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Abstract. We discuss problems and barriers which stand in the way of producing
verification tools that are robust, scalable and integrated in the software develop-
ment cycle. Our analysis is that these barriers span a spectrum from theoretical,
through practical and even logistical issues. Theoretical issues are the inherent
complexity of program verification and the absence of a common, accepted se-
mantic model in tools. Practical hurdles include the challenges arising from real-
world systems features, such as floating-point arithmetic and weak memory. Lo-
gistical obstacles we identify are the lack of standard benchmarks to drive tool
quality and efficiency, and the difficulty for academic research institutions of al-
locating resources to tool development. We propose simple measures which we,
as a community, could adopt to make the design of serious verification tools eas-
ier and more credible. Our long-term vision is for the community to produce
tools that are indispensable for a developer but so seamlessly integrated into a
development environment, as to be invisible.

1 Introduction

The sophistication and scalability of practical software verification tools has increased
dramatically over the last decade. In particular, semi-automatic analysis of moderate-
sized software using model checking has become viable due to the development of two
primary methods: counterexample-guided abstraction refinement (CEGAR) [20] and
bounded model checking (BMC) [15]. Counterexample-guided abstraction refinement,
realised via predicate abstraction [30] and symbolic model checking [17] of Boolean
programs [2], lies at the heart of Microsoft’s Static Driver Verifier [4], which is now
routinely used by developers of Windows device drivers. Other software model check-
ers, including BLAST [12], SATABS [22] and CPACHECKER [13] have followed this
model and had impact within the research community. Bounded model checking was
conceived as a hardware verification technique based on a natural encoding of circuits
in propositional logic. Dramatic advances in the performance of SAT and SMT solvers
have allowed this technique to be lifted to analyse the behaviour of programs, through
a bit-level encoding of variables and operations. Bounded model checking tools such
as CBMC [21] and F-SOFT [35] are effective at finding bugs in system-level software,
and have been applied in the automotive domain [41]. Recent applications of the k-
induction method [43] to software verification [25] have facilitated the use of BMC for
verification, not just falsification, of race-freedom properties in software for the Cell
BE processor [27].
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We believe that a long-term vision for the field is to produce verification tools that
are a necessary component of any serious development environment. Despite current
success stories, formal verification using model checking based techniques is a long
way from such mainstream adoption. Our analysis is that this is due to the following
barriers, amongst others:

1. the difficulty of justifying the allocation of resources to tool development in an
academic environment;

2. a lack of consensus on what software verification tools should handle, and as a
consequence a lack of comparability;

3. a lack of guidance during the software development process, e.g., via unified bench-
marks to drive quality and efficiency.

Past articles and discussions have addressed the topic of making verification tech-
nology practical, focusing on technology transfer of verification techniques [36] and the
role of formal methods in software engineering [44]. The ambitious Verified Software
Initiative [32] aims to exactly address the problem of practical verification tools, stating
as one of its goals “[the construction of] a coherent toolset that automates the theory
and scales up to the analysis of industrial-strength software”.

In this position paper, we add our voices to the discussion. We believe the above
challenges can be addressed via three means: investment in tools, encouraged by more
stringent requirements for experimental repeatability when submitting verification pa-
pers, and a new category of “experimental validation” papers at verification confer-
ences; a standardisation process to allow commonality in the way tools are designed
and operated; and challenge benchmarks to allow tools to be easily tested, improved
and compared, thus driving quality.

2 Community Support for Tool Development

Numerous technical problems have to be solved when designing software verification
tools, and there is a need for robust tools in order to conduct proper scientific investi-
gation in verification. We briefly discuss ways in which the verification community can
support tool development efforts.

2.1 Allocating resources to tool development

A significant portion of research in software verification is carried out by academics,
but there are significant barriers for tool development in this community:
It is difficult to obtain research funding for tool development. Proposals for aca-
demic funding usually focus on a “big idea” – something novel, seriously challenging,
and perhaps a little bit crazy. Without centering on the big idea, a funding proposal will
likely be rejected as tame. This sort of blue-sky thinking is important for the devel-
opment of ground-breaking, non-incremental ideas, but provides no means to develop
serious tools over a long period of time. Crucially, resources for long-term tool mainte-
nance and regression testing are usually not requested in a funding proposal.



The priorities of publication venues are a disincentive to building robust tools. Get-
ting a paper accepted to a prestigious venue in automatic verification tends to require
a new, deep theoretical idea. While some experimental evaluation is also usually ex-
pected, putting together a minimal prototype and concentrating on the theoretical side
of a piece of work is a better short-term strategy for getting a paper accepted than
painstakingly conducting a rigorous experimental evaluation on a large benchmark set,
comparing with a range of other tools. Little or no credit will be given for ensuring that
the tool being presented is robust and usable beyond the benchmark set used for evalu-
ation. Understandably, time-pressured reviewers tend to scrutinise the theoretical detail
of a novel technique readily available in the text of the paper, rather than investing time
downloading, installing and experimenting with the associated implementation. They
will often not clock whether a reported implementation is a minimal prototype, or a
serious piece of software.

In today’s environment, two of the main factors used to measure academic success
are amount of research money raised, and number of high-quality publications. In this
light, the above barriers suggest that an academic who pushes their research group to
knock together a series of minimal prototype tools in the run up to major conference
deadlines will have greater short-term success than an academic who invests significant
time and effort in building robust tools.

2.2 The need for robust tools

One might argue that it is not the responsibility of academics to build robust tools:
instead, the job of an academic researcher is to push the boundaries of science by
developing novel algorithms, investigating their theoretical properties, and providing
proof-of-concept experimental demonstrations. For such proofs-of-concept, aren’t min-
imal prototypes OK? Of course, we are not arguing that academic researchers should be
responsible for building industrial-strength tools. But basing research solely on minimal
prototypes can be a barrier to scientific progress.
Non-robust tools can lead to vacuous verification. The SLAM verification engine is
at the absolute opposite end of the spectrum from being a minimal prototype tool: it is
a serious collection of software developed over several years by a dedicated team of re-
searchers, and has led to major uptake of verification technology by industry. This long-
term effort has resulted in new insights not possible with the early prototypes: recent
work describing the version 2 of the SLAM engine identifies device driver benchmarks
where verification using SLAM 2 takes longer than with the original engine, despite
a wealth of new optimisations [3]. The reason is that the original version of SLAM is
less accurate, and as a result sometimes reported “verification successful” without hav-
ing established a complete correctness argument. This report on a mature tool suggests
that we should be skeptical of experimental results reported for quick prototypes, and
illustrates the added value of long-term tool maintenance for research.
Without solid tools, we cannot really do science. Natural sciences hinge upon re-
peatability of experiments, and the ability to compare complementary or competing
techniques in a controlled way. With verification tools, repeatability is often not possi-
ble: tools are sometimes to immature to be made available, or snapshots of the versions



used to generate experimental results for a given paper are not taken. Tool comparison is
also a challenge. Reviewers quite reasonably expect an implementation of a new method
to be compared with prior implementations of competing techniques, but it is hard for
authors to conduct such a comparison when prior implementations are not available or
no longer work.

3 Program Semantics: Minimum Requirements

Designing software verification tools is hindered by the inherent difficulty of the task in
general, and the complexity of real-world languages. The inherent difficulty of verifica-
tion leads to no clear minimum bar for the sorts of input programs that all tools should
be capable of handling. The complexity of real-world languages leads to pragmatic de-
cisions related to the handling of semantic features, which are not usually documented
and often differ from tool to tool. We now discuss a selection of these issues in some
detail.

The specification for a compiler is relatively simple: given semantics for languages
A and B, an A → B compiler should take any valid program in language A and
transform it into a semantically equivalent program in language B. The time taken
for transformation should be roughly linear in the size of A. Of course, implementing
compilers is challenging, due to the lack of formal specifications for source and target
languages, but it is clear that the task of building a compiler is achievable (barring
pathological examples [45]).

In contrast, we know from basic undecidability results in computer science that we
will never be able to build a verifier that takes an arbitrary program in a Turing-complete
language, and decides whether that program is correct (under some appropriate notion
of correctness) within some reasonable time bound.

3.1 What should all software verification tools handle, a minima?

Because of this inherent difficulty, it is clear that a given software verification tool will
not be capable of handling certain input programs. But we would expect that there
should be large classes of very simple programs which any respectable software verifi-
cation tool should be able to cope with. For instance, although loops are hard to analyse
in general, a simple program involving loops with a fixed-and-small number of itera-
tions should not be problematic to handle. While pointer-manipulating programs can be
tough to analyse, support for straightforward parameter passing by reference via point-
ers should be non-negotiable. In particular, any verifier should be capable of correctly
processing a program with a small and finite state-space (say with fewer than 10,000
states).

In practice, this is often not the case: a prototype verification tool may implement
sophisticated algorithms geared towards solving a particular class of problems, but may
diverge or crash when invoked on some trivial example program that does not fall within
this class. Our viewpoint is that the difficulty of program verification in general is not
an excuse for tools to perform abysmally, or produce unsound or incomplete results, on
simple examples. We need to set the bar somewhere.



3.2 The challenges of semantic features in real-world languages

Research dealing with full-scale languages with complex semantics cannot realistically
handle all of their features in all cases. However, it is important that tool designers
identify those features which are not handled, and clearly document what the limitations
of their tool are. We briefly consider some examples of semantically challenging issues
faced by verification tools for C programs:

Bit-level accuracy. Languages in the C family represent numeric types by fixed-width
bit-vectors. Thus arithmetic operations may overflow, breaking standard mathematical
identities such as x + 1 > x. Because arithmetic over/underflow can be the source of
subtle bugs, especially in system-level software, it is vital that software verifiers for C-
like languages reason with bit-level accuracy. This means parametrising the verifier by
a given machine word-size. While early software verifiers tended to use a mathemati-
cal model of integers with infinite range, advances in bit-vector solvers led to bit-level
accurate tools such as CBMC [21] and F-SOFT [35]. Nowadays, bit-level accurate rea-
soning is commonplace and widely accepted, primarily owing to the progress modern
SAT and SMT solvers have made.

Floating point. Reasoning directly about floating point arithmetic can in principle be
achieved by bit-blasting, following the IEEE 754 standard. While this approach is im-
plemented, e.g., by the CBMC tool, it does not scale well due to the immense complexity
of floating point circuits. Pragmatic alternatives to supporting floating-point reasoning
include treating floating point variables as fixed point, or as intervals of real numbers,
in which case a real arithmetic solver can be exploited. The difficulty with such ap-
proaches are that they do not provide accurate results for real programs. While for some
users this may be acceptable, for others it may not be, thus such decisions should be
clearly documented. Alternative approaches avoid direct reasoning by soundly approxi-
mating floating-point computation, either through abstraction [16] or expression canon-
ization [23]. An important open problem is to design fast SMT solvers for floating-point
arithmetic [42].

Weak memory models. Analysis tools for concurrent programs need to consider the
problem of weak memory models exhibited by all modern multicore architectures (e.g.,
x86 or Power), where the model of computation is not sequentially consistent (SC) [38].
Soundness in the presence of weak memory involves considering all possible ways in
which memory accesses could be resolved by the hardware, greatly increasing the (al-
ready high) complexity of concurrent software analysis. As a result, it is understandable
that practical concurrent software verifiers may pragmatically assume an unrealistically
strong memory model.

If a tool that aims at handling concurrent programs running on modern multicores
supposes SC to be the execution model [26], the tool is strictly unsound, yet perhaps
practically useful in finding concurrency bugs or increasing confidence in the correct-
ness of concurrent software. Some programming disciplines such as the data race free
guarantee (DRF) [1] allow the tool to ignore the details of the memory model, for the
discipline enforces the illusion of SC. Hence, tools that assume their input programs to
be DRF and SC to be the execution model, e.g., [18], are sound. However, this means



that they cannot handle lock-free synchronisation [29], a programming style favoured
by engineers for its performance, such as for example in the Linux kernel [40].

Again, whether a concurrent software verifier handles weak memory in a sound or
restricted manner should be a clearly stated design decision.
System-level features. When applying verification tools to embedded systems soft-
ware, users typically require support for low-level features such as interrupts, inline as-
sembly and DMA. Correctness for this sort of software often requires careful layout of
memory according to machine-specific alignment constraints. These kinds of features
are platform-specific, and therefore we do not anticipate a general solution. However,
at present, system-level features tend to be modelled in an ad hoc manner for individual
applications. A generic framework for describing system-level characteristics relevant
to verification, which could then be customised by users for specific needs, does not
currently exist and would be be a major step beyond the current state of the art.
Handling source code which is not standard-compliant. While a compiler is typically
free to generate arbitrary code where an input program does not conform to the language
standard, software verifiers cannot be free to assign specific, arbitrary semantics in such
cases. Because bug-finding is an important goal of a software verifier and bugs often
arise from lack of adherence to language standards, strictly speaking a verifier should
consider every possible effect for a statement whose semantics are undefined. Naturally,
this strict requirement may not be achievable in practice, and the way to handle or
implement certain language features can be controversial. In the absence of a consensus,
we believe that developers should state explicitly, and as precisely as possible, how they
handle a certain underspecified feature. As an instance, program verifiers may use a
fixed order of evaluation of expressions with side effects, while the language standard
permits any ordering.

4 The Lack of Guidance in the Process of Writing Tools

Given an input language with well-defined semantics, the question about how to pro-
ceed to arrive at a practically useful software verification tool arises. As it is impossible
to solve all technical problems in a single step, a suitable form of incremental devel-
opment must be found. The realization of a research idea, which often involves novel
algorithms, effectively results in a conflict of interest: both the novel algorithm must be
implemented as efficiently as possible, and several technical hurdles must be overcome.
The latter will in parts be well known, whereas other technical challenges might only
become visible once the tool has evolved far enough to be applied in verification of real
software systems.

To date, we are still in the unfortunate situation that there is only very little pre-
existing code that offers both high quality and comprehensive documentation to cover
all those fundamental technical issues. Such a code base would need to provide a for-
mally defined intermediate representation for at least one major programming language.
Furthermore, standard program analyses, as available in compilers, would be expected.

The development of decision procedures, in particular SAT and SMT solvers, has
made a lot more progress in the last decade than the development of software verifi-
cation tools has. Despite continuing evolution and improvement, gritty technical issues



tend not to hinder the integration of new algorithms with existing solvers. We identify
some of the key advantages in the history of the development of decision procedures,
compared with software verifiers:
Publication of technical aspects of decision procedures. Both algorithmic and techni-
cal challenges are acknowledged, well documented (in terms of scientific publications
– cf. [28,14] for prime examples), and hence technical aspects relevant to tool develop-
ment are well-understood by the community at large, and easily available to outsiders.
Compare this situation to software verification, where entire tools (implemented in hun-
dreds of thousands of lines of code) are often documented in no more than a single
conference or journal publication, usually focussing on the tool’s core algorithms, pre-
sented at a high level of abstraction. It seems that researchers in software verification
tools are reluctant to write up technical details, perhaps due to the perception that highly
technical papers will be considered engineering, not research, and rejected.
SAT/SMT software architectures have become mature. As a consequence of shar-
ing knowledge about algorithms and problems, in terms of publications and often also
source code, developers of decision procedures benefit from lessons learned in other
tools [14], hence avoiding redundant re-invention.
Well-defined input languages. Decision procedures benefit from simpler and more
formally defined input languages [24,10], compared with software verifiers. The stan-
dardisation of programming languages such as C or C++ still leaves many aspects in-
tentionally undefined. A sound software verification tool must thus consider all possible
interpretations or offer controllable parameters to the user.
Comparability and competitions. An essential part of any scientific work is a fair and
comprehensive comparison to related work. For software verification tools, this is – at
present – largely impossible. As such, we are unable to assess progress.

Again, decision procedures have done much better. First, publicly available stan-
dard benchmark sets exist to perform comparisons. Second, well established competi-
tions123provide additional incentive to adhere to common input languages, and provide
reward for technical improvements. Third, theories and benchmark categories provide
precise guidance to users of the technologies, enabling them to select the most suitable
tool for their needs [9]. All these measurable facts (performance on standard benchmark
sets and supported theories) permit precise, scientific assessment of progress.

We cannot (and should not) change the fact that software verification tools have to
deal with complex general-purpose input languages. Yet many such problems could be
offloaded to a front end that builds a formally defined intermediate representation. For
the reasons laid out in Sec. 2, however, it is challenging for research groups to invest in
building such a front end. As an alternative, software verification tool developers could
team up to define a subset of a widely used programming language the support of which
can be expected from any tool claiming to perform software verification.

Any such standardisation effort will foster comparability; yet two further problems
need to be addressed to fully enable comparability: a) for performance comparison, a

1 http://www.satcompetition.org/
2 http://www.smtcomp.org/
3 http://www.cs.miami.edu/˜tptp/CASC/
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publicly available set of benchmarks in the standardised language must be made avail-
able; b) a categorisation similar to theories, as found in SMT, must be established.

5 Proposals for Supporting the Development of Software
Verification Tools

Based on the critical assessment of the present situation we propose a way forward. We
first discuss possible evolutions in our community, and note the long-term benefits that
can be associated with building recognised tools. We then steer towards solutions of
technical problems.

5.1 Publication incentives

As discussed in Sec. 2, serious development of tools is not rewarded by the evaluation
criteria of publication venues. We propose two strategies for improving this situation:
Repeatability requirements. Publication venues in formal verification should require
authors to make implementations of novel algorithms available for inspection and val-
idation by reviewers. To avoid reviewer anonymity being compromised by IP address
logging, publication venues should make use of secure means for implementations and
benchmarks to be uploaded as part of a paper submission. Such features are already
available in submission management systems such as EasyChair. Authors should also
provide comprehensive instructions on how to operate the provided software in order
to reproduce the paper’s results. Reviewers should be encouraged to try to reproduce
a selection of results using the provided implementation, and should be encouraged to
comment explicitly on whether they have attempted to do so. Review reports should
discuss the experience of using the reported implementation, and it should be reason-
able to suggest rejecting a paper because the implementation does not work, fails on
reasonable examples beyond the benchmark set reported in the paper, or cannot be used
due to a lack of comprehensible operating instructions. Working towards standardised
interfaces, as proposed in Sec. 5.3, will considerably simplify such evaluations, both for
authors and reviewers.

There are two immediate thorny issues associated with such a scheme. First, it relies
on reviewers and authors having a common working environment (e.g., using the same
operating system and machine word size), and some papers may report experiments on
hardware or software which is not universal, or even proprietary. Second, it makes it
difficult for industrial practitioners to publish research results where it is not possible
to release associated implementations. Reasonable measures would need to be taken to
work around these issues, without discouraging valuable contributions from industry.
Possible solutions include:

– Requesting that implementations target a specific, widely available OS (virtual ma-
chine images may be an option as well).

– Where this is not possible, or where implementations are proprietary, requiring
authors to build a web interface through which reviewers can interact with a tool
without actually downloading the tool executable.



Also concerned by the problem of experimental repeatability, the databases com-
munity has taken exemplary steps to address this at least four years ago [39]. The Call
for Papers of the 2008 ACM SIGMOD/PODS Conference includes Experimental Re-
peatability Requirements in its guidelines for research papers,4 which are summarised
as follows:

“To help published papers achieve an impact and stand as reliable reference-
able works for future research, the SIGMOD 2008 reviewing process includes
an assessment of the extent to which the presented experiments are repeatable
by someone with access to all the required hardware, software, and test data.
Thus, we attempt to establish that the code developed by the authors exists,
runs correctly on well-defined inputs, and performs in a manner compatible
with that presented in the paper.”

We strongly believe that the verification community should take a similar stand.
Encouraging experimental validation papers. The databases and systems community
also encourages validation of previously published techniques via independent exper-
iments to the extent that it is possible to have a paper accepted by a top databases
conference or journal merely by re-implementing and comprehensively evaluating a
technique reported previously by a different research group. For example, the Call for
Papers of the VLDB 2012 conference includes an Experiments and Analysis Track,
which “seeks papers that focus on the experimental evaluation of existing algorithms
and data structures”. This includes explicitly the category of Result Verification, for
“papers that verify or refute results published in the past and that, through the renewed
analysis, help to advance the state of the art”.5

This publication model allows serious implementation work to be rewarded by pres-
tigious publications, reducing the problem discussed in Sec. 2.1 of implementation
work being at odds with short-term goals.

Currently, Calls for Papers at top verification conferences include no such encour-
agement of result verification, and it is not clear whether a Result Verification-style
paper would be taken seriously, or rejected due to lack of novelty. We recommend
that active steps should be taken to change this situation. The HCI community also
discussed the issue of result replication recently via a panel at the 2011 ACM CHI
Conference [46].
A note on tool demonstration papers. One might ask at this stage whether tool demon-
stration papers, which are common in Calls for Papers at verification conferences, serve
the goal of encouraging serious implementation. We do not believe this to be the case;
tool demonstration papers can often only provide a bite-sized overview of a particular
technique.

5.2 Benefits from building tools
The benefits of robust tools to the verification community and beyond are clear but,
as discussed in Sec. 2.1, there is little short-term reward for tool development in an

4 http://www.sigmod08.org/sigmod_research.shtml
5 http://www.vldb2012.org/call-for-contributions/
experiments-and-analysis-track/
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academic environment. However, there are longer-term benefits to serious tool devel-
opment. We illustrate this by considering three well-known verification tools:

– SPIN, an explicit-state model checker designed at Bell Labs, and now maintained
by the NASA/JPL laboratory for reliable software

– SLAM, a CEGAR-based software model checker, designed at Microsoft Research
– PRISM, a probabilistic symbolic model checker designed at the University of Birm-

ingham, and now maintained at the University of Oxford.

Serious software tools can be highly cited. We consider citation counts for the two
most highly cited papers on each of these tools:6

– SPIN [33,34]: cited 5323 times
– SLAM [6,5]: cited 929 times
– PRISM [37,31]: cited 735 times

These large citation counts indicate significant recognition for the efforts that have gone
into development of these tools.
Serious software tools boost research. A robust tool can be used as the basis for a great
deal of further research. Looking at the publication records of the key designers of the
above tools, we find that each tool has led to tens of further high-quality publications. In
the long term, the effort expended in producing a high-quality verification tool pays off,
since one does not need to repeatedly construct throw-away prototypes for individual
paper deadlines.

5.3 Standards for tool interfaces

In order for a software verification tool to be used (either to reproduce experimental
results, or simply to be applied by a practitioner), it is important that the user a) knows
how to operate the tool from the command-line or via a GUI, and b) is aware of “magic”
keywords and syntactic constructs used in input programs for property specification
and/or environment modelling.

To compare two software verification tools geared towards the same input language,
one must understand equivalences between command-line or GUI options of both tools,
and how equivalent properties and/or environmental assumptions can be specified/mod-
elled using the respective syntactic constructs provided by the tools.

Tool options together with syntax for modelling and specification, together with the
language which a verification tool targets, comprise the interface of the tool. Clearly
the tasks of using an unfamiliar tool and making comparisons between two tools would
be eased by standards for tool interfaces.

We make the following recommendations in this area:
Focus first on ANSI-C. Given the wide range of programming languages being used
today, we cannot expect a long-term convergence on a single language to be supported

6 Citation counts are taken from Google Scholar on 11 July 2011. For each tool, we have
summed the citation count for its key papers. Self-citations have not been excluded.



by all software verification tools. If more front ends for input language processing were
available, possibly a convergence towards some intermediate representation could be
sought. At present, however, the best we can do is focus on the single programming
language most widely supported by the community: ANSI-C. We propose working out
a standard interface for ANSI-C verifiers, as discussed below, then using this interface
as a basis for tool operation and comparison. If successful, a similar process could be
followed for other languages.

Focusing on ANSI-C still requires tools to agree on, or at least identify differences
between the precise way in which features that are left undefined in the standard are
modelled. We propose a benchmark-based solution to this in Sec. 5.4.

Property specification and environment modelling. In current software verification
tools we find a wide range of techniques and assumptions used both in property spec-
ification and environment modelling. For example, the BLAST model checker uses
the magic variable BLAST NONDET to specify a nondeterministic value, while with
CBMC one obtains a nondeterministic value of type T by calling a function declared
with return value of type T but the body of the function being unavailable. A common
verification-level construct is the assume statement, which restricts verification to con-
sider only paths on which, when executed, the assume statement’s guard φ evaluates to
true. Individual tools tend to provide bespoke syntax for assume statements (e.g., CBMC
uses CPROVER assume(φ)). Most verifiers unsoundly but pragmatically agree that
the effect of calling a function whose body is unavailable should be a no-op, but that the
function should return a nondeterministic result; however, this is rarely a documented
feature. Correctness properties may be expressed in some tools via external specifica-
tion languages [7,11], language extensions [8], or may be embedded in comments using
a tool-specific syntax [19].

Given input programs that deviate from the ANSI-C standard, e.g., by reading from
invalid memory, or depending on the order in which side-effecting actual parameter
expressions are passed, distinct verification tools tend to explore specific behaviours
decided upon by the tool implementers. While it is fine for a compiler to behave ar-
bitrarily on non-compliant programs, this is not the case for a verifier, which should
a) detect and report non-compliance, and ideally b) explore all possible ways in which
the non-compliant feature could be implemented, in order to catch potential bugs in an
implementation-independent manner.

As a result of this variety of approaches, it is currently in general impossible to run
the same input program, without modification, through different software verification
tools and obtain consistent results. We propose:

– the design of a standard set of syntactic constructs for property specification and
environment modelling in C programs. This would be derived from a careful study
of the constructs used by existing tools, and possibly also building upon the ad-
vances made in other programming languages, such as Spec# [8] or JML [19]. The
adoption of such a standard would allow C benchmarks to be evaluated, without
modification, by a range of tools.

– the construction of benchmarks to categorise the ways in which verifiers handle
non-standard ANSI-C programs. This would allow tool users to understand the



sorts of bugs a verifier will find, and whether two distinct tools will behave similarly
when given non-compliant programs.

A standard command-line interface. A much more straightforward proposal is that
a standard command-line interface for C verifiers be agreed on. The standard would
specify arguments to indicate files to be checked, the main function or functions to be
analysed, and possibly even the sorts of generic properties (such as division-by-zero
or buffer overflows) to be analysed. We recommend that specification of preprocessor
macros, include directories, and other commands shared with compilers, should follow
the interface of the widely used GNU C compiler. This standard interface would make
it easy to write generic scripts to invoke C verifiers, further easing comparison between
tools. Furthermore, the standard would make it possible to build user interfaces in a
tool-independent manner, allowing at least simple input programs to be verified with
the press of a single button.

5.4 Benchmarks to drive quality, comparability, and competition

The possibility of comparability afforded by a common interface will enable building
standard benchmark sets that serve as a basis for fair and scientific comparison. Bench-
marks and fair comparison lead towards measurements of progress, and will ultimately
enable setting up competitions. We acknowledge that deriving a fair and representa-
tive benchmark suite will clearly be even more challenging than, e.g., in case of SAT
solvers. Random programs are likely not useful. Different input languages, such as C
or Java will require separate benchmark suites. Even if common interfaces are estab-
lished, different verification tools will remain geared towards different tasks, thus fair
comparisons on benchmarks are hard to achieve. We do expect, however, that branding,
described below, will help to categorise different verification tools according to their
strengths.

We expect the design of such a benchmark suite to have several further benefits:
Setting a minimum bar for verification tools. Software model checkers have been
available for more than a decade, thus users should reasonably expect them to perform
sensibly on small input programs. A set of small benchmark programs will therefore
permit to label a given analysis tool a true software verification tool. This set of bench-
marks will only define minimal standards, as discussed in Sec. 3.1. Yet these standard
benchmarks will help make tool development easier – one immediately has tests to
work towards.
Semantic foundations. A set of benchmarks with precisely defined semantics and
independently validated verification results can serve as test whether a tool matches
expected semantics for particular language features. As discussed in Sec. 3.2, we ac-
knowledge that not all tools will faithfully handle all semantic aspects of real-world
programming languages, and may treat challenging features (e.g., floating-point arith-
metic and weak memory) in an unsound but pragmatic way. The proposed benchmark
suite will serve as litmus test for verification tools, determining whether a tool faithfully
treats a particular language feature, and when this is not the case perhaps even inferring
that the tool conforms to a specific known deviation in the way this feature is handled



(e.g., determining that fixed-point or real number semantics are used for what should be
floating-point reasoning). The benchmarks will allow branding of software verification
tools, allowing users to quickly get a feeling for whether a tool will be applicable to
their particular problem. Our hope is that designers of verification tools will strive for
a high-quality branding by the benchmark suite, spurring them on to build robust and
usable software.

Driving quality and scalability. If the verification community widely adopts such a
benchmark suite, a new verification technique will be taken seriously only if it operates
correctly and reasonably efficiently on these benchamrks. This will drive competitive-
ness, as was observed in the case of decision procedures. If a sufficient level of interface
compatibility is achieved, we will be able to run automated competitions, which will
provide an incentive to work towards better scalability.

Competition. A competition event with high visibility would foster the transfer of the-
oretical and conceptual advancements in software verification into practical tools, and
would also give credit and benefits to students who spend considerable amounts of time
developing verification algorithms and software packages. The first such competition
event will compare state-of-the-art software verifiers with respect to effectiveness and
efficiency, and the results will be represented at TACAS 2012. 7

6 Summary

We have discussed the barriers we currently perceive to advancing of the state of the art
in software verification tools. We have proposed a number of simple measures which
we believe could seriously help this situation: encouragement from the community in
the form of a new category of paper and more stringent requirements for experimental
reproducibility (inspired by similar measures within the databases and systems com-
munity); a common interface for ANSI-C verifiers to enable benchmark compatibility
and tool comparison; and a suite of benchmarks which will set a minimum bar for the
sophistication of verification tools, provide litmus tests to automatically infer whether
and how particular semantic features are handled, and drive the quality and scalability
of tools through competitions (inspired by the dramatic competition-driven success in
the field of decision procedures).

Technology transfer of hardware verification techniques into practical use proceeded
via a sequence of “small steps” [36]. We hope that our proposed measures will act as
small steps to continue the transfer of software verification techniques into mainstream
practice, which has been gaining more and more momentum over the last decade.
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