
Partial Orders for Efficient Bounded Model
Checking of Concurrent Software?

Jade Alglave1, Daniel Kroening2, and Michael Tautschnig3

1 University College London
2 University of Oxford

3 Queen Mary, University of London

Abstract. The number of interleavings of a concurrent program makes
automatic analysis of such software very hard. Modern multiprocessors’
execution models make this problem even harder. Modelling program
executions with partial orders rather than interleavings addresses both
issues: we obtain an efficient encoding into integer difference logic for
bounded model checking that enables first-time formal verification of
deployed concurrent systems code. We implemented the encoding in the
CBMC tool and present experiments over a wide range of memory mod-
els, including SC, Intel x86 and IBM Power. Our experiments include core
parts of PostgreSQL, the Linux kernel and the Apache HTTP server.

1 Introduction

Automatic analysis of concurrent programs is a challenge in practice. Hardly any
of the very few existing tools for software of this kind will prove safety proper-
ties for a thousand lines of code [14]. Most papers name the number of thread
interleavings of a concurrent program as a reason for the difficulty. This view
presupposes an execution model, i.e., Sequential Consistency (SC) [25], where
an execution is a total order (more precisely an interleaving) of the instructions
from different threads. This execution model poses at least two problems.

First, the large number of interleavings modelling the executions of a pro-
gram makes their enumeration intractable. Context bounded methods [31, 23]
(unsound in general) and partial order reduction [29, 17] can reduce the number
of interleavings to consider, but still suffer from limited scalability.

Second, modern multiprocessors (e.g., Intel x86 or IBM Power) serve as a
reminder that SC is an inappropriate model. Indeed, the weak memory models
implemented by these chips allow more behaviours than SC. For example, a
processor can commit a write first to a store buffer, then to a cache, and finally
to memory. While the write is in transit through buffers and caches, a read can
occur before the value is actually available to all processors from the memory.

We address both issues by using partial orders to model executions, an es-
tablished theoretical tradition [30, 36, 6]. We aim at bug finding and practical

? Supported by SRC/2269.002, EPSRC/H017585/1, EU FP7 STREP PINCETTE,
ARTEMIS/VeTeSS, and ERC/280053.

verification of concurrent programs [11, 23, 13] – where partial orders have hardly
ever been considered. Notable exceptions are [33, 34] (but we do not have access
to an implementation), forming with [10] the closest related work. We show that
the explicit use of partial orders generalises these works to concurrency at large,
from SC to weak memory. On the technical side, partial orders permit a dras-
tic reduction of the formula size over the use of total orders. Our experiments
confirm that this reduction is desirable, as it increases scalability by lowering
the memory footprint. Furthermore our experiments show, contrasting folklore
belief, that the verification time is hardly affected by the choice of memory model.

We emphasise that we study hardware memory models as opposed to soft-
ware ones. We believe that verification of concurrent software is still bound to
hardware models. Indeed, concurrent systems software is racy on purpose (see
our experiments in Sec. 5). Yet, software memory models either banish or give
an undefined semantics to racy programs [27, 8]. Thus, to give a semantics to
concurrent programs, we lift the hardware models to the software level.

In addition to the immediate support of weak memory models, we find that
partial orders permit a very natural and non-intrusive extension of bounded
model checking (BMC) of software to concurrent programs: SAT- and SMT-
based BMC builds a formula that describes the data and control flow of a pro-
gram. For concurrent programs, we do so for each thread of the program. We add
a conjunct that describes the concurrent executions of these threads as partial
orders. We prove that for any satisfying assignment of this formula there is a
valid execution w.r.t. our memory models; and conversely, any valid execution
gives rise to a satisfying assignment of the formula. We impose no additional
bound on context switches, and SC is merely a particular case of our method.

To experiment with our approach, we implement a symbolic decision proce-
dure for partial orders in CBMC [12], enabling BMC of concurrent C programs
w.r.t. a given memory model for systems code. For SC, we show the efficiency and
competitiveness of our approach on the benchmarks of the TACAS 2013 software
verification competition [7]. We furthermore support a wide range of weak mem-
ory models, including Intel x86 and IBM Power. To exercise our tool on these
models, we prove and disprove safety properties in more than 5800 loop-free lit-
mus tests previously used to validate formal models against IBM Power chips [32,
26]. Our tool is the first to handle the subtle store atomicity relaxation [1] specific
to Power and ARM. We furthermore perform first-time verification of core com-
ponents of systems software. We show that mutual exclusion is not violated in a
queue mechanism of the Apache HTTP server software. We confirm a bug in the
worker synchronisation mechanism in PostgreSQL, and that adding two fences
fixes the problem. We show that the Read-Copy-Update (RCU) mechanism of
the Linux kernel preserves data consistency of the object it is protecting. For all
examples we perform the analysis for SC, Intel x86, as well as IBM Power. For
each of the systems examples we either succeed in bug finding (for PostgreSQL)
or can soundly limit the number of loop iterations required to show the desired
property using BMC (RCU is loop-free and the loop in Apache is stateless).

We provide the sources of our tool, our benchmarks and log files, and a long
version [3] of the paper, with proof sketches, at http://www.cprover.org/wmm.

2

P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

Allowed? r1=0; r2=0

(a) Wx1

(b) Ry0

(c) Wy1

(d) Rx0

po
fr

po
fr

Fig. 1. Store Buffering (sb)

P0 P1 P2 P3

(a) r1← x (c) r3← y (e) x← 1 (f) y← 1

(b) r2← y (d) r4← x

Allowed? r1=1; r2=0; r3=1; r4=0;

(a) Rx1

(b) Ry0

(c) Ry1

(d) Rx0

(e) Wx1 (f) Wy1

po po

rf

fr

rf

fr

Fig. 2. Independent Reads of Independent Writes (iriw)

2 Executions as Partial Orders

Our symbolic decision procedure builds on the framework of [4], which was origi-
nally conceived to model weak memory semantics. Relations over read and write
memory events are at the core of this framework.

We introduce this framework on litmus tests, as shown in Fig. 1. On the
left-hand side we show a multi-threaded program. The shared variables x and
y are initialised to zero. A store (e.g., x ← 1 on P0) gives rise to a write event
((a) Wx1), and a load (e.g., r1 ← y on P0) to a read event ((b) Ry0). The
property of interest is whether there exists an execution of the program such that
the final state is r1=0 and r2=0. To determine this, we study the event graph,
given on the right-hand side of the figure. An architecture allows an execution
when it represents an order of all events consistent across all processors. We call
this order global happens before. A cycle in an event graph is a violation thereof.

For memory models weaker than SC, the architecture possibly relaxes some
of the relations contributing to this cycle. Such a relaxation makes the graph
acyclic, which implies that the architecture allows the final state. In SC, nothing
is relaxed, thus the cycle in Fig. 1 forbids the execution. Intel x86 relaxes the
program order (po in Fig. 1) between writes and reads, thus the forbidding cycle
no longer exists, and the given final state is observed.

Formalisation An event is a read or a write memory access, composed of a
unique identifier, a direction (R for read or W for write), a memory address,
and a value. We represent each instruction by the events it issues. In Fig. 2, we
associate the store x← 1 on processor P2 with the event (e) Wx1.

The set of events E and program order, po, form an event structure4 E ,
(E, po); po is a per-processor total order over E. We write dp ⊆ po for the relation
modelling dependencies between instructions, e.g., an address dependency occurs
when computing an address to access from the value of a preceding load.

4 We use this term to remain consistent with [4], but note that it differs from
G. Winskel’s event structures [36].

3

We represent the communication between processors leading to the final state
via an execution witness X , (ws, rf), which consists of two relations over events.
First, the write serialisation ws is a per-address total order on writes which
models the memory coherence widely assumed by modern architectures. It links
a write w to any write w′ to the same address that hits the memory after w.
Second, the read-from relation rf links a write w to a read r s.t. r reads the value
written by w. We distinguish the internal read-from rfi (between events on the
same processor) from the external rfe (between events on distinct processors).

Given a pair of writes (w0, w1) ∈ ws s.t. (w0, r) ∈ rf, we have w0 globally
happening before w1 by ws and r reading from w0 by rf. To ensure that r does
not read from w1, we impose that r globally happens before w1 in the from-
read relation fr from ws and rf. A read r is in fr with a write w1 when the
write w0 from which r reads hit the memory before w1 did. Formally, we have:
(r, w1) ∈ fr , ∃w0, (w0, r) ∈ rf ∧ (w0, w1) ∈ ws.

In Fig. 2, the final state corresponds to the execution on the right if each
memory location initially holds 0. If r1=1 in the end, the read (a) obtained its
value from the write (e) on P2, hence (e, a) ∈ rf. If r2=0 in the end, the read (b)
obtained its value from the initial state, thus before the write (f) on P3, hence
(b, f) ∈ fr. Similarly, we have (f, c) ∈ rf from r3=1, and (d, e) ∈ fr from r4=0.

Relaxed or safe We model weak memory effects by relaxing subrelations of pro-
gram order or read-from. Thereby [4] provably embraces several models: SC [25],
Sun TSO (i.e., x86 [28]), PSO and RMO, Alpha, and a fragment of Power.

We model reads occurring in advance, as described in the introduction, by
subrelations of the read-from rf being relaxed, i.e., not included in global hap-
pens before. When a processor can read from its own store buffer [1] (the typical
TSO/x86 scenario), we relax the internal read-from rfi. When two processors P0

and P1 can communicate privately via a cache (a case of write atomicity relax-
ation [1]), we relax the external read-from rfe, and call the corresponding write
non-atomic. This is a particularity of Power or ARM, and cannot happen on
TSO/x86. Some program-order pairs may be relaxed by an architecture (defined
below) A (e.g., write-read pairs on x86, and all but dp ones on Power), i.e., only
a subset of po is guaranteed to occur in this order. This subset is the preserved
program order, ppoA. When a relation may not be relaxed, we call it safe.

An architecture A may provide fence (or barrier) instructions to prevent
non-SC behaviours. Following [4], the relation fenceA ⊆ po induced by a fence
is non-cumulative when it only orders certain pairs of events surrounding the
fence, i.e., fenceA is safe. The relation fenceA is cumulative when it makes writes
atomic, e.g., by flushing caches. This amounts to making sequences of external
read-from and fences (rfe; fenceA or fenceA; rfe) safe, even though rfe alone would
not be safe for A. We denote the union of fenceA and additional cumulativity
by abA.

Architectures An architecture A determines which relations are safe, i.e., em-
bedded in global happens before. Following [4], we always consider the write
serialisation ws and the from-read relation fr safe. We denote the safe subset of
read-from, i.e., the read-from relation globally agreed on by all processors, by

4

grfA. SC relaxes nothing, i.e., rf and po are safe. TSO authorises the reordering of
write-read pairs and store buffering but nothing else. Fences are safe by design.

Finally, an execution (E,X) is valid on A when three conditions hold: 1. SC
holds per address, i.e., communication and program order for accesses with same
address po-loc are compatible: uniproc(E,X) , acyclic(ws ∪ rf ∪ fr ∪ po-loc).
2. Values do not come out of thin air, i.e., there is no causal loop: thin(E,X) ,
acyclic(rf ∪ dp). 3. There exists a linearisation of events in global happens before,
i.e., ghbA(E,X) , ws ∪ grfA ∪fr ∪ ppoA ∪ abA does not form a cycle. Formally:

validA(E,X) , uniproc(E,X) ∧ thin(E,X) ∧ acyclic(ghbA(E,X))

From the validity of executions we deduce a comparison of architectures: We
say that an architecture A2 is stronger than another one A1 when the executions
valid on A2 are valid on A1. Equivalently we would say that A1 is weaker than A2.
Thus, SC is stronger than any other architecture discussed above.

3 Symbolic Event Structures

For an architecture A and one execution witness X, the framework of Sec. 2
determines whether X is valid on A. To prove safety properties of programs,
however, we need to reason about all possible executions of the program. To do
so efficiently, we use symbolic representations capturing all possible executions
in a single constraint system. We then apply SAT or SMT solvers to decide
whether a valid execution exists for A, and, if so, get a satisfying assignment
corresponding to an execution witness. If no such satisfying assignment exists,
the program is proved safe for the given loop unwinding depth.

As said in Sec. 1, we build two conjuncts. The first one, ssa, represents the
data and control flow per thread. The second, pord, captures the communica-
tions between threads (cf. Sec. 4). We include a reachability property in ssa; the
program has a valid execution violating the property iff ssa ∧ pord is satisfiable.

We mostly use static single assignment form (SSA) of the input program to
build ssa (cf. [21] for details), as common in symbolic execution and bounded
model checking. In our SSA variant, each equation is augmented with a guard :
the guard is the disjunction over all conjunctions of branching guards on paths to

main P0 P1 P2 P3
x0 = 0
∧ y0 = 0 ∧ r110 = x1 ∧ r320 = y2 ∧ x3 = 1 ∧ y3 = 1

∧ r210 = y1 ∧ r420 = x2∧ prop

(i0)Wxx0
(i1)Wyy0

(a) Rxx1 (c) Ryy2 (e) Wxx3 (f) Wyy3
(b) Ryy1 (d) Rxx2

Fig. 3. The formula ssa for iriw (Fig. 2) with prop = (r11
0 =

1 ∧ r21
0 = 0 ∧ r32

0 = 1 ∧ r42
0 = 0), and its ses (guards omitted

since all true)

the assignment. To
counter exponential-
sized guards, control-
flow join points re-
sult in simplified
guards. To deal with
concurrency, we use
a fresh index for
each occurrence of a
given shared mem-
ory variable, result-
ing in a fresh sym-
bol in the formula.

5

We add additional equality constraints (cf. Sec. 4.2) to pord to subsequently
constrain these. CheckFence [10] and [33, 34] use a similar encoding.

Together with ssa, we build a symbolic event structure (ses), which captures
program information needed to build the second conjunct pord in Sec. 4. Fig. 3
illustrates this section: the formula ssa on top corresponds to the ses beneath.

The top of Fig. 3 gives ssa for Fig. 2. We print a column per thread, vertically
following the control flow, but it forms a single conjunction. Each program vari-
able carries its SSA index as a subscript. Each occurrence of the shared memory
variables x and y has a unique SSA index. Here we omit the guards, as this
program neither uses branching nor loops.

From SSA to symbolic event structures A symbolic event structure (ses) γ ,
(S, po) is a set S of symbolic events and a symbolic program order po. A symbolic
event holds a symbolic value instead of a concrete one as in Sec. 2. We define
g(e) to be the Boolean guard of a symbolic event e, which corresponds to the
guard of the SSA equation as introduced above. We use these guards to build
the executions of Sec. 2: a guard evaluates to true if the branch is taken, false
otherwise. The symbolic program order po(γ) gives a list of symbolic events per
thread of the program. The order of two events in po(γ) gives the program order
in a concrete execution if both guards are true.

We build the ses γ alongside the SSA form, as follows. Each occurrence of
a shared program variable on the right-hand side of an assignment becomes a
symbolic read, with the SSA-indexed variable as symbolic value, and the guard
is taken from the SSA equation. Similarly, each occurrence of a shared program
variable on the left-hand side becomes a symbolic write. Fences do not affect
memory states in a sequential setting, hence do not appear in SSA equations.
We simply add a fence event to the ses when we see a fence. We take the order
of assignments per thread as program order, and mark thread spawn points.

At the bottom of Fig. 3, we give the ses of iriw. Each column represents the
symbolic program order, per thread. We use the same notation as for the events
of Sec. 2, but values are SSA symbols. Guards are omitted again. We depict the
thread spawn events by starting the program order in the appropriate row.

From symbolic to concrete event structures To relate to the models of Sec. 2, we
concretise symbolic events. A model V of ssa ∧ pord, as computed by a satisfia-
bility solver, induces, for each symbolic event, a concrete value (if it is a read or
a write) and a valuation of its guard (for both accesses and fences).

The concretisation of a set S of symbolic events is a set E of concrete events,
as in Sec. 2, s.t. for each e ∈ E there is a symbolic version es in S. We concretise
a symbolic relation similarly. Given an ses γ, conc(γ,V) is the event structure
whose set of events is the concretisation of the events of γ w.r.t. V, and whose
program order is the concretisation of po(γ) w.r.t. V. For example, the graph of
Fig. 2 (erasing the rf and fr relations) concretises the ses of iriw (cf. Fig. 3).

4 Symbolic Decision Procedure for Partial Orders

For an architecture A and an ses γ, we need to represent the communications
(i.e., rf,ws and fr) and the weak memory relations (i.e., ppoA, grfA and abA) of

6

Sec. 2. We encode them as a formula pord s.t. ssa∧ pord is satisfiable iff there is
an execution valid on A violating the property encoded in ssa. We first describe
how we encode partial orders in general, and then discuss the construction and
optimisations for each of the above partial orders: the key challenge is to avoid
transitive closures in order to obtain a small number of constraints.

4.1 Symbolic Representation of Partial Orders

We associate each symbolic event x of an ses γ with a unique clock variable clockx
(cf. [24, 33]) ranging over the naturals. For two events x and y, we define the
Boolean clock constraint as cxy , (g(x) ∧ g(y))⇒ clockx < clocky (“<” being
the usual order on natural numbers). We encode a relation r over the symbolic
events of γ as the formula φ(r) defined as the conjunction of the clock constraints
cxy for all (x, y) ∈ r, i.e., φ(r) ,

∧
(x,y)∈r cxy. The formula φ(r1 ∪ r2) is equivalent

to φ(r1)∧φ(r2). Thus we encode unions of relations (e.g., ghbA) as the conjunction
of their respective encodings.

Let C be a valuation of the clocks of γ. Let V be a valuation of the formula
ssa associated to γ. One can show that (C,V) satisfies φ(r) iff the concretisation
of r w.r.t. V is acyclic, provided that this relation has finite prefixes.

Overview We first present our approach on iriw (Fig. 2) and its ses

ci0i1 (ppo P0) cab (ppo P1) ccd(ppo main)
(si0a ⇒ x1 = x0) ∧ (si0d ⇒ x2 = x0)∧(rf-val x)
(sea ⇒ x1 = x3) ∧ (sed ⇒ x2 = x3)
(si0a ⇒ ci0a) ∧ (sea ⇒ cea)∧(rf-grf x)
(si0d ⇒ ci0d) ∧ (sed ⇒ ced)
(si0a ∨ sea) ∧ (si0d ∨ sed)(rf-some x)
¬ci0e ⇒ cei0(ws x)

((si0a ∧ ci0e)⇒ cae) ∧ ((si0d ∧ ci0e)⇒ cde)∧(fr x)
((sea ∧ cei0)⇒ cai0) ∧ ((sed ∧ cei0)⇒ cdi0)

Fig. 4. Partial order constraints for x in Fig. 2 on SC

γ (Fig. 3), and give
the construction of
constraints for this
example. The algo-
rithms implementing
the general case for
each of the relations
are presented in the
extended version of
this paper [3], which
also includes proofs of
correctness for each of the algorithms.

In Fig. 2, we represent only one possible execution, namely the one corre-
sponding to the (non-SC) final state of the test. In this section, we generate
constraints representing all the executions of iriw on a given architecture. We
give these constraints, for the address x in Fig. 4 in the SC case (for brevity we
skip y, analogous to x). As we explain below in detail, weakening the architec-
ture removes some constraints: for example, for Power, we do not include the
(rf-grf) and (ppo) constraints. For TSO, all constraints are the same as for SC.

Each symbol cab of Fig. 4 is a clock constraint, as introduced in Sec. 4.1
above, and thus represents an ordering between the events a and b. A variable
swr represents a read-from between the write w and the read r.

The constraints of Fig. 4 first represent the preserved program order, e.g., on
SC or TSO the read-read pairs (a, b) on P0 (ppo P0) and (c, d) on P1 (ppo P1),
but nothing on Power. We generate constraints for the read-from, for example
(rf-some x); the first conjunct si0a ∨ sea concerns the read a on P0. This means

7

that a can read either from the initial write i0 or from the write e on P2. The
selected read-from pair also implies equalities of the values written and read
(rf-val x): for instance, si0a implies that x1 equals the initialisation x0. The
architecture-independent constraints for write serialisation and from-read are
specified as (ws x) and (fr x); (ws y) and (fr y) are analogous. As there are no
fences in iriw, we do not generate any memory fence constraints.

Valid Executions We represent the execution of Fig. 2 as follows. For (e, a) and
(i0, d) ∈ grfA, we have the constraint sea ⇒ cea and si0d ⇒ ci0d in (rf-grf x). This
means that a reads from e (as witnessed by sea), and that we record that e is
ordered before a in grfA (as witnessed by cea); idem for d and i0. The constraint
(si0d ∧ ci0e)⇒ cde in (fr x) represents (d, e) ∈ fr. It reads “if d reads from i0 and
i0 is ordered before e (in ws, because i0 and e are two writes to x), then d is
ordered before e (in fr).” Together with (ppo P0) and (ppo P1), these constraints
represent the execution in Fig. 2. We cannot find a satisfying assignment of these
constraints, as this leads to both a before b (by (ppo P0)) and b before a (by (fr
y), (rf-grf y), (ppo P1), (fr x) and (grf x)). On Power, however, we neither have
the ppo nor the grf constraints, hence we can find a satisfying assignment.

4.2 Encoding the Axiomatic Memory Model

We now present a systematic account of the encoding of partial orders required
for global happens before, as defined in Sec. 2. The constraints for uniproc and
thin are only added when not redundant with ghb for a given architecture. When
required, their construction follows the same rules as defined for ghb below, but
the constraints use distinct sets of clock variables.

Preserved Program Order As described in Sec. 3, symbolic execution, including
loop unrolling, yields lists of symbolic events per thread gathered in po(γ). We
encode the required ppoA via clock constraints derived from po(γ) in the set
Cppo. Let S ∈ po(γ) be a list of events of some thread. We require for any events
e1, e2 ∈ S in this order in S, a clock constraint ce1e2 to appear in Cppo when:

1. (e1, e2) is safe for the architecture A. This test is architecture-specific. For
SC, all pairs are safe. IBM Power only guarantees instruction dependencies
to be respected, i.e., ce1e2 ∈ Cppo iff (e1, e2) ∈ dp.

2. There is a control-flow path from e1 to e2. This avoids adding clock con-
straints that are trivially satisfied. Such a case arises when their precondition
g(e1) ∧ g(e2) is false, i.e., the guards cannot both be true.

3. The constraint ce1e2 is not in the transitive closure of Cppo. Consider an event
e3 s.t. ce1e2 , ce2e3 ∈ Cppo. If all three events share the same guards, i.e., stem
from the same control-flow branch, the constraint ce1e3 is redundant, as it is
in the transitive closure of existing constraints. This is an optimisation.

For the ses γ of iriw, we have po(γ) = {[i0, i1], [a, b], [c, d], [e], [f]}. Given an
architecture, we thus build the set Cppo as follows: IBM Power only maintains
dependencies, which do not exist for the instructions of iriw. Thus Cppo is empty.
RMO relaxes read-read pairs, resulting in Cppo = {ci0i1}. For PSO and stronger
architectures, read-read pairs are maintained, thus the constraints (ppo P0) and
(ppo P1) are added as well.

8

Read-From We encode read-from (resp. safe read-from) as the set of constraints
Crf (resp. Cgrf). Following Sec. 2, we add constraints to Cgrf depending on:
first, the relation being within one thread or between distinct threads; second,
whether A exhibits store buffering, store atomicity relaxation, or both.

The framework of [4] summarised in Sec. 2 follows a post-mortem reasoning
with known fixed values, whereas we need to consider all possible executions.
Thus, in contrast to Sec. 2, we need to take two additional facts into account:

1. For any read r there are several candidate writes w to the same address. For
each such potential pair (w, r) we introduce a free Boolean variable swr. The
set of eligible writes is determined by collecting all writes to the same address
as r, with the exception of writes in program order after r (such writes violate
the uniproc check of Sec. 2). Each candidate pair contributes a constraint
swr ⇒ cwr to Cgrf, if the pair is safe for the selected architecture A.
By Sec. 2, rf maps each read to exactly one write. This would induce an
exactly-one (pigeon hole) constraint over all swr for each read. Such con-
straints can be challenging for CDCL-style SAT solvers; moreover these are
redundant in our case: the exclusivity follows from write serialisation and
from-read (cf. [3]). We thus instead add a disjunction over all swr to Crf.

2. For any pair (w, r) ∈ rf encoded as swr we need to ensure that the guard
of the write w is true as well as equality over values, because our modified
SSA form encoded in ssa has free symbols for each shared memory access.
We add such constraints swr ⇒ g(w) ∧ xw = xr to Crf.

For iriw, Fig. 4 contains the above encoding in (rf-grf x), (rf-some x) and
(rf-val x). For instance, a may read either from the initial write i0 or from the
write e on P2. These possible pairs are encoded in (rf-grf x), and will be added
for all architectures other than Power, which relaxes store atomicity (therefore
Cgrf remains empty on Power). We then enforce that at least one of these read-
from pairs exists via the disjunction in (rf-some x). The selected read-from pair
also implies equalities of the values written and read (rf-val x): for instance, si0a
implies that x1 equals the initialisation x0.

Write Serialisation We encode ws as the set of constraints Cws. By definition,
ws is a total order over writes to a given address. We implement the totality by
ensuring that for two writes w 6= w′ to the same address either cww′ or cw′w

holds, i.e., clockw 6= clockw′ . Note that if (w,w′) ∈ po, then necessarily cww′

must hold by uniproc. For iriw we have writes = {(x, {i0, e}), (y, {i1, f})}, and
the constraint (ws x) for x.

From-Read We encode fr as the set of constraints Cfr. Recall that (r, w) ∈ fr
means ∃w′.(w′, r) ∈ rf∧ (w′, w) ∈ ws. We implement the existential quantifier by
a disjunction:

∨
w′is write(w

′, r) ∈ rf ∧ (w′, w) ∈ ws ⇒ crw ∈ Cfr. Our implemen-
tation expands the disjunction into multiple constraints added to Cfr: for each
write w′ we add a constraint sw′r∧cw′w ⇒ crw to Cfr. Observe that sw′r encodes
(w′, r) ∈ rf, and cw′w encodes (w′, w) ∈ ws.

For iriw and x, we obtain the constraint (fr x), where (si0a ∧ ci0e) ⇒ cae,
reads “if si0a is true (i.e., if a reads from i0), and if ci0e is true (i.e., (i0, e) ∈ ws)
then cae is true (i.e., a is in fr before e).”

9

4.3 Memory Fences and Cumulativity

As noted in Sec. 2, to counter the effects of weak memory models, architectures
provide fence instructions. We collect their encoding the set Cab which will always
be empty on SC. Our implementation supports x86’s mfence and Power’s sync,
lwsync and isync. We handle isync as part of ppoA. We first present x86’s
mfence and Power’s sync, then lwsync.

For the non-cumulative part, a fence orders all events in program order before
the fence instruction with events in program order after the fence (for lwsync

this excludes write-read pairs). A naive encoding thereof results in a quadratic
number of clock constraints for each fence. For cumulativity, a similar concern
applies. To alleviate this, we introduce fence events.

Assume fences between the read-read pairs of P0 and P1 of iriw, and thus
fence events s0 and s1. We then have po(γ) = {[i0, i1], [a, s0, b], [c, s1, d], [e], [f]}.
We will instantiate these fences as sync and lwsync in the following paragraphs
and describe the resulting symbolic encodings.

Fences mfence and sync For all e, s ∈ S for some S ∈ po(γ), with s being a fence
event, we first build constraints for non-cumulativity : if e is before (resp. after)
s in program order, we add ces to Cab (resp. cse).

In iriw with the additional fences mentioned above instantiated with sync,
we generate cas0 (resp. ccs1) for the event a (resp. c) in po before the fence s0
(resp. s1) on P0 (resp. P1). We generate cs0b (resp. cs1d) for b (resp. d), in po
after the fence s0 (resp. s1) on P0 (resp. P1).

If stores are not atomic, we build cumulativity constraints. For A-cumulativity,
we add the constraint swe ⇒ cws, for each (w, e) s.t. e is in po before the fence
s, and e reads from the write w. The constraint reads “if swe is true (i.e., e reads
from w), then cws is true (i.e., there is a global ordering, due to the fence s, from
w to s)”. All other constraints, i.e., the actual ordering of w before some event e′

in po after s, follow by transitivity. We handle B-cumulativity in a similar way.
As Power relaxes store atomicity, the sync fences between the read-read

pairs of iriw create A-cumulativity constraints, namely for s0 (and analogous
ones for s1): (si0a ⇒ ci0s0) ∧ (sea ⇒ ces0). w1

r1

lwsyncr lwsyncw

w2

r2

Fig. 5. lwsync’s constraints

Fence lwsync As lwsync does not order write-read
pairs (cf. Sec. 2), we need to avoid creating a con-
straint cwr between a write w and a read r sepa-
rated by an lwsync. To do so, we use two distinct
clock variables clockrs and clockws for an lwsync s.
This avoids the wrong transitive constraint cwr im-
plied by cws and csr. Fig. 5 illustrates this setup: the
write-read pair (w1, r2) will not be ordered by any
of the constraints, but all other pairs are ordered.

To create a clock constraint, we then pick one or both clock variables, as
follows. If e is a read, the clock constraint is clocke < clockrs when e is before s
(or clockrs < clocke if e is after). If e is a write preceding s, the clock constraint
is clocke < clockws . Finally, if e is a write after s, the clock constraint is the
conjunction (clockws < clocke) ∧ (clockrs < clocke).

10

In iriw, if we use lwsync instead of sync as discussed above, we obtain the
following constraints: (clocka < clockrs0) ∧ (clockrs0 < clockb) ∧ (si0a ⇒ clocki0 <
clockws0)∧(sea ⇒ clocke < clockws0). These constraints will not order the writes i0
or e with the read b, because i0 and e are ordered w.r.t. to clockws0 , but b is only
ordered w.r.t. the distinct clockrs0 . This corresponds to the fact that placing
lwsync fences in iriw does not forbid the non-SC execution.

4.4 Soundness and Completeness of the Encoding

Given an architecture A and a program, the procedure of Sec. 3 and Sec. 4
outputs a formula ssa ∧ pord and an ses γ. This formula provably encodes the
executions of this program valid on A and violating the property encoded in ssa
in a sound and complete way. Proving this requires showing that any assignment
to the system corresponds to a valid execution of the program, and vice versa.
This result requires three steps, one for uniproc, one for thin and one for the
acyclicity of ghb. By lack of space, we show only the last one. Given an ses γ,
we write φ for

∧
c∈Cppo∪Cgrf∪Cws∪Cfr∪Cab

c:

Thm. 1. The formula ssa ∧ φ is satisfiable iff there are V, a valuation of ssa,
and a well formed X s.t. ghbA(conc(γ,V), X) is acyclic and has finite prefixes.

To decide the satisfiability of φ, we can use any solver supporting proposi-
tional combinations of integer difference logic constraints. The procedure reveals
the concrete executions, as expressed by Thm. 1.

5 Experimental Results

We implemented the encoding described above in the bounded model checker
CBMC [12], built with the SAT solver MiniSat 2.2.0 as back-end decision pro-
cedure. We study the efficiency on standard benchmarks, show the support and
correct implementation of a broad range of memory models on litmus tests, and
demonstrate the real-world fitness on widely deployed systems code. The full raw
data of our results are available on our web page http://www.cprover.org/wmm.

As is elaborated below, the limited availability of proposed related tech-
niques as well as, where available, unfitness to process real-world C programs,
restricts what we can conclude about pre-existing techniques. Yet we find that
our technique is scalable enough to verify non-trivial, real-world concurrent sys-
tems code, including the worker-synchronisation logic of the relational database
PostgreSQL, code for socket-handover in the Apache httpd, and the core API
of the Read-Copy-Update (RCU) mutual exclusion code from Linux 3.2.21.

In Tab. 1 we present key facts of our benchmarks: we give the average over all
34 examples of the Software Verification Competition 2013 [7]; similarly we use
averages for our 5800 litmus tests; the last three columns provide data for the
systems code we study: the worker synchronisation in PostgreSQL, RCU, and
fdqueue in Apache httpd. For each we give the number of lines of code (LOC),
and the loop unwinding bound used in the experiments (loop unwind) – “none”
when there is no loop, and “bounded” when the loops in the program are natively
bounded. The number of equations in the resulting ssa is listed as SSA size. We

11

further list key characteristics concerning the symbolic encoding of partial orders:
the number of distinct shared memory addresses (#addresses), the total number

SV-COMP Litmus PgSQL RCU Apache
LOC 798.3 51.2 5412 5834 28864

loop unwind 6 none 1 bounded 5
SSA size 716 80.2 245 161 1027

#addresses 5.8 6.6 5 7 9
#events 160.2 40.9 74 37 140

max/addr 53.6 3.8 17 4 93
#constraints 3576.4 362.0 1089 393 1137
most costly rf (1587) rf (81.3) rf (306) rf (67) rf (247)

Table 1. Statistics about all examples

of shared memory ac-
cesses plus fence events
(#events), the maxi-
mal number of accesses
to a single address
(max/addr), the total
number of constraints
required for the partial
order encoding (#con-
straints), and the rela-
tion accounting for the largest fraction of constraints (most costly).

Observe that the total number of shared accesses is on average more than
5.7 times the maximal number of accesses to a single address, making a strong
case for the use of partial orders: the number of constraints generated for total
orders would thus be larger by a factor of 53, i.e., two orders of magnitude more
costly. The most costly constraint is usually the encoding of read-from.

Other tools Few tools verify concurrent C programs, even on SC [14]. In partic-
ular, the implementation of [33, 34] is not available. For weak memory, solutions
were restricted to TSO, and its siblings PSO and RMO [10, 5, 22], of which only
CheckFence [10] is available and able to handle C programs. With [2] we were
the first to present a program transformation-based approach for weaker models.

In addition to CheckFence, we tried five further tools, covering a range
of techniques for verifying C programs on SC: SatAbs [11], based on predi-
cate abstraction; ESBMC [13], a bounded model checker exploring interleavings
with partial order reduction; Threader [19], a thread-modular verifier; CSeq [15]
and Poirot, both implementing a context-bounded translation to sequential pro-
grams [23]. Poirot and CheckFence, however, could only parse litmus tests.

5.1 Efficiency: SV-COMP’13

We use the 34 concurrency benchmarks from https://svn.sosy-lab.org/software/

sv-benchmarks/trunk/c/ to compare the efficiency of the partial order based ap-
proach to existing tools. We mirror the competition settings, with a time-out
of 15 minutes and a memory bound of 15 GB. Fig. 6 (left) depicts the overall
performance of SatAbs (7 solved correctly w.r.t. the rules of SV-COMP), CSeq
(12), ESBMC (15), Threader (29), and CBMC, which solves all 34 instances
correctly. The programs where CBMC takes more than a few seconds have a
large number of shared memory array operations, which challenge the underly-
ing SAT solver even for the SSA part. We primarily compare the run-time with
ESMBC, as it also performs bounded model checking, but analyses interleavings
(total orders). Fig. 6 (right, logarithmically scaled) shows that CBMC outper-
forms ESBMC on all examples. Comparing to Threader is less meaningful, as
Threader is abstraction-based and does not impose loop bounds. We note that
Threader wrongly marks one benchmark (qrcu) as safe, whereas CBMC correctly

12

0 10 20 30

0

200

400

600

800

1,000

(34)

(12)

(15)

(7)

(29)

Solved instances

T
im

e
[s
]

CBMC CSeq ESBMC SatAbs Threader

100 101 102

100

101

102

CBMC

E
S
B
M
C

Fig. 6. Comparison of efficiency on SV-COMP’13 benchmarks

reports a counterexample. No other tool had been able to analyse the program,
thus Threader’s result had been deemed correct for SV-COMP’13. This was
raised with the competition organiser and the developers of Threader.

5.2 Weak Memory Models: Litmus Tests

We analyse 5803 tests exposing weak memory artefacts, e.g., instruction re-
ordering, store buffering, store atomicity relaxation. These tests are assembly
programs with a non-SC final state, but reachable on a weaker model, generated
by the diy tool [4]. For example, iriw (Fig. 2) can only be reached on RMO (by
reordering the reads) or on Power (idem, or because the writes are non-atomic).

We convert these tests into C code, of 51 lines on average, involving 2 to 6
threads. Despite the small size of the tests, they prove challenging to verify: as
we showed in [2], most tools, except Blender [22], SatAbs and CBMC, give wrong
results or fail in other ways on a vast majority of tests, even for SC, when run for
up to 15 minutes. CBMC, however, takes 0.21 s on average to correctly compute
the result for each of the memory models SC, TSO, PSO, RMO, Alpha, and
Power. No test requires more than 0.7 s, with the exception of the test CO-IRIW,
which takes up to 3.7 s (it yields 2450 partial order constraints). CheckFence
reported violated properties on all tests, even on SC (where all properties of
these tests hold). Blender, which supports only PSO, took 0.6 s on average, and
at most 9.7 s. With [2] we can transform C programs to analyse them under weak
memory model semantics with SC-only tools. For these transformed programs,
SatAbs took 87.8 s on average, Poirot 364.1 s, and ESBMC 723.1 s (all three tools
also timed out on several instances). Analysing the transformed programs with
CBMC, and SC as memory model, took 6.7 s on average and 305 s at most.

5.3 Real-World Systems Code

We study key components of software widely deployed in server systems. Other
tools, including ESBMC and Threader, largely fail to even parse the code.

PostgreSQL Developers observed that a regression test failed on a PowerPC ma-
chine,5 and later identified the memory model as possible culprit: the processor

5 http://archives.postgresql.org/pgsql-hackers/2011-08/msg00330.php

13

could delay a write by a thread until after a token signalling the end of this
thread’s work had been set. A detailed description of the problem is in [2]. Our
tool confirms the bug, and proves a patch we proposed to fix the problem. For
each memory model, and both with and without the fix, CBMC takes 3 s.

Read-Copy-Update (RCU) is a synchronisation mechanism of the Linux kernel.
Writers to a concurrent data structure prepare a fresh component (e.g., list
element), then replace the existing component by adjusting the pointer variable
linking to it. The old component is cleaned up when there is no process reading.

Thus readers can rely on lightweight (hence fast) lock-free synchronisation.
Protection of reads against concurrent writes is fence-free on x86, and uses only
a lightweight fence (lwsync) on Power. We verify the original implementation of
the 3.2.21 kernel for x86 and Power in less than 1 s, using a harness that asserts
that the reader will not obtain an inconsistent version of the component. On
Power, removing the lwsync makes the assertion fail.

Apache httpd is the most widely used HTTP server software. It supports a broad
range of concurrency APIs distributing incoming requests to a pool of workers.

The fdqueue module (28864 lines) is the central part of this mechanism,
which implements the hand-over of a socket together with a memory pool to an
idle worker. The implementation uses a central, shared queue for this purpose.
Shared access is synchronised via an integer keeping track of the number of idle
workers, which is updated via architecture-dependent compare-and-swap and
atomic decrement operations. Hand-over of the socket and the pool and wake-
up of the idle thread is then coordinated by means of a conventional, heavy-
weight mutex and a signal. We show that hand-over guarantees consistency of
the payload data passed to the worker. The architecture-dependent code is only
verified by CBMC, in less than 70 seconds.

6 Related Work and Conclusion

We broadly survey verification for concurrent programs in [3]. Here, we focus on
closely related methods for software verification, and weak memory models.

Most existing work for weak memory models supports assembly or toy lan-
guages only [18, 35, 26, 9], except for [5, 20, 2] and [10]. Yet [5] bounds the number
of context switches, is restricted to TSO, and is not automated. The work of [20]
implements an explicit-state analysis for C#. In our prior work [2] we use pro-
gram transformation to verify C programs w.r.t. weak memory model semantics
using existing SC model checkers. We discuss [10], which has been successfully
applied to non-trivial algorithms, in detail below.

Our work relates the most to [10, 16, 33, 34], which use axiomatic specifica-
tions of SC to compose the distinct threads and a similar SSA encoding per
thread. The size of the encodings of [10, 33, 34] are O(N3) for N shared memory
accesses to any address, as we detail below; [16] is quadratic, but in the num-
ber of threads times the number of per-thread transitions, which may include
arbitrary many local accesses. Our encoding is O(M3) (due to fr and ab, others
are quadratic only), with M the maximal number of events for a single address.

14

In Sec. 5, N on average was 5.7 times larger than M . This extrapolates to a
difference of more than two orders of magnitude in the size of the formula.

CheckFence [10] encodes total orders over memory accesses. In contrast to
our clock variables, [10] uses a Boolean variable Mxy per pair (x, y), such that
Mxy places x and y in a total order: either x before y, or y before x. Furthermore,
transitive closure constraints are required; their number is at least cubic in the
number of variables Mxy. We only consider relations per address, except for
program order and fences, and do not build transitive closures. As noted above,
the constraints for fr and ab are cubic in the worst case; all others are quadratic.

Sinha and Wang [33, 34] use partial orders like us; they note redundancies
in their constraints and then develop pruning [33] and abstractions [34] to re-
duce these. Initially, [33, 34] quantify over all events regardless of their address,
whereas we mostly build constraints per address, based on our formal framework.
As said above, this results in two orders of magnitude lower formula size.

Conclusion We developed a symbolic encoding of partial orders to perform
bounded model checking of concurrent software. We generalise [33, 34] to weak
memory, also unsupported by [16]. We prove suitability and scalability of our tool
to systems code, which could not be processed by CheckFence; implementations
of [16, 33, 34] are not available. We furthermore showed superior performance on
benchmarks of SV-COMP, comparing favourably to all participants.

Acknowledgements We thank Matthew Hague, Alex Horn, Lihao Liang, Vincent
Nimal, Peter O’Hearn and Georg Weissenbacher for invaluable discussions and
comments.

References

1. Adve, S.V., Gharachorloo, K.: Shared Memory Consistency Models: A Tutorial.
IEEE Computer (1995)

2. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak
memory via program transformation. In: ESOP. Springer (2013)

3. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient BMC of con-
current software. CoRR abs/1301.1629 (2013)

4. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Fences in Weak Memory Models
(Extended Version). In: FMSD (2012)

5. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in the analysis
of weak memory models. In: CAV. Springer (2011)

6. Ben-Asher, Y., Farchi, E.: Using True Concurrency to Model Execution of Parallel
Programs. In: IJPP (1994)

7. Beyer, D.: Second competition on software verification. In: TACAS. Springer (2013)
8. Boehm, H.J., Adve, S.V.: Foundations of the C++ concurrency memory model.

In: PLDI (2008)
9. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking robustness against TSO. In:

ESOP. Springer (2013)
10. Burckhardt, S., Alur, R., Martin, M.: CheckFence: Checking consistency of con-

current data types on relaxed memory models. In: PLDI (2007)
11. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate

abstraction for ANSI-C. In: TACAS (2005)

15

12. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
TACAS. Springer (2004)

13. Cordeiro, L., Fischer, B.: Verifying multi-threaded software using SMT-based
context-bounded model checking. In: ICSE (2011)

14. D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. TCAD (2008)

15. Fischer, B., Inverso, O., Parlato, G.: CSeq: A sequentialization tool for C (compe-
tition contribution). In: TACAS. Springer (2013)

16. Ganai, M., Gupta, A.: Efficient modeling of concurrent systems in BMC. In: SPIN.
Springer (2008)

17. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Springer (1996)

18. Gopalakrishnan, G., Yang, Y., Sivaraj, H.: QB or not QB: An efficient execution
verification tool for memory orderings. In: CAV. Springer (2004)

19. Gupta, A., Popeea, C., Rybalchenko, A.: Threader: A constraint-based verifier for
multi-threaded programs. In: CAV. Springer (2011)

20. Huynh, Q., Roychoudhury, A.: A memory sensitive checker for C#. In: FM (2006)
21. Kroening, D., Clarke, E., Yorav, K.: Behavioral consistency of C and Verilog pro-

grams using bounded model checking. In: DAC (2003)
22. Kuperstein, M., Vechev, M., Yahav, E.: Automatic inference of memory fences. In:

FMCAD (2010)
23. Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to sequential

analysis. In: FMSD (2009)
24. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System.

CACM (1978)
25. Lamport, L.: How to Make a Correct Multiprocess Program Execute Correctly on

a Multiprocessor. IEEE Trans. Comput. (1979)
26. Mador-Haim, S., Maranget, L., Sarkar, S., Memarian, K., Alglave, J., Owens, S.,

Alur, R., Martin, M., Sewell, P., Williams, D.: An axiomatic memory model for
Power multiprocessors. In: CAV. Springer (2012)

27. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL (2005)
28. Owens, S., Sarkar, S., Sewell, P.: A better x86 model: x86-TSO. In: TPHOL (2009)
29. Peled, D.: All from one, one for all. In: CAV (1993)
30. Pratt, V.: Modeling Concurrency with Partial Orders. In: International Journal of

Parallel Programming (1986)
31. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In:

TACAS. Springer (2005)
32. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding Power

Multiprocessors. In: PLDI (2011)
33. Sinha, N., Wang, C.: Staged concurrent program analysis. In: FSE (2010)
34. Sinha, N., Wang, C.: On interference abstractions. In: POPL (2011)
35. Torlak, E., Vaziri, M., Dolby, J.: MemSAT: Checking axiomatic specifications of

memory models. In: PLDI (2010)
36. Winskel, G.: Event structures. In: Advances in Petri Nets (1986)

16

