syst., 10(2):282–312, 1988.

30. Sparc Architecture Manual Versions 8 and 9, 1992 and 1994.
31. Y. Yang, G. Gopalakrishnan, and G. Lindstrom. UMM: an Operational Memory Model

Specification Framework with Integrated Model Checking Capability. In CCPE, 2007.
32. Y. Yang, G. Gopalakrishnan, G. Linstrom, and K. Slind. Nemos: A Framework for Ax-

iomatic and Executable Specifications of Memory Consistency Models. IPDPS, 2004.

