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ABSTRACT
We investigate the utility of multi-task learning to disease surveil-
lance using Web search data. Our motivation is two-fold. Firstly,
we assess whether concurrently training models for various ge-
ographies — inside a country or across different countries — can
improve accuracy. We also test the ability of such models to assist
health systems that are producing sporadic disease surveillance
reports that reduce the quantity of available training data. We ex-
plore both linear and nonlinear models, specifically a multi-task
expansion of elastic net and a multi-task Gaussian Process, and
compare them to their respective single task formulations. We use
influenza-like illness as a case study and conduct experiments on
the United States (US) as well as England, where both health and
Google search data were obtained. Our empirical results indicate
that multi-task learning improves regional as well as national mod-
els for the US. The percentage of improvement on mean absolute
error increases up to 14.8% as the historical training data is reduced
from 5 to 1 year(s), illustrating that accurate models can be obtained,
even by training on relatively short time intervals. Furthermore, in
simulated scenarios, where only a few health reports (training data)
are available, we show that multi-task learning helps to maintain
a stable performance across all the affected locations. Finally, we
present results from a cross-country experiment, where data from
the US improves the estimates for England. As the historical train-
ing data for England is reduced, the benefits of multi-task learning
increase, reducing mean absolute error by up to 40%.
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Figure 1: The 10 US regions as specified by the Department
of Health & Human Services (HHS).

1 INTRODUCTION
Online user-generated content contains a significant amount of
information about the offline behavior or state of users. For the
past decade, user-generated content has been used in a variety
of scientific areas, ranging from the social sciences [5, 21, 25] to
psychology [26, 39, 46] and health [14, 22, 29]. Focusing on the
health aspect, user-generated content has the advantage of being a
real-time and inexpensive resource, covering parts of the population
that may not be accessible to established healthcare systems. Thus,
it can facilitate novel approaches that may offer complementary
insights to traditional disease surveillance schemes.

Existing algorithms for disease surveillance from user-generated
content are predominantly based on supervised learning paradi-
gms [17, 22, 31, 42]. These frameworks propose single task learning
solutions that do not consider the correlations of data across differ-
ent geographies. They are also not accounting for situations, where
significantly fewer health reports are available for training a model.
In this paper, we investigate the utility of multi-task learning to
exploit these correlations to both improve overall performance and
to compensate for a lack of training data in one or more geographic
locations.

Multi-task learning can train a number of disease models jointly.
Compared to single task learning, it has the potential to improve
the generalization of a model by taking advantage of shared struc-
tures in the data. Previous work has shown that this may result in
significant performance gains [2, 4, 6, 8, 13, 20, 32]. In the context

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


TheWebConf 2018, 23–27 Apr. 2018, Lyon, France Bin Zou, Vasileios Lampos, and Ingemar Cox

of disease modeling, we investigate whether it can provide an im-
proved estimate of disease rates when (a) training data is available
for multiple geographic locations, specifically geographic regions
of the United States (US), and (b) when ground truth training data
(health reports) is sporadic. In addition, we investigate its utility
in estimating disease rates in a different country by exploiting a
denser health reporting scheme of a reference country. We explore
both linear and nonlinear regression models, namely multi-task
elastic net [35] and multi-task Gaussian Processes [11], comparing
them to their respective single task formulations.

We use influenza-like illness (ILI) as a case study and conduct
experiments, where ILI rates are estimated, on the US (nationally
and regionally) and England. Our experiments show that multi-
task learning models improve regional as well as national ILI rate
estimates from Google search data for the US. The percentage
of improvement increases up to 14.8%, in terms of mean absolute
error, as the historical training data is reduced, indicating that multi-
task learning can facilitate the derivation of accurate models using
significantly less training data. We also simulate situations, where
partial ground truth data are available, perhaps due to unexpected
reasons (natural disasters, a spreading epidemic, technical problems)
or due to limitations of a public health system. Our experimental
results indicate that multi-task learning models can mitigate such
effects. Finally, we apply multi-task learning to a cross-country
setting, where complete data for one country could improve the
models of another country with insufficient health reports. In that
case, it is shown to improve ILI rate estimates for England (up to
40% of mean absolute error decrease) under the assumption that
increasingly limited historical data exist, when training models
jointly with data from the US.

Here is a summary of the main contributions of the paper:
(1) This is the first work to assess the utility of multi-task learning

in infectious disease surveillance from Web search data.
(2) We use ILI as a case study and show that multi-task learning

models improve:
(a) regional as well as national disease models for the US,
(b) regional US disease models, under the assumption of in-

creasingly limited historical health reports (simulated by
applying three different sampling methods), and

(c) country-level disease models for England, when training is
performed jointly with data from a different, but culturally
similar, country (the US).

2 METHODS
We first provide a description for the disease modeling task, under
both single and multi-task learning settings. Then, we present the
linear and nonlinear techniques for performing single and multi-
task regression used in our experiments.

2.1 Task Description
Our aim is to infer disease rates as reported by an established health
surveillance system using the frequencies of Web search queries.
We formulate this as a regression task, where we learn a function
f : X → y that maps the input space X ∈ Rn×p to the target
variable y ∈ Rn ; n denotes the number of samples and p is the size
of our feature space, i.e. the number of unique search queries we

consider.X contains time series of normalized frequencies of search
queries and y represents the disease rates at the same time points
as reported by the health agency. A normalized query frequency
is defined as the count of a query divided by the total number of
searches during a fixed time interval, e.g. one week.

In multi-task disease rate inference, we are modeling disease
rates simultaneously for a number of different geographical loca-
tions (tasks). A tensor Q ∈ Rn×p×m is used to represent our input
data for them tasks.1 Q can simply be interpreted asm versions of
X; in the remainder of the script, we denote them using Qj , where
j refers to the jth task or geographical location. An element of Q,
Qt i j , represents the normalized frequency of a query i for the loca-
tion j during the time interval t . The corresponding target variables,
i.e. the disease rates for them locations are denoted by Y ∈ Rn×m .
Similarly, we use Yj to refer to the disease rates at the location j.
Based on the aforementioned formulations, our task now becomes
to learn a function f , such that f : Q → Y.

2.2 Linear Regularized Regression
Linear regressors have been successfully applied for conducting
disease surveillance from web search and social media data [17, 22,
28–30]. We use elastic net [56] to train a linear regression model. It
can be seen as an extension of the ℓ1-norm regularization, known as
lasso [48], that incorporates an ℓ2-norm, or ridge [24], regularizer on
the inferred weight vector. Elastic net encourages sparse solutions,
thereby performing feature selection. At the same time, it addresses
model consistency problems that arise when collinear predictors
exist in the input space [23].

Elastic Net (EN). Given the input matrixX and the observations y,
linear regression has the form of y = Xw+β , where β is an intercept
term and w ∈ Rp is a weight vector. Elastic net [56] estimates w
and β by minimizing

argmin
w,β

(
∥y − β − Xw∥22 + λ1 ∥w∥22 + λ2 ∥w∥1

)
, (1)

where λ1 and λ2 are the regularization parameters, and ∥·∥1, ∥·∥2
denote the ℓ1-norm and ℓ2-norm, respectively.

Multi-Task Elastic Net (MTEN). We extend the standard elastic
netmodel to amulti-task version [53]. It is specified by the following
optimization task

argmin
W,β

(
∥Y − β − QW∥2F + λ1 ∥W∥2,1 + λ2 ∥W∥2F

)
, (2)

where W ∈ Rp×m , β ∈ Rm are the weight matrix and intercept
vector for all them tasks, and the norms — ℓ2,1 and Frobenius (F ) —
are given by

∥W∥2,1 =
p∑
i=1

√√√ m∑
j=1

W 2
i j and (3)

∥W∥F =

√√√ p∑
i=1

m∑
j=1

W 2
i j . (4)

1Note that the number of samples n may be different for different locations (tasks).
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Figure 2: Weekly ILI rates (from CDC) for the US (national level) as well as the US Regions 1 and 2.

2.3 Nonlinear Regression
We also deploy nonlinear regression models using Gaussian Pro-
cesses as previous works have shown that the relationship between
query frequencies and disease rates is significantly better captured
by a nonlinear function [31, 33, 34, 50].

Gaussian Process (GP). GP models [45] assume that the function
f : X → y is a probability distribution over functions denoted as

f (x) ∼ GP(µ(x),k(x, x′)) , (5)

where x, x′ are rows of the input matrixX, µ(x) is the mean function
of the process, and k(x, x′) is the covariance function (or kernel)
that captures a relationship between input observations. We assume
that µ(x) = 0, and use the Squared Exponential kernel plus noise
as our covariance function. It is defined by

k(x, x′) = σ 2 exp

(
−
∥x − x′∥22

2ℓ2

)
+ σ 2

n · δ (x, x′) , (6)

where ℓ is the length-scale parameter, δ is a Kronecker delta func-
tion, and σ 2, σ 2

n are scaling constants that represent the overall
variance. In GPs, predictions (y∗) can be made by using the condi-
tional distribution p(y∗ |x∗,X, y) ∼ N(µ∗,σ 2

∗ ), where x∗ denotes a
new observation. Following the assumption that µ(x) = 0, µ∗ and
σ 2
∗ are given by

µ∗ = K(x∗,X)⊤K(X,X)−1y , and (7)

σ 2
∗ = K(x∗, x∗) − K(x∗,X)⊤K(X,X)−1K(X, x∗) , (8)

where K is a covariance matrix derived by applying Eq. 6 element-
wise. The hyperparameters of the GP model, θ = {σ , ℓ,σn }, are
learned by minimizing the negative log-marginal likelihood [45],
given by

argmin
θ

(
−1
2
y⊤j (K(X,X))

−1y − 1
2
log |K(X,X)| − n

2
log 2π

)
. (9)

Multi-Task Gaussian Process (MTGP). GPs models were ex-
tended to a multi-task version (MTGP) by Bonilla et al. [11] and
have been used in various tasks, including natural language pro-
cessing applications [7, 15]. The MTGP model incorporates allm

tasks into a single GP that is defined by

f (Q) ∼ GP(µM(x),kM(x, x′) , (10)

where x and x′ are inputs from tasks j and j ′, respectively. As
with the single-task GP, we assume µM(x) = 0. MTGP’s covariance
function, kM(x, x′), is formed by placing a GP prior over the kernel
function in Eq. 6, so that we directly induce correlations between
the tasks [11]. It is given by

kM(x, x′) = kc(j, j ′) × kx(x, x′) , (11)

where kc is a correlation kernel that explains the relation between
tasks j and j ′, and kx is the covariance that explains the relation
of inputs x and x′. This approach is also known as the intrinsic
correlation model [49].

Let KM be the covariance matrix of Q, Kc the task correlation
matrix, and Kx the covariance matrix of inputs. We define KM as

KM = Kc ⊗ Kx , (12)

where ⊗ denotes a Kronecker product. Kc is assumed to be a valid
covariance matrix (satisfying Mercer’s theorem). Its diagonal ele-
ments describe the correlation of the tasks with themselves and
the non-diagonal elements correspond to the correlation between
tasks. It can be constructed using the Cholesky decomposition and
is parameterized by the elements of the lower triangular matrix of

Kc(j, j ′) = JJ⊤, J =

©«
θ c1 0 . . . 0
θ c2 θ c3 . . . 0
...

...
. . .

...

θ cζ −m+1 θ cζ −m+2 . . . θ cζ

ª®®®®®¬
, (13)

where θ c = {θ cu }, u ∈ {1, 2, . . . , ζ } is the set of Kc’s hyperparame-
ters, with ζ =m(m + 1)/2.

Inference and hyperparameter learning in MTGPs is conducted
similarly to the single task GPs [11, 18]. Given a new data point x∗,
for task j , the predictions (y∗) can be made by using the conditional
distribution p(y∗ |x∗,Q,Y) ∼ N(µ j∗,σ 2

j∗), where

µ j∗ =
(
kcj ⊗ kx∗

)⊤
K−1
M Y , and (14)

σ 2
j∗ = KM + D ⊗ I . (15)
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In the above equations, kcj is the j
th column of Kc, kx∗ is the vector

of covariances between x∗ and the training points, and D is an
m×m matrix in which the (j, j)th element is the noise variance (σ 2

j )
for the jth task.

3 EXPERIMENTS
Our experiments assess a number of different disease modeling
scenarios, where we expect that multi-task learning will have a
positive impact. We focus on the estimation of ILI rates, which is a
well-studied task [22, 31, 43]. The locations of interest are the US
at the national level, US regions as defined by the Department of
Health and Human Services (HHS), and England.

3.1 Data Sets and Experiment Settings
ILI rates from health agencies. For the US, we use weekly ILI
rates from the Centers for Disease Control and Prevention (CDC).
These rates represent the average percentage of all outpatient vis-
its to health care providers normalized by the respective regional
population figures and are recorded by CDC’s ILI surveillance net-
work, ILINet.2 The 10 HHS US regions considered by the CDC are
shown in Fig. 1. Our data spans from September 1, 2007 to August
31, 2016 (both inclusive), which includes 9 consecutive influenza
seasons as defined by the CDC. Each (expanded) flu season begins
on September 1 and ends on August 31 of the next year. To provide
further insight, we have plotted the ILI rates of US regions 1, 2, and
the US as a whole in Fig. 2. As expected, we see that the time series
are strongly correlated, but each signal may be peaking at different
moments throughout a flu season. For England, we obtain weekly
ILI rates from Public Health England (PHE) through the syndromic
surveillance network developed by the Royal College of General
Practitioners. We focus on the same time period as for the US.

Search query frequencies. We iteratively used Google Corre-
late3 starting with flu-related query seeds (such as the word ‘flu’) to
obtain a set of 1,641 candidate search queries. However, due to the
existing seasonal confounders, many of the candidate queries we
ended up with, such as ‘college basketball’ or ‘spring break’, were
not related to flu. To remove these unrelated queries in a principled
fashion, we applied a topic filter specified using word embeddings.
The filtering process was similar to the one we proposed in [34],
but without the notion of a negative context. Embeddings were
trained using word2vec on Google news [40].4 We consider a query
q as a set of z textual tokens, {ε1, . . . , εz }. The embedding of q, eq ,
is computed by averaging across the embeddings of its tokens,

eq =
1
z

z∑
i=1

eεi . (16)

We define a topic about flu, T, as a set of two flu-related terms,
specifically the name of the disease and one of its main symptoms,
T = {‘flu’, ‘fever’}. For each of the queries, we calculate a similarity
score defined as the product of the cosine similarities between the

2See gis.cdc.gov/grasp/fluview/fluportaldashboard.html
3Google Correlate, google.com/trends/correlate
4The embeddings were downloaded from code.google.com/archive/p/word2vec.
The specific training settings are detailed in [40].

embeddings of the terms in T and eq , i.e.

S(q,T) =
2∏
i=1

cos(eq, eTi ) , (17)

where each cosine similarity component is mapped to [0, 1] via
(cos(·, ·) + 1) / 2.5 Queries with S ≤ 0.5 are filtered out and are not
considered in our experiments. The 0.5 threshold guarantees that
even in the extreme case, where a candidate query has a perfect
cosine similarity (equal to 1) with one of the two concept queries,
it also needs to have a non-negative cosine similarity (prior to the
[0, 1] mapping) with the other concept query. The semantic filter
succeeds in eliminating some confounding features, i.e. queries
that may be highly correlated with ILI rates, but are referring to
different topics.6

We retain 128 search queries after applying the word embed-
ding filter described above.7 The frequencies of these queries are
retrieved through a private Google Health Trends API, provided
for academic research with a health-oriented focus. The query
frequency expresses the probability of a short search session8 con-
ducted within a geographic region and during a specified time
period. The probability is estimated based on a 10-15% sample of
all Google searches. We obtained daily frequencies at the state-
level (for the US) and the national-level (for the US and England)
from September 1, 2007 to August 31, 2016 (both inclusive). Weekly
frequencies were estimated by averaging the daily frequencies. Sim-
ilarly, regional US frequencies were computed by averaging the
state-level frequencies.

Baselines, evaluation andparameter learning. To demonstrate
the effectiveness of multi-task learning models, we compare MTEN
and MTGP with their single-task formulations, EN and GP, respec-
tively. We use Pearson correlation (r ) and the Mean Absolute Error
(MAE) between inferred and target ILI rates as our evaluation met-
rics. For reporting the performance of multi-task learning models,
we use the average MAE and correlation of the different test periods
across all tasks (locations). The statistical significance of a perfor-
mance improvement is tested via a paired-sample t-test by using
the mean MAEs across all locations for the applied test periods
(for the two methods under comparison). In our results, we use
an asterisk (∗) to indicate that a difference in performance is not
statistically significant at the .05 level (p-value ≥ .05). For learning
the regularization parameters of the linear models, we perform grid
search on 20% of the training data; all models are trained on the
remaining 80% subset of the training data. We begin by training a
model on data from the first ϕ flu seasons, and test the model in
the following season (ϕ + 1). Then, we increase our training data
by including one more flu season (ϕ + 1) and test in the following
season (ϕ + 2); we repeat this process until we have tested on the
last flu season in our data set. Before training a model, we only
retain search queries that have a Pearson correlation higher than

5This resolves misleading similarity scores based on different sign combinations.
6All candidate queries together with their similarity scores are listed at
github.com/binzou-ucl/google-flu-mtl.
7For the experiments on England, two queries referring to medication available in the
US are replaced by England-based equivalent medication (see Section 3.4).
8A search session can be seen as a time window that may include more than one
consecutive search queries from a user account. Therefore, a target search query is
identified as a part of a potentially larger query set within a search session.

https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://www.google.com/trends/correlate
https://code.google.com/archive/p/word2vec/
https://github.com/binzou-ucl/google-flu-mtl
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Figure 3: Comparing GP (red) and MTGP (blue) ILI estimates for the US using L = 5 years and L = 1 year of training data.
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Figure 4: Comparing GP (red) and MTGP (blue) ILI estimates for US Region 9 for two burst error sampling (type C) rates (γ ).

.3 with the respective disease rates (per location). This correlation
threshold choice was motivated by the extensive experiments we
conducted in [34] (see Table 3 in that paper). Note that the correla-
tion filter is applied to each training data set separately and it may
result in retaining different features for each task. Whenever this is
the case, we maintain the intersection of features among the tasks.
In addition, the GP and MTGP models are trained on the features

that received a nonzero weight by the respective elastic net model,
similarly to the methodology proposed in [31].

3.2 Multi-Task Learning on US Regional and
National ILI Surveillance Tasks

First, we investigate whether multi-task learning can improve the
accuracy of regional US models for the estimation of ILI rates. We
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Table 1: Performance of single andmulti-task learningmod-
els for estimating ILI rates on USHHS regions. L denotes the
length of the training period in years.

EN MTEN GP MTGP
L r MAE r MAE r MAE r MAE
5 .928 .347 .935 .344∗ .936 .335 .944 .330∗
4 .919 .379 .927 .371∗ .926 .355 .938 .346∗
3 .912 .398 .921 .385∗ .916 .382 .929 .369∗
2 .901 .438 .913 .414 .906 .424 .924 .398
1 .845 .531 .858 .491 .844 .535 .867 .467
The asterisk (∗) indicates that a multi-task learning model does not yield a
statistically significant improvement over its single-task formulation.

test this hypothesis under a decreasing amount of training samples,
where L varies from 5 to 1 year(s) of historical data. By doing this
we can additionally assess whether multi-task learning models can
have a positive impact when the historical training data are limited.
The multi-task learning models are trained on data from the 10
US HSS regions jointly and their performance is compared to the
performance obtained by learning these models separately.

Table 1 enumerates the performance for the aforementioned
comparison.9 We observe that in general multi-task learningmodels
perform better than their single-task alternatives both in terms
of MAE and correlation. In addition, the nonlinear models tend
to outperform the linear ones. However, performance gains from
multi-task learning (in MAE) only become statistically significant
when L ≤ 2 years of historical training data are used. The greatest
improvement occurs for L = 1; for this case MTEN reduces EN’s
MAE by 7.5%, whereas the MTGP reduces GP’s MAE by 12.7%.

We next expand our observations by adding data for the US at a
national level. Hence, we are now considering 11 tasks (US plus the
10 US regions). The aim is to test whether we can obtain a better
model at the national level by training it together with regional data
in a multi-task learning fashion. The results enumerated in Table 2
confirm that this is the case. The impact of multi-task learning is
greater and statistically significant (in terms of MAE), when L ≤ 3

9Numbers in the table represent the average performance across the 10 US regions
and the 4 test periods. For additional clarity, all individual performance estimates (for
L = 1) are enumerated at github.com/binzou-ucl/google-flu-mtl.

Table 2: Performance of single and multi-task learning (in-
cluding regional data)models for estimatingUS ILI rates; no-
tational conventions as in Table 1.

EN MTEN GP MTGP
L r MAE r MAE r MAE r MAE
5 .960 .353 .962∗ .351∗ .965 .253 .966∗ .245∗
4 .951 .356 .954∗ .353∗ .947 .265 .949∗ .251∗
3 .939 .398 .945 .374 .942 .286 .947∗ .268
2 .930 .408 .936 .362 .933 .351 .941 .323
1 .854 .531 .868 .464 .854 .513 .875 .437
The asterisk (∗) indicates that a multi-task learning model does not yield a
statistically significant improvement over its single-task formulation.

years. The greatest improvement happens for L = 1; for this case
MTEN reduces EN’s MAE by 12.6%, whereas the MTGP reduces
GP’s MAE by 14.8%. In Fig. 3, we compare the estimates from the GP
and MTGP models for the ILI rates in the US during the test periods
from 2012 to 2016 (4 flu seasons) under two different training data
lengths (5 vs. 1 year of historical data) and against the rates reported
by CDC. Even under the 5-year training period, where the difference
in average performance between the models is small, we see that
the GP makes a significant over-prediction of the peak during the
2012/13 flu season, something that the MTGP does not. The bottom
sub-figure, where L = 1 year, showcases more clearly the level of
improvement obtained by applying a multi-task learning scheme;
MTGP delivers a quite accurate model despite being trained on a
few samples. This is an important characteristic as it suggests that
we can develop accurate disease prevalence models with much less
historical data than previously considered [22, 29, 31].

3.3 Mitigating the Effect of Sporadic ILI Health
Reports with Multi-Task Learning

In many real-world scenarios, health surveillance reports are or can
become temporally and/or geographically sporadic. For instance,
syndromic surveillance networks, especially in developing coun-
tries, may focus on a few regions rather than an entire country
due to infrastructure and economic constraints. Furthermore, estab-
lished health surveillance schemes may be exposed to data loss due
to unprecedented events, such as technical faults, natural disasters
or a spreading epidemic during which doctor visits are discour-
aged. In the following experiments, we assess whether multi-task
learning can help us establish more accurate disease models under
various scenarios of sporadic health reporting. To assess this, we
have performed several forms of down-sampling on the training
data of several US HHS regions. All experiments were conducted
by setting L = 1, i.e. based on 1-year long training periods, and
results represent the average performance after 50 sampling trials.

We have applied the following sampling techniques: (A) random
weekly sampling, (B) random monthly sampling, and (C) random
burst-error sampling. In (A), we simply take random samples from
our data, thereby simulating scenarios where reports for a specific
week may be missing. In (B), we first partition our data into non-
overlapping monthly periods and then randomly sample over these
periods, thereby simulating situations where health systems may be
affected for longer time periods. Finally, in (C) we randomly discard
a block of temporally contiguous data points, and use the remaining
points only. We apply a sampling rate γ = {0.1, 0.2, . . . , 1}, where
γ = 1 means that all data are used (no sampling), and γ = 0.1
that 10% of the weekly data (for A) or monthly periods (for B)
are maintained. In C, γ determines the size of the error block B,
B = (1 − γ )τ , where τ is equal to the size of the training data. In all
experiments, we are sampling per location, meaning that the time
points in the training data can vary across locations.10

We begin by assessing the added value of multi-task learning in
situations, where progressively less health reports are obtained for
half of the regions of a country. To simulate this, we partition the 10

10We have also conducted experiments where sampling is temporally synchronized
across regions, but we did not observe a significant difference in the performance
outcomes. Due to space constraints, we only report the non-synchronized results.

https://github.com/binzou-ucl/google-flu-mtl
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Table 3: Performance of single andmulti-task learningmod-
els for estimating ILI rates on US HHS regions belonging to
R-odd under three sampling methods (A, B and C). Train-
ing data inR-odd regions is down-sampled using a sampling
rate (γ ).

EN MTEN GP MTGP
γ r MAE r MAE r MAE r MAE
1.0 .825 .492 .843 .488∗ .828 .502 .856 .460

A

0.9 .823 .504 .840 .494∗ .825 .503 .852 .465
0.8 .806 .512 .839 .498∗ .817 .505 .850 .465
0.7 .805 .523 .834 .499∗ .811 .506 .849 .467
0.6 .800 .528 .824 .501∗ .804 .512 .835 .468
0.5 .798 .541 .823 .502∗ .804 .513 .835 .469
0.4 .789 .550 .822 .508 .801 .534 .829 .469
0.3 .768 .555 .817 .511 .801 .545 .825 .474
0.2 .758 .567 .803 .520 .789 .564 .824 .476
0.1 .698 .694 .793 .554 .700 .686 .824 .482

B

0.9 .813 .516 .835 .495∗ .814 .519 .851 .463
0.8 .806 .531 .827 .505∗ .805 .528 .843 .468
0.7 .793 .549 .823 .511∗ .792 .540 .834 .475
0.6 .775 .555 .821 .516 .776 .565 .825 .476
0.5 .752 .574 .820 .523 .756 .570 .823 .478
0.4 .702 .598 .818 .534 .751 .594 .819 .485
0.3 .621 .751 .815 .544 .650 .748 .817 .491
0.2 .510 .781 .814 .547 .516 .776 .814 .497
0.1 .425 .942 .806 .583 .433 .930 .809 .503

C

0.9 .817 .524 .836 .497∗ .818 .525 .848 .466
0.8 .805 .539 .829 .506∗ .810 .532 .839 .470
0.7 .796 .554 .817 .513 .801 .552 .832 .471
0.6 .784 .576 .814 .528 .788 .569 .825 .473
0.5 .756 .606 .807 .535 .766 .588 .819 .477
0.4 .689 .637 .799 .543 .713 .626 .818 .480
0.3 .621 .739 .794 .557 .632 .711 .804 .492
0.2 .483 .792 .781 .561 .506 .791 .800 .498
0.1 .414 .934 .780 .571 .424 .906 .796 .505

The asterisk (∗) indicates that a multi-task learning model does not yield a
statistically significant improvement over its single-task formulation.

US HSS regions into two sub-groups, R-odd and R-even consisting
of the odd and even regions respectively (following the numbering
of Fig. 1). For the regions in R-odd, we have increasingly down-
sampled their training data; regions in R-even were not subject to
down-sampling.

Table 3 enumerates the results of this experiment. The numbers
in the table represent the average MAE of all test periods over the
R-odd regions. Generally, the performance of the multi-task learn-
ing models degrades less as down-sampling increases, i.e. there are
less training data. MTGP always offers a statistically significant im-
provement over GP, whereas MTEN, in the worst case (for sampling
type A), requires a γ ≤ 0.4 to achieve this. Type A sampling, which
can be seen as having missing weekly reports in various regions at
random time points, affects single task learning models much more
than multi-task learning models. For example, for the EN model,
the MAE increased from .492 for γ = 1 (no down-sampling), to .694
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Figure 5: Comparing the performance of EN (dotted), GP
(dashed), MTEN (dash dot) and MTGP (solid) on estimating
the ILI rates for US HHS Regions (except Regions 4 and 9)
for varying burst error sampling (type C) rates (γ ).

for γ = 0.1, a degradation of 41.1%. In contrast, the MTEN model
degrades by 13.5%. The effect is more pronounced for the nonlinear
models, with GP degrading by 36.7% while MTGP degrades by only
4.8%. Note that MTGP’s MAE is equal to .482 when the fewest
data points are used (10% for γ = 0.1), which is smaller than EN’s
or GP’s MAEs, when no sampling is taking place (.492 and .502
respectively).

All models degrade worse for B and C sampling methods, which
drop blocks of data points from the training set. However, the
degradation in performance of the multi-task learning models is
much less than for the comparative EN or GP models. For example,
when γ = 0.1, MTGP improves GP’s MAE by 45.9% and 44.3%
for B and C sampling types, respectively. Fig. 4 illustrates this
performance difference by comparing the ILI estimates from the
GP and MTGP models for US region 9 under burst error sampling,
for γ = 0.5 (top) and γ = 0.1 (bottom).11 Clearly, for low sampling
rates (γ = 0.1) the MTGP model is still able to provide acceptable
performance.

In a subsequent experiment, we performed burst-error sampling
on all but two US regions with the highest population figures (Re-
gions 4 and 9). The rational behind this setting is that in many occa-
sions health reports are available for central locations in a country

11Region 9 includes the states of California, Nevada and Arizona and one of the largest
in terms of population (≈ 49.1 million).

Table 4: Performance of single andmulti-task learningmod-
els for estimating ILI rates in England; notational conven-
tions as in Table 1.

EN MTEN GP MTGP
L r MAE r MAE r MAE r MAE
5 .885 .696 .896 .491 .891 .599 .903 .474
4 .873 .734 .887 .504 .880 .664 .894 .491
3 .860 .788 .876 .530 .868 .742 .883 .517
2 .854 .842 .871 .554 .859 .815 .875 .528
1 .836 .999 .857 .603 .846 .977 .860 .586
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Figure 6: Comparing GP (red) and MTGP (blue) ILI estimates for England under varying training data sizes.

(i.e. two big cities), but are limited anywhere else. Fig. 5 compares
the performance of all regression models under this scenario. It
confirms that the pattern observed in the previous experiment still
holds, i.e. that the multi-task models are much less affected by
down-sampling. We can also see that MAE in single task learning
models increases at an exponential rate as γ decreases.

3.4 Multi-Task Learning Across Countries
We expand on the previous results to test whether a stable data
stream for a country could be used to enhance a disease model for a
different, but culturally similar, country. The underlying assumption
here is that countries that share a common language and have
cultural similarities may also share common patterns of user search
behavior.

For this purpose, we use data from the US and England and as-
sume that there are increasingly less historical health reports for
England only, in a similar fashion as in the experiments described in
Section 3.2 (L from 5 to 1 year). For the US data, we always assume
that the training window is based on the past L = 5 years. The
search queries used in both countries are the same, with the follow-
ing exception. Two of the US search queries about medication were
changed to their British equivalent because their search frequencies
in England are low; we changed “tussin” to “robitussin” and “z pak”
to “azithromycin”.

Table 4 shows a similar pattern of results as in the previous
experiments. All multi-task learning models register statistically
significant improvements compared to the single task learning ones.
As the length of the training period is reduced, the improvements
are greater; MTGP reduces MAE by 20.9% and 40.0% for L = 5 and
L = 1 year, respectively. Fig. 6 presents the estimates for the GP and
MTGP models for these extreme cases. Whereas both models seem

to be inferring the trends of the time series correctly, the multi-task
estimates are more close to the actual values of the signal’s peaks.

The results confirm our original hypothesis that data from one
country could improve a disease model for another country with
similar characteristics. This motivates the development of more
advanced transfer learning schemes [41], capable of operating be-
tween countries with different languages by overcoming language
barrier problems, using variants of machine translation.
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Figure 7: A heat map depicting MTGP’s correlation matrix
(Kc) formodeling ILI rates based on all US data (regional and
national).
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3.5 Qualitative Insights from the MTGP Model
The main motivation for using multi-task learning models within
the context of disease surveillance from Web search data was our
assumption that relations between correlated locations will be iden-
tified and accounted for. According to our results, the best per-
forming model under the vast majority of experimental settings
was the MTGP model. Given this empirical result, we assume that
the hyperparameters of the MTGP model could provide further
insight about the inner-workings of the model. After training an
MTGP model on all the US data available (10 HHS regions and
US nationally), we examined the inferred correlation matrix (Kc

in Eq. 13), which we depict using a gray-scale heat map in Fig. 7.
We can identify two areas of the heat map that are characterized
by increased correlation values, denoted as A1 and A2. A1 and
A2 are “clusters”, representing groups of north-east and central
states/regions of the US, respectively. Using the region numbering
as a crude proxy for the distance between regions, we also observe
that correlations are generally higher for neighboring areas. The
same holds for smaller internal sub-clusters of the area A2 (e.g.
regions R6-R8). Both observations provide further evidence that the
MTGP model is probably capturing existing geographical relations.

4 RELATEDWORK
The fundamentals of multi-task learning have been thoroughly pre-
sented in [12, 13]. Compared to single task learning that attempts
training on isolated tasks, multi-task learning performs this jointly
using a shared representation. The tasks can be used as valuable
sources of inductive bias for each other, leading to a more accu-
rate model [12, 13]. This may also allow more difficult problems,
such as target variables with partial observations, to be modeled
successfully [4, 8, 12, 13]. The majority of multi-task regression
models were developed by extending their single-task formulations.
Some examples for linear regression are the multi-task ℓ1-norm
regularization [3] and the ℓ2,1-norm regularization [36]. Nonlinear
multi-task regression models have also been explored, extending
Support Vector Machines [20], Gaussian Processes [11], Convolu-
tional or Recurrent Neural Networks [1, 37].

In this work, we study the utility of multi-task learning in disease
surveillance from Web search data. Existing approaches have rou-
tinely used single task models such as regularized regression [17,
22, 31, 43], Gaussian Processes [31, 34], and autoregressive frame-
works [31, 42, 47]. Here, we have chosen to apply MTEN [35] and
MTGP [11] for the following reasons: (a) EN and GPs have been
applied in many text regression [27, 44] and disease modeling ap-
proaches [31, 33, 34, 55], and (b) the sample sizes we are operating
on are limited and no performance gain would have been achieved
by deploying neural network structures (such as [16, 51, 52]).

Multi-task learning has been applied in the context of user-
generated data modeling [32, 38] and computational health [9, 10,
19, 53, 54]. Given various tasks and objectives, multi-task learning
frameworks can be different. Zhou et al. and Emrani et al. formu-
lated a fused sparse group lasso [54] and a graph regularization
approach [19], respectively, aiming to model disease progression.
Both models focused on the temporal relation between the various
tasks and utilized image data from patients. However, our work
focuses on textual user-generated content and the spatial relation

among tasks. In [9], Benton et al. used online multimodal user-
generated content to train a multi-task feedforward neural network
for classifying the mental health condition of online users. This
model tries to capture shared structures of user attributes in relation
to mental conditions. Our work, however, focuses on a collective
regression task, aiming to exploit relationships at a higher level,
determined by geography, rather than specific user characteristics.
Finally, Zhao et al. proposed a linear regularized multi-task regres-
sion model to detect civil unrest events in various locations using
Twitter data [53]. In our work, apart from a different thematic focus,
we also deploy nonlinear multi-task learning frameworks.

5 CONCLUSIONS
We have investigated the utility of multi-task learning to disease
surveillance from Web search data. Disease surveillance models
for various geographies — inside a country and across different
countries — were trained jointly such that knowledge between
different tasks could be shared. We explored both linear and non-
linear models (MTEN and MTGP) and used ILI surveillance as a
case study. Experiments were conducted on the US and England.
Our empirical results indicate that multi-task learning improves
regional as well as national models for the US. The percentage of
improvement increases as we reduce the historical training data.
For a 1-year training period, the MTGP model improved MAE by
14.8% at the regional level. Furthermore, in simulated scenarios,
where health reports (training data) are limited, we showed that
multi-task learning helps to maintain a stable inference perfor-
mance across all the affected locations. Experiments, where data
for England were modeled in conjunction with US data, indicated
that more accurate estimates were obtained for England, maxed at
a 40% of MAE reduction when using 1-year long training periods.
This suggests that multi-task learning can benefit models across
different countries as well. Finally, our assumption that correlations
in the search behavior of users across similar geographies and cul-
tures will significantly assist this type of disease modeling is also
supported by empirical evidence.

Future work will aim to extend this type of modeling by devel-
oping appropriate frameworks for transfer learning, e.g. between
countries with different languages, and apply it in real-world situa-
tions. These should include locations (regions or countries) with
underdeveloped disease surveillance schemes as well as different
disease types for which fewer historical health reports are available.
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