Software Verification for Weak Memory
via Program Transformation™*

Jade Alglavé?, Daniel Kroening, Vincent NimaF, and Michael Tautschnig}

1 University College London
2 University of Oxford
3 Queen Mary, University of London

dedicated to the memory of Kohei Honda

Abstract Multiprocessors implement weak memory models, but progvem
ifiers often assum&equential ConsistendsC), and thus may miss bugs due
to weak memory. We propose a sound transformation of therpnodo verify,
enabling SC tools to perform verification w.r.t. weak memu present experi-
ments for a broad variety of models (from x86-TSO to Powed)amast range of
verification tools, quantify the additional cost of the sformation and highlight
the cases when we can drastically reduce it. Our benchmackslie work-queue
management code from PostgreSQL.

1 Introduction

Current multi-core architectures such as Intel's x86, IBMbwer or ARM implement
weak memory modelsr performance reasons, allowing optimisations sucimsisuc-
tion reordering store bufferingor write atomicity relaxatior{3]. These models make
concurrent programming and debugging extremely chalfendiecause the execution
of a concurrent program might not be an interleaving of itrinctions, as would be
the case on a Sequentially Consistent (SC) architectujeA8lan instance, the lock-
free signalling code in the open-source database Postlr&fiéd regression tests on
a PowerPC cluster, due to the memory model. We study thisrbdgtail in Sec. 5.

This observation highlights the crucial need for weak menaware verification.
Yet, most existing work assume SC, hence might miss bugsfepecweak memory.
Recent work addresses the design or the adaptation ofrexistethods and tools to
weak memory [25,29,17,13,23,11,2], but often focuses @specific model or cannot
handle the write atomicity relaxation of Power/ARM: gerigyaemains a challenge.

Since we want to avoid writing one tool per architecture ¢€iast, we propose a
unified method. Given a program analyser handling SC coanayrfor C programs, we
transform its inputto simulate the possible non-SC behaviours of the prograitstwvh
executing the program on SC. Essentially, we augment owgranas with arrays to
simulate (on SC) the buffering and caching scenarios duestikunemory.

* Supported by ERC project 280053, EPSRC project EP/G0262&44d the Semiconductor
Research Coropration (SRC) under task 2269.002.

2 Jade Alglave, Daniel Kroening, Vincent Nimal, and Mich&@autschnig

The verification problem for weak memory models is known tdb&d (e.g. non-
primitive recursive for TSO), if not undecidable (e.g. foMR-like models) [9]. This
means that we cannot desigo@npleteverification method. Yet, we can achies@und-
ness by implementing our tools in tandem with the design of a firand by stressing
our tools with test cases reflecting subtle points of the proo

We also aim for an effective and unified verification setuperelone can easily plug
a tool of choice. This paper meets these objectives by makirg new contributions:

1. To design our transformation, we define in Sec. 3 an alisttate machine that we
prove (in the Coq proof assistant) equivalent to the frantkweb [8] (recalled in
Sec. 2). We also explain how this equivalence proof allowts design a drastically
improved transformation with a speed-up of more than twemadf magnitude.

2. Sec. 4 describes our implementation, highlighting theegality of our approach:
we support a broad variety of models (x86/TSO, PSO, RMO amndePoand all
concurrency-aware program analysers for C programs (peraxents below).

3. Sec. 5 details our experiments. i) We systematicallydaddi our implementation
w.r.t. our theoretical study withh55 litmus testsexercising weak memory arte-
facts. We study the overhead and validate the viability afttansformation using
Blender [20], CheckFence [13], ESBMC [14], MMChecker [1PPhirot [1], Sa-
tAbs [15], and Threader [16]. ii) We verify an excerpt of thedational database
software PostgreSQL, which has a bug specific to Power. iii) t€ansformation
easily scales to systems code from the Linux kernel or thecApaTTP server,
and also industrial code.

We provide the source and documentation of our tools, oucltrearks, experimental
reports, Coq proofs and their typeset sketches online: wpraver.org/iwmm/

Related WorkWe focus here on theerificationproblem, i.e., detecting the behaviours
that are buggy, not all the non-SC ones. This problem is manijive recursive for
TSO [9]. Itis undecidable if read/write or read/read paas be reordered, as in RMO-
like models [9]. Forbiddingausal loopsestores decidability; relaxing write atomicity
makes the problem undecidable again [10].

Existing solutions use various bounds over the objectsehibdel [11,19], over-
approximate the possible program behaviours [20,18], loxqeish termination [22].
For TSO, [2] presents a sound and complete solution. We presprovably sound
method that allows to lift any SC method or tool to a large spee of weak memory
models, ranging from x86 to Power. We build an operationatiefio[24] presented
such a model, but theirs is restricted to TSO. Given the undédity of the problem,
we cannot provide completeness, as we focus on soundnesio W use any bound
in our theoretical model (Sec. 3), but our implementatiogsUtite buffers (Sec. 4).

Our approach also reduces the amount of instrumentatiopliavably sound man-
ner. Unlike [11], we only instrument selected shared menamgesses. For TSO this
would follow immediately from [12], but we generalise to nedglsuch as Power.

Software Verification for Weak Memory via Program Transfation 3

sb (a) Wx1 (c) Wyl
Po Lis! fr\/ fr
(a)X +~—1 (C)y —1 po po
B)rl«y |[(dr2+x

Final state? 1=0; r 2=0 (b) RyO (d) Rx0

Figure 1. Store Buffering §b)
iriw
Po Py P P
(@)rl<«x |(e)r3«y [(e)x<+1 |(fly+1
Or2«y |(drd+x
Final state? 1=1;r 2=0;r 3=1;r 4=0;

Figure 2. Independent Reads of Independent Writas/()

2 Context: Axiomatic Memory Model

In an operational view, weak memory effects occur as follawgrocessor can commit
a write first to a store buffer, then to a cache, and finally tonoey. When a write
hits the memory, all the processors agree on its value. Bilewhe write is in transit
through store buffers and caches, a read can occur befovalileeis actually available
to all processors from the memory.

To describe such scenarios, we use the framework of [8],lwriovably embraces
several(weak) architecturesSC [21], Sun TSO (i.e. the x86 model [24]), PSO and
RMO, Alpha, and a fragment of Power. At the core of this frarodwwe userelations
overread and write memory eventd/e introduce this framework olitmus testsas
shown in Fig. 1. The left-hand side of the figure shows a nihitaded program. The
shared variables andy are initialised to zero. A store instruction (exg+ 1 on Fy)
gives rise to a write even{¢)Wx1), and a load (e.g.1 + y on P,) to a read event
((b)Ry0). The property of interest is whether there exists arcetken of the program
such that the final stateisLl=0 andr 2=0. To determine this, we study tleeent graph
given on the right-hand side of the figure. An architectuteved an execution when
it represents global happens-beforerder over all processors. A cycle in an event
graph is a violation of global happens before, unless thhitaature relaxes any of
the relations contributing to this cycle. Thus, if the grdyas a cycle, we check if the
architecturenay relaxsome relations. Such a relaxation makes the graph acydlichw
implies that the architecture allows the final state.

In SC, nothing is be relaxed, thus the cycle in Fig. 1 forblaséxecution. On the
other hand, x86 relaxes the program orger in Fig. 1) between writes and reads, thus
the forbidding cycle no longer exists, and the given finalestan be observed.

Formalisation An eventis a read or a write memory access, composed of a unique
identifier, a direction R for read or W for write, a memory agekl, and a value. We
represent each instruction by the events itissues. In Figeassociate the store«— 1

on processof?, with the event(e)Wxz1. We define two utility functions on events:

4 Jade Alglave, Daniel Kroening, Vincent Nimal, and Mich&@autschnig

proc(e) returns the processor executing the ever@ndaddr(e) yields the address of
a read or write event.

A set of event& and their program ordgro form anevent structuréz 2 (IE, po).
po is a per-processor total order over the events.diVe writedp C po for the relation
that models thelependencielsetween instructions, e.g. adress dependenogcurs
when computing the address of a load or store from the valagpoéceding load.

We represent theommunicatiorbetween processors leading to the final state via
an execution witnesX = (ws, rf), which consists of two relations over the events.
First, thewrite serialisationws is a per-address total order on writes which models
the memory coherenceidely assumed by modern architectures. It links a wiite
any writew’ to the same address that hits the memory afteBecond, theead-from
relationrf links a writew to a read- such that- reads the value written by.

Given a pair of writew’, w) € ws and a read-from paifw’,r) € rf, we are to
complete global happens before: happens before by ws andr reads fromw’ by rf.
Thusr is to happen before), as otherwise it would have to read fram To that aim,
we derive thefrom-readrelationfr from ws andrf. A readr is in fr with a write w
when the writew’ from whichr reads hit the memory beforedid. Formally, we have:
(r,w) € fr £ Ju', (w',r) € rfA (W', w) € ws,

In Fig. 2, the specified outcome corresponds to the execotiothe right if each
memory location initially hold$. If r 1=1 in the end, the reat:) obtained its value
from the write(e) on P», hence(e, a) € rf. If r 2=0 in the end, the reafb) obtained its
value from the initial state, thus before the wrif® on P;, henceb, f) € fr. Similarly,
we have(f,c) € rf fromr 3=1, and(d, e) € fr fromr 4=0.

Relaxed or safdVe model the scenario of reads to occur in advance, as dedatlihe
beginning of this section, by some subrelation of the readiff beingrelaxed i.e.
not included in global happens before. When a processorezhfrom its own store
buffer [3] (the typical TSO/x86 scenario), we relax the it read-fronrfi. When two
processor$, and P, can communicate privately via a cache (a caserite atomicity
relaxation [3]), we relax the external read-frafa, and call the corresponding write
non-atomic This is the main particularity of Power or ARM, and cannoppen on
TSO/x86. Some program-order pairs may be relaxed (e.geanetd pairs on x86, and
all butdp ones on Power), i.e. only a subsetpaf is guaranteed to occur in this order.
This subset constitutggeserved program ordeppo.

When a relation may not be relaxed, we cabdfe Architectures provide special
fence(or barrier) instructions to prevent weak behaviours. Following [8k telation
fence C po induced by a fence inon-cumulativavhen it only orders certain pairs
of events surrounding the fence, ifence is safe. The relatiofience is cumulative
when it additionally makes writes atomic, e.g. by flushinghsss. In our axiomatic
model, this amounts to making sequences of external resd-dind fencesfe; fence
or fence; rfe) safe, even thougife alone would not be safe for the architecture. We
denote the union dence and the additional cumulativity bgb.

ArchitecturesAn architectureA determines the setife 4 of the relations safe oA, i.e.
the relations embedded in global happens before. Folloj@have always consider the
write serialisatiorws and the from-read relatiofn safe. SC relaxes nothing, ié.and

Software Verification for Weak Memory via Program Transfation 5

po are safe. TSO authorises the reordering of write-read paiisstore buffering but
nothing else. Fences are safe by design, #us safe 4.

Finally, an executiofE, X) is valid on A when the three following conditions hold.
1. SC holds per address, i.e. the communication and thegrogrder for accesses with
same addreg®-loc are compatibleaniproc(E, X) £ acyclic(ws U rf U fr U po-loc).
2. Values do not come out of thin air, i.e. there is no causaplahin(F, X) £
acyclic(rf U dp). 3. There exists a linearisation of events in global happefisre, i.e.
the safe relations do not form a cycigib(E, X) £ acyclic((ws U rf U fr U po) N safe).
Formally:

valid 4 (E, X) £ uniproc(E, X) A thin(E, X) A ghb(E, X)

3 Simulating Weak Behaviours on SC

We develop a provably correct instrumentation strategyfograms. To this end, we
first give an operational description of memory models imteiof anabstract state
machineg(Sec. 3.1). We then show in Sec. 3.3 the equivalence of theereatic model
of Sec. 2 and the abstract machine. We explain in Sec. 3.4 isvetuivalence proof
guides our instrumentation strategy.

3.1 Abstract machine

We define a non-deterministic state machine that reads a&segwflabels The ma-
chine has a designated bad stateand all other states of the machine represent system
configurations, i.e. the memory, write buffers, and the $gtemding reads. We write
addr, evt, and rin for the types of memory addresses, evadtssdations, respectively.

Definition 1 (State).A stateof the machine is eithet or a triple (m, b, rs), where

— thememory(m : addr — evt) maps a memory addreggo a write to/;

— thewrite buffer (b : rln evt) is a total order over writes to the same address; the
buffer has a special symbal,, placed before all events in the buffer;

— theread sefrs : set evlis a set of read events.

We have a single set of reads, but one totally ordered buffelagdress. Exist-
ing formalisations [24,11] use per-thread buffers, wherear buffers are solely per-
address objects. This allows us to model not only store hofjgwhich per-thread
objects would allow), but also caching scenarios (fully tadomic stores) as exhibited
by iriw+dps, i.e. theiriw test of Fig. 2 with dependencies between the readg,cemd
Py to prevent their reordering.

The machine performs transitions dependingdetayandflushlabels. Intuitively,
a delay label pushes an object in the write buffer or readfsBitish label makes it exit
the write buffer or read set. The details of transitions agcdbed below.

Definition 2 (Label). For a write eveniv, d(w(w)) denotes itglelay labelandf (w(w))
its flush label For a read event, its delay label (with directiom, read) is denoted by
d(r(w,r)), and its flush is denoted byr(w, r)).

6 Jade Alglave, Daniel Kroening, Vincent Nimal, and Mich&@autschnig

updm(m, w) £ z > if addr(z) = addr(w) thenw elsex

updb(b,w) = bU{(w1,ws) | w1 = LpV ((Lp,w1) € bAaddr(wi) = addr(w))A
w2 = w}
updrs(rs,r) = rsU{r}

>

delb(b,w) = {(w1,w2) | (w1, w2) € bAw1 # w A ws # w}
delrs(rs,r) 2 {e|e€rsie#r}
last(b,w) = (=(Fw’, (Lp,w') €b) Aw = Lp)V

((Fw', (Lp,w") € b) A (Lp,w) € bA=(Fw', (w',w) € b))
rfm(m, b, w) £ w = m(addr(r)) A rr(b, {w | (w,r) € po-loc}) =

WRITE TO BUFFER DELAY READ
T T
s D), (m, updb(b, w), rs) g 2twr), (m, b, updrs(rs, r))

READ FROM SET

rErsA (R

WRITE FROM BUFFER TO MEMORY rsOfr | (r,w) € dp} =0 A (R
rr(b, {e | (e,w) € ppoUab}) =0A (W1) rr(b, {e | (e,r) € ppoUab}) =0 A (R
rsn{e| (e,w) €ppoUab} =0A (W2) rsn{e | (e,w) € ppoUab} =0 A (R
rsn{r | (r,w) € po-loc} = 0 A (W3) [rfm(m, b, w) Vv (R
last(rr(b, {e | addr(e) = £}),w) (W4) (w # m(addr(r)) Aw € b Avisible(w,r))] (R
)

s LD, (m.b, delrs(rs, 7))

5“2, (updm(m, w), delb(b, w), s

Figure 3. The abstract machine

A set L of labels is well-formed w.r.t. an event structutewhen: ind(w(w)) or
f(w(w)), wis awrite ofE; in d(r(w,r)) orf(r(w,r)), w is a write of £ andr a read of
E, both with the same address; any eventioias a unique corresponding flush label
in L; when a flush label belongs 1o, so does its delay counterpart.

Transitions We write s - s’ to denote that the machine can make a transition from
states to states’ reading label. Let the machine be in a stafm, b, rs). Given a label,
the machine performs transitions from one state to anottlee iconditions described
below are fulfilled. Otherwise, the machine transitiond t¢it gets stuck).

In Fig. 3, we give the formal definition of the transitions afranachine. We need to
define a few auxiliary functions, also formally defined in BgWe update the memory
with a write w via updm(m,w), a buffer with a writew via updb(b, w), and a set
with a readr via updrs(rs, r). We delete a writev from a buffer viadelb(b, w) and
we delete a read from a set viadelrs(rs,). We writerr(R, .S) for the restriction of a
relationR to a setS, i.e.{(z,y) | (z,y) € RAxz € S Ay € S}. We pick the last write
to an address$ of a buffer vialast(b, w). In prose, the transitions are as follows. To

Software Verification for Weak Memory via Program Transfation 7

avoid ambiguity in wording, we writerbefore” or ‘r-after” to express before or after
w.r.t. the relatiorr.

— Write to buffer a writed(w(w)) to addresg can always enter the buffér taking
its placeb-after all the writes td that are already ib.
— Delay read a readd(r(w, r)) can always enter the read $st
— Write from buffer to memona write f(w(w)) to addresd exits the buffelb and
updates the memory &if:
e thereis no evert in the buffer nor in the read set whichppo U ab-beforew
(Conditions (W1) and (W2));
e andthere is no read fromiin the buffer which igo-beforew (Cond. (W3));
e andthere is no write td in the buffer which id-beforew (Condition (W4)).
— Read from seta read (r(w, r)) from ¢ (Condition (R1)) exits the read set if:
e thereis noread in the read set thatlpsbeforew (Condition (R2));
e andthere is no event in the buffer or in the read set thaipie U ab-beforer
(Conditions (R3) and (R4));
e and eitherw is in memory, and there is no write foin the buffer that igo-
beforer (Condition (R5));
e or if wis notin memoryyw is in the buffer and iwisible tor (a notion defined
below) (Condition (R6)).

To define a writaw asvisible to a read-, we need a few auxiliary functions. We de-
fine the part of the buffer visible to a reads follows:b, = {w | (Lp,w) € b A((rfi C
safe) = proc(w) = proc(r)) A ((rfe C safeq) = proc(w) # proc(r))))}. Now, w
is visible tor when:

w andr share the same address

w is in the part of the buffer visible te, namely ifrfi (resp.rfe) is safe thenv cannot
be on the same (resp. a different) thread &s < b,.);

w is b-before the first writav, to ¢ that ispo-afterr;

w is equal to, ob-after, the last writev, to ¢ that ispo-beforer.

All states exceptl are accepting states. Thus, the abstract machine accepis a s

quencep of labelsly, 1, ... if there is a sequence of statag s, . .. such thats; L,
s;+1 ands; # 1 for all 4.

Definition 3 (Accepting sequence)A sequence is a total order overl. compatible
with the program order, i.e. for two even(ts, y) € po, their delay labels appear in the
same order irp. It is acceptingff the sequence is accepted by the abstract machine.

3.2 lllustration using examples

We illustrate the machine by revisiting teb test of Fig. 1 for TSO and thiew test of
Fig. 2 for Power. Fig. 4 and 5 reproduce on the left the eveaplgs from Fig. 1 and 2.
On the right, they show the counterparts in the abstract mackve explain the labels
on the arrows in the next sectioff'from the axiomatic model to the machine”). We
use the following graphical conventions. In the axiomatarld (i.e. on the left of our

8 Jade Alglave, Daniel Kroening, Vincent Nimal, and Mich&@autschnig

d(a) d(c)
(a) Wx1 (c) Wyl f(a) f(c)
s fr\/ fr N //1 se\ /se >se
po| po; '
5) der 4 d(d)
(b) Ry0 (d) Rx0 £(b) f(d)
(a) Axiomatic model (b) Machine

Figure 4. Revisitingsb on TSO with our machine

(a) Axiomatic model (b) Machine

Figure 5. Revisitingiriw+dps on Power with our machine

figures), we reflect a pair that an architecture relaxes byshetharrow. For example,
in the sb test of Fig. 4 on TSO, the write-read paiis b) and(d, ¢) can be relaxed.
Likewise, in theiriw+dps test of Fig. 5 on Power, the read-from pajesa) and(f, ¢)
can be relaxed (as opposed to the read-read faits on P, and(c, d) on P;, which
are safe because of dependencies).

In any given execution, the abstract machine may choosddr amy pair that is
not safe. Such pairs are depicted with a dashed arrow. Paitrshtie machine does not
relax are depicted with a thick arrow.

In Fig. 1, the pairga, b) on P, and(c, d) on P; are relaxed on TSO. Our machine
may simulate the behaviour permitted on TSO by followingghenario in Fig. 4(b),
which corresponds to the pati{a) — d(b) — d(¢) — d(d) — f(b) — f(c) —
f(d) — f(a). In the figure, the label “se” corresponds to a safe exit, ated to a delay
exit, which are formalised below. The machine delays alhévev.r.t. program order. In
this scenario, the machine chooses to relax the pajig by flushing the read before
the writea, ensuring that the registerd. andr 2 hold 0 in the end.

In Fig. 2, assume dependencies between the read® and P;, so that(a, b)
on P, and (¢,d) on P, are safe on Power. Yék,a) and (f,c) may be relaxed on
Power, because Power has non-atomic writes. Our machinesimayate the weak
behaviour exhibited on Power by following Fig. 5(b), whichresponds to the path
d(e) — d(a) — f(a) — d(b) — £(b) = d(f) — {(f) — d(c) — f(¢) — d(d) —
f(d) — f(e). Since(a,b) and(c, d) are safe on Power, our machine flushdsefored
(resp.c befored). Since(b, f) € fr (resp.(d, e) € fr), which is always safe, the machine
flushesh beforef (resp.d beforee), ensuring thab andd read from memory, thus2

Software Verification for Weak Memory via Program Transfation 9

andr 4 hold 0 in the end. Finally, in this scenario, the machine choosegltx the
pairs(e, a) by flushinga beforee, ensuring that 1 andr 3 hold the valuel in the end.

3.3 Equivalence of the axiomatic model and the abstract madhe

We now prove the equivalence of the axiomatic model of Send2lze machine defined
in Sec. 3.1. We first show that we can build an execution valithé axiomatic model
from any path of labels accepted by the machine (Thm. 1). We ghow that we
can build a path of labels accepted by the machine from anguéxa that is valid
in axiomatic model (Thm. 2).

Thm. 1 (From the machine to the axiomatic model).Let £ be an event structure
and L be a set of labels well-formed w.rE. Then there exists an execution witness
valid for E, if there is an accepting sequengever L.

LetptoX(p, L) denote the execution witness of Thm. 1. Recall from Sec. Raha
execution witness is a pair of write serialisation and résads map. Intuitively, we build
these as follows. The write serialisation gathers the divgrites to the same address
according to the order of their flushed parts in the accemewuence: {(w,ws) |
addr(wy) = addr(ws) A (f(w(w1)),f(w(ws))) € p}. For the read-from map, we
simply gather the pairs given by the labels of {(w,r) | addr(w) = addr(r) A
f(r(w,r)) € L}.

Proof (Thm. 1).We need to show thatFE, ptoX(p, L)) passes themiproc, thin and ghb
checks. The three proofs follow the same lines, thus we foouse first for brevity.

The execution passes theiproc check iff for all (x, y) € po-loc, we do not havéy, z) €
rf U frUws U (ws; rf) U (fr; rf) [4, App. A]. By contradiction takéz, y) € po-loc and(y, z) €
rf U fr U rf. We proceed by case disjunction ovgr, =) € rf U fr U ws U (ws; rf) U (fr; rf). We
write ¢ for the address shared byandy.

If (y,z) € rf, f(r(y,x)) is in L. Sincep is accepting, the Read from set transition on
f(r(y,x)) does not block. Hencg is in memory, ory is in the buffer and visible ta:. If y is
in memory,y has been flushed, i.e. the Write from buffer to memory travsion f(w(y)) did
not block. Hence there is no read frdrpo-beforey in the set. Ye{x, y) € po-loc, andz is still
in the set whery is in memory, a contradiction. Iif is in the buffer and visible ta;, y is in the
buffer before the first write té po-afterz. Yet, (z,y) € po-loc, a contradiction.

For brevity, we present only thé case; all the other cases are similar, using the premises of
the rules of the machine. For example flyex) € ws case uses the Write from buffer to memory
rule, in particular the fact that exits the buffer if there is no write tbbefore it in the buffer; yet
x is stillin there. Thely, «) € fr case uses the Read from set rule, in particular the factfttie i
write w from which z reads is in memory, then there is no write/tpo-beforey in the buffer;
yetz is in there. Ifw is in the buffer, we use the fact thatis equal to, or in the buffer after, the
last write to¢ po-beforex, which will block the flush ofw, a contradiction. ad

For the other direction, we first build labels from the everitds. We augment
our events with directions: a write becomesw(w) andr becomes:(w, r), where
(w,r) € rf. Then wesplit an augmented eventinto its delayed partl(e), and its
flushed parf(e). We writelabels(E, X) for the labels built from the events &f.

Then we form thelelay pairsof (E, X), as follows. We build the relationdelay
over the events oF, such that{(ws U rfufr) Nsafe4) C ndelay; ndelay is transitive;

10 Jade Alglave, Daniel Kroening, Vincent Nimal, and Midhgautschnig

ndelay is irreflexive; if (z,y) ¢ ndelay then(y,) € ndelay. The delay pairs are the
pairs(z, y) of events ofE that are not imdelay.

Given(FE, X) and a choice of delay pairs, we build an accepting paih follows,
with e, e;, ande, denoting augmented events:

Delay before flushwe always delay an eveatbefore we flush it, i.e(d(e), f(e)) € p;
Enter (e1, e2) € po enter the buffer or set in this order, i{€l(e1),d(e2)) € p;

Rf a write enters before we flush a read from it, (#(e1),f(e2)) € pif (e1,e2) € 1f;
Safe Exit(e1, e2) € ndelay are flushed in the same order, i(&e1),f(e2)) € p.
Delay Exit (e1, e2) ¢ ndelay are flushed in the opposite order, i(&es),f(e1)) € p.

Reconsider Fig. 4(b) and 5(b). We omit the arrows correspan the first three
cases to ease the reading of the figures. In Fig. 4(b), we ¢hobg to be a delay pair,
hence we flush thert beforea, following the delay exit rule. On the contrar, ¢),
(¢,d) and(d, a) are not delay pairs, hence we flusbheforec, ¢ befored andd before
a, following the safe exit rule. The same explanation apphidsig. 5 to the paire, a)
being delayed, anf, b), (f, ¢), (¢, d) and(d, e) being safe.

We build Xtop(E, X, ndelay) as above. Afdelay is transitive and irreflexive,
Xtop(E, X, ndelay) is acyclic. Hence the transitive closufEtop(E, X, ndelay))™*
is a partial order of the labels. Any linearisatitin((Xtop(E, X, ndelay))™) of this
transitive closure forms an actual path, which we show ategmhen 1.X is valid 2.
this linearisation has finite prefixes, in which case we say(tfi, X) has finite prefixes:

Thm. 2 (From the axiomatic model to the machine)For any valid executioE, X)
with finite prefixes, there is an accepting patbver labelsL well-formed w.r.t.E.

Proof. We need to show that no transition can block the machine. Ttieeé buffer and Delay
read transitions are trivial since they can never block.

For the Write from buffer to memory case, suppose as a cdnoti@aad that the transition
blocks on a writav to an addresé. If there ise ppo U ab-beforew in the buffer or the sete, w)
cannot be a delay pair (becayg®o andab are safe), i.e. should be flushed in order, contradicting
the presence afin the buffer or the set. Otherwise, there is in the set a rdeain ¢ po-beforew.
Therefore(r, w) is in fr, thus safe, hence cannot be a delay pair, and the same argappties.
Finally, if there is a writav’ to ¢ beforew in the buffer; one can show that’, w) is in ws, hence
w'’ should be flushed before, a contradiction.

For the Read from set case, suppose as a contradiction thaatisition blocks on a read
(w,r) with addresd. If there is a read”’ dp-beforew in the set, one can show thdtshould be
flushed before, andr should be flushed beforé (i.e. a thin-air cycle inX), a contradiction. If
there is an evenppo U ab-beforer in the buffer or the set, the reasoning is the same as above
in the write case. lfv is in memory and there is a write fopo-beforer in the buffer, we create
a uniproc cycle, a contradiction. lfv is in the buffer and not visible to, there are two cases.
Eitherw is not on a thread whose buffercan read w.r.tA, in which casqw, r) do not form a
delay pair and should be flushed in this order, contradidtiregpresence ai in the buffer. Or
w is in the buffer after the first write tb po-afterr (or before the last write té po-beforer), in
which case we create a uniproc cycle. ad

3.4 Instrumentation

Thm. 2 leaves freedom in the instrumentation strategy. Weesaloit the choice of
delay pairs and the choice of the linearisationXabp(FE, X) in order to reduce the
overhead of running or verifying an instrumented program.

Software Verification for Weak Memory via Program Transfation 11

S€,

a(b) d(d)/ m(b) m(d)
£(b) £(d)

(a) Machine (b, ¢) delay) (b) One pair only

Figure 6. Choices for instrumentingb for TSO

se

se

(@) (f,c) delay (b) One pair only
Figure 7. Choices for instrumentingiw+dps for Power

Choice of delay pairsThe conditions on thadelay relation restrict the choice of delay
pairs. We have to put at least all the safe pairs imdelay, by the first condition.

Sincendelay is transitive and irreflexive, it is acyclic. An executiphl, X) presents
a cycle iff it is not SC (if it is SC, all pairs are safe and thex@o cycle). [7, Thm.1]
shows that an execution is valid oh but not on SC iff it containgritical cycles.
Thus we can put all pairs indelay, except one unsafe pair per critical cycle, which
corresponds to the last condition ovetelay.

In Fig. 4(b), we build an accepting path corresponding toakiematic execution
of Fig. 4(a) by choosing the unsafe péir, b) on the cycle to be a delay. In Fig. 6(a),
we choose the unsafe péir, d). Similarly for Fig. 5(a), we can build an accepting path
corresponding to the axiomatic execution of Fig. 5(a) byadiog e.g.(e, a) as delay
(cf. Fig. 5(b)). In Fig. 7(a), we choos¢, c) as delay.

Our examples are symmetric, thus the choice of which pairetaydshould not
make a difference. In Fig. 1¢,b) and(c, d) are write-read pairs. Similarly in Fig. 2,
(e,a) and(f, c) are of the same nature, namefy pairs. For asymmetric examples, the

* We recall here the definition of [7]. Two everits, y) arecompetingwritten (=, y) € cmp, if
they are from distinct processors, to the same address téastone of them is a write (e.qg.
in Fig. 2, the reada) from = on Py and the write(e) to on P). A cycleoc C cmp Upo
is critical when it is not a cycle ificmp U (ppo Nsafe4)™) and it satisfies the two following
propertiesyi) Per processor, there are at most two memory accéssg$ on this processor
andaddr(z) # addr(y). (i) For a given memory address there are at most three accesses
relative toz, and these accesses are from distinct procesgoray) € cmp, (w,r) € cmp,
(r,w) € cmp or {(r,w), (w,r")} C cmp). Fig. 2, shows a critical cycle dfiw on Power.

12 Jade Alglave, Daniel Kroening, Vincent Nimal, and Midhgautschnig

chosen delayed pair can make a crucial difference (cf. Sei.tbe instrumentation of
one pair causes more execution or verification time overtteadthe other.

Choice of the linearisatiohm. 2 accepts any linearisation(@top(E, X, ndelay)) .
Yet, some require less instrumentation than others. Censiid). 6(a) and (b): in both
we choose to delay the pdit, d). On the left, we can pick any interleaving (compatible
with Xtop) of the delayed and flushed events to instantiate Thm. 2dé:y.— d(b) —
d(c) = d(d) — £(b) = {(d) — f(c) = f(a).

On the right, we writan(e) when the delayed and flushed part of an event happen
without intervening events in between. Observe that in thise, the event occurs
w.r.t. memory: if it is a read, it reads from the memory; if $ta write, it writes to
memory. In Fig. 6(b), we pick a particular interleaving, reyrthe one where all events
are w.r.t. memory, except for the eventThis interleaving requires to instrument only
one instruction, as opposed to all of them on the left.

Similarly in Fig. 7(a) and (b), we choose in both cases toydtia pair(f,c). On
the left, we instrument all instructions. On the right, wetmment only the paiff, ¢).

4 Implementation

4.1 Overview

We implemented the transformation technique of Sec. 3. @lrreads a concurrent C
program, possibly with inline assemhtyf ence, sync, orl wsync instructions (cf.
Sec. 2). It generates a new concurrent C program augmertte@wiguivalents of write
buffers and read sets of Sec. 3.1. The transformation pdsdaeehree main steps:

1. We devise aabstract event structuras defined below, the concretisation of which
amounts to all event structures (cf. Sec. 2) of the program.

2. Given an architecture, we identify potential criticat®s in this structure.

3. We instrument unsafe pairs in the cycle, as describeddn®é.

The resulting program is then passed to any SC program amalys

The first two steps guide the program transformation of tlvel tstep, in order to
reduce the overhead for subsequent verification. As ourrgrpats confirm (Sec. 5),
we drastically improve verification performance over instenting all instructions.

4.2 Abstract event structures

As described in Sec. 3, we can choose to delay only one padritieal cycle. To do so,

all critical cycles need to be identified first. Sec. 2 defingdes over events and event
structures, which use concrete addresses and values, @ahddirespond to concrete
execution traces. As the enumeration of all traces is iitfeEgave compute a conser-
vative, over-approximate set of possible cycles usingcstatalysis. In this program
analysis we introducabstract eventswhich summarise all concrete events that have
the same process identifier, program counter, directiomzrdory address. We extend
the definition of event structure @bstract event structuresvhich are identical except
that they use abstract events.

Software Verification for Weak Memory via Program Transfation 13

Statements to abstract even&ie derivation of an abstract event structure from a non-
branching multi-threaded program is straight-forward.€ach thread, decompose each
statement into abstract events, extracting all writes adseof shared memory. For
an assignment to a location designated by a pointer variablesider the example
*(&+z) = y;, where&x denotes the address wfand+*p the value held at ad-
dressp. We first ready, then readz and finally we write to the object pointed to by
&x+z, which is determined using an alias analysi§the precision of the alias anal-
ysis is insufficient to determine the object, we assume thiatvirite can target any of
the objects in the program.

1voidx threadl (voidx) {
2 int rl: Wx Wy

3 X =2 J AL N
— \y- / \
4 1L =y; po, v \po
5 Y= 2: S !
1 \\4 . / t/
o} Ry Rz
7void« thread2 (void*) { , I N
g int r2, r3; / K !
o y=1; PO com/ ~com PO
0 2 =2; N . N
u r3 =x; Wy Rx
2}

Figure 8. The program on the left contains ah cycle (cf. Fig. 1). We build the abstract event
graph in the middle, and indeed detect the cycle in the graplthe right.

Abstract event graphin order to devise SC cycles that become critical cycles on a
weaker architecture, we look for cyclesvirs U fr U rf U po (definition of SC, [5, Thm.

3]). Abstract events in each thread are ordered by progralergo, which we derive

as described below. As we do not use concrete values, we demyer-approximations

of the relationwvs, rf andfr. We further abstract from directed edges and use undirected
edges in these over-approximations. We call the abstracttestructure equipped with
over-approximations ofvs, rf andfr an abstract event grapiWe compute the over-
approximations as follows:

— the internalf, fr andws pairs (relating two events on the same thread) are already
covered bypo edges;

— the externatf, fr andws pairs (relating two events from different threads) are ab-
stracted by undirected external communications, denogezbn, and relate any
pair of write-read, read-write or write-write between twistthct threads.

Fig. 8 depicts this first step in the middle, which is the résglabstract event graph of
the program shown on the left-hand side. A concretisatiathefabstract event graph
may Yield critical cycles. Fig. 8 shows an example of a aitizycle on the right-hand

5 The alias analysis we use is known to be sound for the wealktectires we consider [6].

14 Jade Alglave, Daniel Kroening, Vincent Nimal, and Midhgautschnig

side. Whether this cycle can be fully concretised to an etk@cwitness, filling in
concrete values in all abstract events, is left as task tgifioaion back end.

Control flow To build an abstract event graph for branching programs,omsider the
if-then-else branches, loops and function calls. Funsti@m analysed as if they were
inlined, thus recursion is not handled. For if-then-efs®,jn the abstract event graph
follows both of the branches separately, and then joinseaetit of the condition. For
loops or backward jumps and given a péif,y) € po, the back-edge may render
reachable frony as well. We thus include copies ofandy in the abstract event graph,
such that(y,) in po if such a back-edge exists. By [7] it suffices to use a singf®/co
as a critical cycle does not require more than two eventsagrnam order per thread.

The analysis proceeds in a forward manner along the cofitrelgraph of a given
program. For each statement recorded in a node of the cdiavobraph, the abstract
events are computed. When preserved program order is dafiaetp (cf. Sec. 2),
possible dependencies between abstract events are rdazrdes|l.

4.3 Detecting critical cycles

Given the abstract event graph of a program, we need to cenapubver-approximate
set of critical cycles. To increase scalability of this prdare, we first identify all
strongly connected components (SCCs) in the graph usifanisd 972 algorithm [27],
which is linear in the size of the abstract event graph. Thedti®n of critical cycles
can then be performed in parallel and independently for &&@, as no cycle can span
multiple SCCs. The SCCs also offer first insights about treg@m under test: two
distinct SCCs will refer to two parts of the code that are petedently accessing and
updating shared memory.

Detecting all the critical cycles in an SCOur cycle computation is based on Tarjan’s
1973 algorithm [28]. The abstract event graph, howevers et encode the transitive
closure ofpo. Thus, we first extraatandidate cycledy picking at most two abstract
events per thread, which are guaranteed to be (transitilieked by program order.
For each candidate cycle we then perform additional filtgras such a cycle need not
be critical: a candidate is guaranteed tono¢critical if it does not contain anynsafe
pair for the given architecture, or is a cycleumiprocor thin-air. All of these checks
need to be performed a-posteriori for a complete cycle.

Tarjan’s original algorithm is worst-case exponentialie humber of vertices (ab-
stract events), and our subsequent filtering adds additmmaplexity. To deal with
this complexity, we soundly limit the exploration using pesties of critical cycles,
such as all program-order pairs per address in a criticdédy®ing one of write-write,
read-write, write-read or read-write-read [4].

4.4 Selecting and instrumenting delay pairs

The above cycle detection yields candidates for unsafes pdiabstract events to be
delayed in each cycle. Following Sec. 3.4, we instrumentpaieto delay per cycle.

Software Verification for Weak Memory via Program Transfation 15

We may select these pairs arbitrarily, but we describe balexighted instrumentation
that decidedly reduces verification time, as we show in Sec. 5

We first normalise the program such that all shared memorgsses appear in
assignments only; any reads in branching conditions ortfomcall parameters are
moved to temporary variables as followi$: (¢(x)) ...; — tmp =g¢(x); if (tmp) ...; for
an expressiorp over a shared memory addressin the following, we thus restrict
ourselves to assignment statements.

For each memory addressof events in unsafe pairs we introduce an argy).
In addition to the properties described in Sec. 3.1, we aspkrack of the originating
thread of the write tor. We introduce an additional pointer for each local variable
reading from a shared memory address, i.e: anch that- = ;. In a pair to delay, in
one of the critical cycles or after, we equipwith a pointerrs(r), which implements
the read set of Sec. 3.1. We now describe the instrumentefiarites, then reads.
To soundly over-approximate all possible behaviours,ratrumented operations are
guarded byif (x), expressing non-deterministic choice.

Instrumenting writesWe implement here the two operations associated to the weak-
memory effects of a writev, as defined in Sec. 3.1: (1) delaying a wriléw(w)), by
appending to the buffer, and (2) flushing a writey (w)), removing it from the buffer.

A delayed write amounts to appending an element to the array:

x = smthg; — if (x) b(x).push(smthg,thread.numbee)sex = smthg;

According to Sec. 3.1, each delay is accompanied by a flughh¥g@oint in time when
the flush happens is not determined. We would thus need to@ddeterministic flush
instructions at each statement in the program. This tramsftion would make the pro-
gram highly non-deterministic, and very hard for a modebgieeto analyse. Therefore,
we insert flushes only where they might have an effect, i.Barbeeach potential read
from the address that was written to, and make them flush adeterministic number
of writes in FIFO-manner. The functidakeimplements the semantics of “write from
buffer to memory” of Fig. 3 on C arrays for a non-determimistumber of elements,
and returns the resulting in-memory value at addsess

smthg = Xx; — if (x) X = b(z).take(thread.number); smthg = x;

Instrumenting readsHere we are to implement the two operations for reads: detayi
areadl(r(w,r)) and reading from the seftir(w, r)). We delay a read by recording the
memory address to be read from. Note that, given our progcamatisation, our reads

manifest as assignments to local variables. For a locahbkmil, we delay the read of

x as follows:

rl = x; — if(x) rs(rl) = &x; elserl = x;

For flushing the read, considerations analogous to the waise are made: we flush
non-deterministically upon an actual read (therrgfonly, instead of every program
point. The flush dereferences the address previously redord

r2 =rl; —if(rs(rl) '=0 && =) { r1 =*rs(rl); rs(rl) =0;} r2 =rl;

16 Jade Alglave, Daniel Kroening, Vincent Nimal, and Midhgautschnig

Input: the edges to instrumeti, the cycle”;

Problem: minimise} . d(e:) *

;:}.:’rge, Zeiecij x; >= 1 (ensures soundness)

e; is a pair to potentially instrument,

x; is a Boolean variable stating whether we instrumgnt
andd() is the cost of an instrumentation.

Output: thex;, stating which pairs to instrument

Figure 9. Mixed integer programming problem to choose the pairs trunsent

4.5 Weighted selection of unsafe pairs

Above, we selected an arbitrary unsafe pair per cycle, asdhifices to reveal all
weak-memory effects (cf. Sec. 3). We do observe, howevat,ttte choice of pairs
has a strong effect on verification time. We thus assign anirezally devised cost
to candidate pairs. With our implementation, we chd§@oW*)=1 (pairs in program
order where the first event is a write){poRW)=2 (read-write pairs in program order),
d(rfe)=2 (write-read pairs on different threadd]poRR)=3 (read-read pairs in program
order). Given a sek of pairs to delay in the graph with critical cyclé€, we solve the
mixed integer programming problem of Fig. 9. Our experirsshibw that this encoding
yields a speedup of 26% over all architectures with an SC eedmodel-checker.

5 Experimental Results

We exercised our method and measured its cost igsiagls. We considerefl ANSI-C
model checkers: a bounded model checker based on CBMC; SaaAlerifier based
on predicate abstraction, using Boom as the model checkénéoBoolean program;
ESBMC, a bounded model checker; Threader, a thread-modetdier; and Poirot,
which implements a context-bounded translation to sedalgmtograms. These tools
cover a broad spectrum of symbolic algorithms for verify®@ programs. We also
experimented with Blender, CheckFence, and MMChecker. &deour experiments
on Linux 2.6.32 64-bit machines with 3.07 GHz (only Poirotswan on a Windows
system). Further details on the results are available omvebrpage.

Validation First, we systematically
validate our setup using55 lit- ?Eﬁg
mus tests exposing weak memory, .. -
artefacts (e.g. instruction reorder- grspuc
ing, store buffering, write atomicity MMChecker
relaxation) in isolation. Thdiy tool Poirot
. SatAbs [
automatically generates x86, Power -~
and ARM assembly programs im-
. . 20 40 60 80 100
plementlng an |d|0m that cannot be Distribution of verification outcomes [%]

reached on SC, but can be reached_.)
. Figure 10. All tools on all litmus tests and models
on a given model. For examplsh

ok
= error/timeout
wrong result
Timeout: 900s

f=

Software Verification for Weak Memory via Program Transfation 17

All pairs

10-! o i
.ol

102 10! 10° 10 107 102 10! 10° 10 107
Weighted Weighted

(a) All accesses [11] vs. weighted selection (b) All pairs vs. weighted selection

Figure 11. Comparison of verification times of CBMC (seconds) for difiet instrumentations

(Fig. 1) exhibits store buffering, thus the final state camdaehed on any weak model,
from TSO to Power.

Each litmus test comes with an assertion that models the 8i&ticin exercised
by the test, e.g. the outcomes of Fig. 1 and 2. Thus, verifgitigmus test amounts
to checking whether the model under scrutiny can reach tkeifigd outcome. We
then convert these tests automatically into C code, leadippyograms ofi8 lines on
average, involvin@ to 4 threads.

These examples provide assurance that we soundly impleéheetiteory of Sec. 3:
we verify each test w.r.t. SC, i.e. without transformatithen w.r.t. TSO, PSO, RMO,
and Power. Despite the tests being small, they provideagithg concurrent idioms to
verify. Fig. 10 compares the tools on all tests and modelsthtmls, with the exception
of Blender, CBMC and SatAbs, time out or give wrong resultsaorast majority of
tests. Blender only expectedly fails on tests involvingsync fences; CBMC and
SatAbs return spurious results irb% of the tests, caused by the over-approximation
in the implementation of our instrumentation.

Fig. 11 compares the verification time using CBMC over athlis families (e.g.
rfe tests exercise store atomicity, podwr tests exerceswitite-read reordering) for dif-
ferent instrumentation options. First, with the restaotto TSO, Fig. 11(a) compares
the instrumentation of all shared memory accesses propngdd] to the weighted
transformation (Sec. 4.5). On average, we observe a more3titafold speedup in
verification time. In addition, the reduced instrumenta@dso yield246 fewer spuri-
ous results. We also quantify the specific benefit of the weilselection of pairs in
Fig. 11(b). We compare the cost of the instrumentation opalfs on critical cycles
with that of the weighted transformation (Sec. 4.5) for afidals, tools and tests. The
average speedup over all models and tests is still more t@pmler of magnitude. We
give the detailed results for all experiments online.

We also verified several TSO examples that have been used litettature (details
are online). Note that these examples in fact only exhiling already covered by our
litmus tests (e.g. Dekker corresponds to sheest of Fig. 1). Furthermore, we applied
the instrumentation to code taken from the Read-Copy-Upalgbrithm in the Linux

18 Jade Alglave, Daniel Kroening, Vincent Nimal, and Midhgautschnig

kernel and scheduling code in the Apache HTTP server, asaséfidustrial code from
IBM. We observe that the instrumentation tool completesyeme such code of up to
28,000 lines in less than 1 second, and in 32 seconds on |BiMs.dVe now study one
real-life example in detail, an excerpt of the relationabtfase software PostgreSQL.

Worker Synchronization in PostgreSQUid 2011, PostgreSQL developers observed
that a regression test occasionally failed on a multi-careé?PC systerfi.The test
implements a protocol passing a token in a ring of procesaasher analysis drew
the attention to an interprocess signalling mechanisnurfted out that the code had
already been subject to an inconclusive discussion in Rt®2

The code in Listing 1 is an inlined version of
1#define WORKERS 2 the problematic code, with an additional asser-
2 volatile _Bool latch [WORKERS]; tion in line 7. Each element of the arrajatch”
s volatile _Bool flag [WORKERS]; is a Boolean variable stored in shared memory
svoid worker(nt 1) to facilitate interprocess communication. Each

o N
Z{ \fl\(/)frnl(e“(). lateh [i1); working process waits to have its latch set and

. { assert (!latch[i]|| flag[i]); then expects to have work to dp (from Iine_9
s latch[i] = 0 onwards). Here, the work consists of passing
o if (flag[i]) around a token via the arrayfldg”. Once the

w { flag[i] = 0; process is done with its work, it passes the to-
1 flag [(i+1)%WORKERS] = 1; ken on (line 11), and sets the latch of the process
12 latch [(i+1)%WORKERS] = 1;} the token was passed to (line 12).

= while(latch[i]); } } Starvation seemingly cannot occur: when a

Listing 1. Token passing in pgsgl.c process is woken up, it has work to do (has
the token). Yet, the PostgreSQL developers ob-
served that the wait in line 13 (which in the original code daibded in time) would
time out, thus signalling starvation of the ring of procasSéhe developers identified
the memory model of the platform as possible culprit: it weslened that the processor
would at times delay the write in line 11 until after the latedd been set.

We transform the code of Listing 1 for two workers under Powée event graphs
show two idiomslb (load buffering) ananp (message passing), in Fig. 12 and 13. The
code fragments on the left-hand side give the correspodidiegnumbers in Listing 1.

Thelb idiom contains the twdf statements controlling the access to both critical
sections. Since thi idiom is yet unimplemented by Power machines (despite being
allowed by the architecture [26]), we believe that this i$ the bug observed by the
PostgreSQL developers. Yet, it might lead to actual bugsituré machines.

In contrast, thenp case is commonly observed on Power machines (e.g. 1.7G/167G
on Power7 [26]). Themp case arises in the PostgreSQL code by the combination of
some writes in the critical section of the first worker, aneldlecess to the critical section
of the second worker; the relevant code lines are in Fig. 13.

We first check the fully transformed code with SatAbs. Aftér3% seconds, SatAbs
provides a counterexample (given online), where we firstatesthe first worker up to
line 13. All accesses are w.r.t. memory, except at lines Hl1&) where the values 0

8 http://archives.postgresq|l.org/pgsql-hackers/208/tr8g00330.php
" http://archives.postgresql.org/pgsql-hackers/200Br$g01575.php

Software Verification for Weak Memory via Program Transfation 19

pgsql (Ib) R flag[0] R flag[1]
Worker 0 Worker 1 < 0 ¢ >
(9)if(flag[0]) (9)if(flag[1]) po po
(11)f 1 ag[1] =1; (11)f 1 ag[0] =1;
Observedf | ag[0] =1; flag[1]=1 W flag[1] W flag[0]
Figure 12. An Ib idiom detected irpgsql . ¢
pgsql (mp) W flag[1] R latch[1]
Worker 0 Worker 1 P g,
(11)f 1 ag[1] =1; (5)while(!latch[1]); po po
(12)1 at ch[1] =1; 9)if(flag[1]) < >
Observed! at ch[1] =1; fl ag[1] =0 W latch[1] R flag[0]

Figure 13. An mp idiom detected ipgsql . ¢

and 1 are stored into the buffers of flag[0] and flag[1]. Thendbcond worker starts,
reading the updated valdeof latch[1]. It exits the blocking while (line 5) and reaches
the assertion. Here, latch[1] still holdsand flag[1] still hold9), as Worker0 has not
yet flushed the write waiting in its buffer. Thus, the corfitiof theif is not true, the
critical section is skipped, and the program arrives atliBewithout having authorised
the next worker to enter the critical section, and loopsvere

As mp can arise on Power e.g. because of non-atomic writes, we kyd®ec. 3.4
that we only need to transform omie pair of the cycle, and relaunch the verification.
SatAbs spends 1.29 seconds to check it (and finds a countepéxas previously).

PostgreSQL developers discussed fixes, but only committeohents to the code
base, as it remained unclear whether the intended fixes \peregriate. We proposed
a provably correct patch solving bdthandmp. After discussion with the developérs
we improved it to meet the developers’ desire to maintainciimeent API. The final
patch introduces twbwsync barriers: after line 8 and before line 12.

6 Conclusion

We have presented a provably sound method to verify contisadtware w.r.t. weak
memory. Our contribution allows to lift SC methods and tdols wide range of weak
memory models (from x86 to Power), by means of program tcansdtion.

Our approach crucially relies on the definition of a genepierational model equiv-
alent to the axiomatic one of [8]. We do not favour any stylerafdel in particular,
but we highlight the importance of the availability of sealezquivalent mathematical
styles to model semantics as intricate as weak memory. liti@ddperational models
are often the style of choice in the verification communitg @ontribute here to the
vocabulary to tackle the verification problem w.r.t. weakmogy.

Our extensive experiments and in particular the PostgreB@ demonstrate the
practicability of our approach from several different gestives. First, we confirmed
a known bug ihp), and validated the fix proposed by the developers, inctydimeval-
uation of different synchronisation options. Second, wenfban additional idiomll),
which will cause a bug on future Power machines; our fix repiaalready.

8 http://archives.postgresql.org/pgsql-hackers/203/2/8g01506.php

20

Jade Alglave, Daniel Kroening, Vincent Nimal, and Midhgautschnig

References

o Ol w N -

© oo~

10.
11.
12.
13.
14.
15.
16.

17.
18.

19.
20.
21.
22.
23.

24.
25.

26.

27.
28.

20.

http:/research.microsoft.com/en-us/projectsfbir

. Abdulla, P., Atig, M.F., Chen, Y., Leonardsson, C., ReziA.: Counter-example guided

fence insertion under TSO. In: TACAS (2012)

. Adve, S.V,, Gharachorloo, K.: Shared Memory Consistéviogels: A Tutorial. [IEEE Com-

puter 29, 66—76 (1995)

. Alglave, J.: A Shared Memory Poetics. Ph.D. thesis, Usite Paris 7 and INRIA (2010)
. Alglave, J.: A Formal Hierarchy of Weak Memory Models. FMSD (2012)
. Alglave, J., Kroening, D., Lugton, J., Nimal, V., Tautsgp M.: Soundness of data flow

analyses for weak memory models. In: APLAS (2011)

. Alglave, J., Maranget, L.: Stability in weak memory madéh: CAV (2011)
. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Feiit&¥eak Memory Models. In: CAV

(2010)

. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, MOn the verification problem for

weak memory models. In: POPL (2010)

Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi,.MNhat's decidable about weak
memory models? In: ESOP (2012)

Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid ofose-buffers in the analysis of weak
memory models. In: CAV (2011)

Bouajjani, A., Meyer, R., Moehlmann, E.: Deciding rolmess against total store ordering.
In: ICALP (2011)

Burckhardt, S., Alur, R., Martin, M.K.: Checkfence: €hking consistency of concurrent
data types on relaxed memory models. In: PLDI (2007)

Cordeiro, L., Fischer, B.: Verifying multi-threadedftseare using SMT-based context-
bounded model checking. In: ICSE. pp. 331-340. ACM (2011)

Donaldson, A., Kaiser, A., Kroening, D., Wahl, T.: Symmeaware predicate abstraction
for shared-variable concurrent programs. In: CAV (2011)

Gupta, A., Popeea, C., Rybalchenko, A.: Threader: Atcains$-based verifier for multi-
threaded programs. In: CAV (2011)

Huynh, T., Roychoudhury, A.: A memory model sensitiveakter for C#. In: FM (2006)
Jin, H., Yavuz-Kahveci, T., Sanders, B.A.: Java memoogleh-aware model checking. In:
TACAS (2012)

Kuperstein, M., Vechev, M., Yahav, E.: Automatic infiece of memory fences. In: FMCAD
(2010)

Kuperstein, M., Vechev, M., Yahay, E.: Partial-CohegeAbstractions for Relaxed Memory
Models. In: PLDI (2011)

Lamport, L.: How to Make a Correct Multiprocess Prograredtite Correctly on a Multi-
processor. IEEE Trans. Comput. 46(7), 779-782 (1979)

Linden, A., P.Wolper: A verification-based approach tnmry fence insertion in relaxed
memory systems. In: SPIN (2011)

Owens, S.: Reasoning about the Implementation of Cosecy Abstractions on x86-TSO.
In: ECOOP (2010)

Owens, S., Sarkar, S., Sewell, P.: A better x86 memoryeting86-TSO. In: TPHOL (2009)
Park, S., Dill, D.: An executable specification, anatyaed verifier for RMO. In: SPAA
(1995)

Sarkar, S., Sewell, P., Alglave, J., Maranget, L., \Afitis, D.: Understanding Power multi-
processors. In: PLDI (2011)

Tarjan, R.: Depth-first search and linear graph algm&thSIAM J. Comput. (1972)

Tarjan, R.: Enumeration of the elementary circuits ofraaied graph. SIAM J. Comput.
(2973)

Yang, Y., Gopalakrishnan, G., Lindstrom, G.: Memory elcgensitive data race analysis.
In: ICFEM (2004)

