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ABSTRACT
A common problem in unstructured peer-to-peer (P2P) in-
formation retrieval is the need to compute global statistics
of the full collection, when only a small subset of the col-
lection is visible to a peer. Without accurate estimates of
these statistics, the effectiveness of modern retrieval models
can be reduced. We show that for the case of a probably ap-
proximately correct P2P architecture, and using either the
BM25 retrieval model or a language model with Dirichlet
smoothing, very close approximations of the required global
statistics can be estimated with very little overhead and a
small extension to the protocol. However, through theoreti-
cal modeling and simulations we demonstrate this technique
also greatly increases the ability for adversarial peers to ma-
nipulate search results. We show an adversary controlling
fewer than 10% of peers can censor or increase the rank of
documents, or disrupt overall search results. As a defense,
we propose a simple modification to the extension, and show
global statistics estimation is viable even when up to 40%
of peers are adversarial.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process; H.3.4 [Information
Storage and Retrieval]: Systems and Software—Distributed
systems

Keywords
P2P IR; adversarial IR

1. INTRODUCTION
Full-text search across peer-to-peer (P2P) networks has

received considerable interest in recent years. P2P architec-
tures can be classified as structured, where content is placed
according to defined rules to allow for efficient retrieval, and
unstructured, where there are no such rules. To guarantee
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finding content in an unstructured P2P network it is nec-
essary to search all nodes. Communication costs typically
make this infeasible, so search is probabilistic. The Proba-
bly Approximately Correct framework [10] was proposed to
model the problem of probabilistic search in an unstructured
distributed network. The PAC framework assumes that (i)
nodes operate independently, (ii) each node indexes a sub-
set of documents from the collection, (iii) the documents
indexed are not disjoint across nodes, i.e. each document
may be indexed on more than one node, and (iv) a query is
performed by sampling a random subset of nodes and com-
bining the results. The accuracy of a query is defined as the
size of the intersection of the set of documents retrieved by
a constrained, probabilistic search and the set that would
have been retrieved by an exhaustive search, normalized by
the size of the latter.

A PAC architecture gracefully handles the churn associ-
ated with nodes joining and leaving the network. This is
because the addition of any node compensates for the loss
of any other. P2P networks comprised of volunteer nodes
typically experience high levels of churn [18], and therefore
may be a good match for a PAC architecture. One example
is a PAC P2P web search engine, as proposed by Asthana
et al [1]. They demonstrated, from a communications band-
width perspective, the feasibility of using a PAC architecture
to store an index of the world wide web on one million vol-
unteer nodes, and to handle a query load equivalent to that
seen by the Google web search engine.

However, in a PAC architecture each node is only aware
of the documents it indexes, and typically does not have ac-
cess to the global statistics of the entire document collection
that are often used by modern information retrieval models.
Without these statistics, a node may not be able to correctly
score and rank its documents when responding to a query.
As a consequence, the accuracy of queries may not reach
the level predicted by the PAC framework. In this paper we
evaluate a solution that requires only a small modification
to the PAC query procedure. When each node involved in
a query returns a list of matching documents, we propose
that it also returns information on statistics derived from
its local index. After responses from all nodes have been
received, this information is used to calculate an improved
estimate of global statistics, and the retrieved documents
are then scored and ranked again to form a new, potentially
more accurate top-k result list. We test this technique with
two examples of modern retrieval models, BM25 [17], and
a language model with Dirichlet smoothing [22]. We show
that accuracy approaches the theoretical value predicted by



the PAC model, thereby overcoming a previous limitation of
the architecture.

It should be expected that a PAC P2P network comprised
of volunteer nodes will be subject to malicious behavior.
When a secure method is used to select the random set of
nodes for each query, such as a gossip-based secure peer sam-
pling service like Brahms [4], the random nature of a PAC
architecture makes it relatively resilient to attack. Unfor-
tunately, the global statistics estimation technique greatly
increases vulnerability. We demonstrate this by first iden-
tifying how an adversary can introduce malicious nodes to
perform three attacks: (i) censorship of a document, (ii)
promotion (increasing the rank) of a document, and (iii)
disruption of overall search results. We then develop theo-
retical models of these attacks, assuming the global statistics
estimation technique is not used. This establishes a baseline
of vulnerability. Next, we outline how an adversary can cor-
rupt the global statistics estimation technique, and through
simulations demonstrate the potential for manipulation of
search results is much greater than for the PAC architecture
baseline.

As a defense, we propose that the querying node measures
the skewness of global statistics information returned from
nodes, and filters out values that appear to be manipulated.
We show the technique to be highly effective, withstand-
ing up to 40% of malicious nodes before query results are
significantly affected.

1.1 Paper Overview
In Sect. 2 we discuss related work. In Sect. 3 we review

the PAC framework and provide details of BM25 and the
language model. In Sect. 4 we modify the PAC query proce-
dure to incorporate the estimation of global statistics, and
evaluate its effectiveness. In Sect. 5 we investigate how this
increases vulnerability to attack, and in Sect. 6 we propose
a defense. Finally, in Sect. 7 overall conclusions are drawn.

2. RELATED WORK
The problem of estimating global statistics for P2P infor-

mation retrieval (P2P IR) is similar to that of estimating
corpus statistics for distributed information retrieval (DIR).
The multi-database model of DIR assumes that (i) a query
is sent to a subset of the most promising databases, (ii) each
database returns matching documents, and (iii) results from
each database are merged into a final ranked result list [5].
A PAC P2P architecture can be thought of as a special case
of this model, where queries are sent to a random subset of
databases (nodes), and where each database uses the same
retrieval algorithm and contains documents randomly se-
lected from the same central document collection.

In DIR, document scores assigned by different databases
may be based on different corpus statistics and retrieval al-
gorithms, and therefore may not be directly comparable.
To correctly merge results from different databases, scores
from each database can be normalized. When databases
are uncooperative, and do not aid in this task, normalized
scores can be estimated from a sample of documents ob-
tained by submitting queries [6], but normalization is easier
when databases are cooperative and share local database in-
formation, such as corpus statistics. Viles et al. proposed
that databases periodically share corpus statistics, so that
all databases use the same corpus statistics [19]. However,
this may be impractical when there are a very large num-

ber of databases (or equivalently, nodes in a P2P network).
Callan et al. suggested that corpus statistics be requested
from databases before each query, and then passed along
with the query [7]. All databases responding to the query
can then use the same corpus statistics. However, the in-
crease in query latency may be unacceptable. Kirsch et al.
proposed that each queried database returns local corpus
statistics, in addition to the result list [15]. The corpus
statistics from all databases are then combined, and new,
normalized scores are calculated for each returned docu-
ment. This is similar to the technique we use in this paper.
Our work differs, because instead of using a deterministic ar-
chitecture, we specifically consider a PAC P2P architecture,
where documents are randomly replicated across peers, and
queries are directed to a random subset of peers.

P2P IR differs from DIR in that P2P networks are typi-
cally intended to scale to a much larger number of nodes, po-
tentially thousands or tens of thousands, and are character-
ized by much higher levels of churn. A number of solutions
have been proposed to overcome the lack of global statis-
tics at each node in P2P networks. PlanetP [11] is a P2P
information retrieval system that efficiently routes queries
to nodes containing relevant documents by using a compact
summary of the entire document index maintained at each
node. The document frequency global statistic, which is
the proportion of documents that index a given term, is not
available at each node, so it is difficult to rank documents
with the commonly used measure of term frequency-inverse
document frequency (TF-IDF). However, the summary in-
dex at each node makes it possible to determine peer fre-
quency, the proportion of peers that index at least one doc-
ument with a given term, and this is used to calculate the
measure of term frequency-inverse peer frequency (TF-IPF).
The performance of TF-IPF is shown to be similar to that of
TF-IDF. Unfortunately, for many other P2P architectures,
including PAC, it is not substantially easier to calculate peer
frequency than it is to calculate document frequency.

Lu et al. considered search of text based libraries in hier-
archical P2P networks [16]. They assume some nodes act as
top-level ‘hubs’ and provide a directory service for low-level
‘leaf’ nodes that contain text libraries. A query is routed to
one or more hub nodes, which in turn route it to appropriate
leaf nodes or pass it on to be handled by other hub nodes.
The responses from leaf nodes are returned down the query
path. Hub nodes maintain global statistics for all connected
leaf nodes, and also share these global statistics with other
hub nodes. This allows hub nodes to normalize document
scores in query responses and merge them into a ranked list
before passing the query response back down the query path.
As a result, the user is provided with a correctly merged
ranked result list. This can be a very effective solution, but
it is only applicable to hierarchical P2P architectures.

Chen et al. proposed a hybrid structured/unstructured
P2P system for full text-search [9]. The structured com-
ponent efficiently handles multi-term queries, while the un-
structured component gathers global statistics at each node
using a gossip protocol. This allows each node to maintain
up-to-date global statistics, but comes at the cost of extra
inter-node communication traffic.

Witschel et al. [21] showed that reasonable estimates of
global statistics can be derived by requesting statistics from
random nodes. Our approach also amounts to receiving
statistics from random nodes, but takes advantage of the



mechanism already in place to perform queries, whereas in
theirs the random sampling is implemented alongside the
mechanism to perform queries. Witschel et al. also showed
the effectiveness of random sampling can be improved by
combining it with a small reference corpus of global statis-
tics on each node. However, this may be less effective with a
dynamically changing document collection, and is unneces-
sary with our approach because global statistics are derived
from a large proportion of the document collection.

A major part of our contribution is an analysis of the ad-
versarial manipulation of global statistics. While the impact
of malicious nodes in P2P networks has been widely stud-
ied [20], we are unaware of investigations into attacks against
global statistics. Bender et al. [3] reduce bias of estimates of
document frequency using hash sketches. Each node creates
a hash sketch to provide a compact synopsis of documents
that contain a query term, and hash sketches are combined
to calculate document frequency. However, this is intended
to reduce bias arising from the overlap of document collec-
tions across nodes, and not bias caused by adversarial nodes.

3. PRELIMINARIES
We first review the fundamental concepts of the PAC

framework [10]. This earlier work assumes there is no ad-
versarial behavior. In Sect. 5 we drop this assumption. Let
there be n homogenous nodes in the network, m unique
documents in the collection, and each node indexes ρ doc-
uments. Let the total index capacity of the network be R.
There are ri copies of each document di replicated across
the indexes of nodes, such that

∑
i ri = R. Documents are

uniformly randomly replicated, so ri = R
m

. Queries are sent
to z randomly selected nodes, and relevant documents are
combined and ranked to form a top-k result list. The prob-
ability of finding c copies of a document di is binomially
distributed. It was shown [10] that the probability P (di) of
finding at least one copy of document di is given by

P (di) = 1−
(

1− ρ

m

)z
. (1)

For (1) to hold, the number of documents returned from
each queried node, k′, needs to be greater than or equal to
k. In [10] this was implicitly assumed. In this paper, since
we vary k′, we explicitly state this requirement.

Using the property of exponential functions, (1) can be
approximated with

P (di) ≈ 1− e−
zρ
m . (2)

As a consequence, for a fixed collection size m, the proba-
bility of finding di is determined by the product zρ.

In information retrieval, typically there are multiple doc-
uments that are relevant to a query. Let Dk(j) be the global
top-k, the set of top-k documents retrieved for query j from
the full document collection, and D′k(j) be the local top-k,
the set retrieved from a constrained search of z nodes. The
accuracy aj for query j is then defined [10] as

aj =
|Dk(j) ∩ D′k(j)|
|Dk(j)| . (3)

It was shown [10] that each query is expected to retrieve
k · P (di) documents out of the global top-k, and therefore
expected average accuracy is given by

E(aj) =
k · P (di)

k
= P (di) . (4)

3.1 BM25 Ranking Function
The first ranking function we evaluate the global statis-

tics estimation technique for is BM25. Let C be the set of
documents in the collection and T be the set of terms in a
query. The score, sBM25(d, T ), assigned to document d for
query T is then given [17] by

sBM25(d, T ) =
∑
t∈T

w(t) · s(t, d) , (5)

where

s(t, d) =
TF (t, d) · (k1 + 1)

TF (t, d) + k1
(

1− b+ b · DL(d)
AVGDL

) , (6)

w(t) = log 1
Pdoc(t)

, k1 and b are free parameters, TF (t, d) is

the term frequency of term t in document d, DL(d) is the
number of terms in document d, i.e. its length, and AV GDL
is the average document length across all documents in C.
Pdoc(t) is the probability of a document in collection C con-
taining term t, and is calculated with

Pdoc(t) =
DF (t, C)
|C| , (7)

where DF (t, C) is document frequency, the number of doc-
uments from collection C that contain the term t.

Each node has access to or can calculate all the parameters
of (5), with the exception of Pdoc(t) and AV GDL. These
are the global statistics for the collection, which we need to
estimate.

3.2 Language Model with Dirichlet Smooth-
ing

The second ranking function we consider is a language
model with Dirichlet smoothing. For a language model, the
score, slang(d, T ), assigned to each document d for query T
is given by

slang(d, T ) =
∏
t∈T

p(t|d) , (8)

where p(t|d) is the probability of the language model of doc-
ument d generating term t, and is given by

p(t|d) =
TF (t, d)

DL(d)
. (9)

This does not require global statistics of the collection. How-
ever, to prevent a score of zero if a query term is not present
in a document, it is common to use smoothing. Various tech-
niques have been proposed [22] that assign a non-zero value
to p(t|d) if the term is missing. In this paper we consider
Dirichlet smoothing, for which p(t|d) is given by

p(t|d) =
TF (t, d) + µ · Pcoll(t)

DL(d) + µ
, (10)

where µ is a free parameter to control the amount of smooth-
ing, and Pcoll(t) is the probability of term t being generated
from the collection. Pcoll(t) is given by

Pcoll(t) =

∑
d∈C TF (t, d)∑
d∈C DL(d)

, (11)

and is the global statistic we need to estimate.



4. GLOBAL STATISTICS ESTIMATION
We now outline a modification to the PAC query proce-

dure that allows the estimation of global statistics. Each
node, u, uses its local collection of documents, Lu, to calcu-
late an initial estimate of the retrieval model global statis-
tics. Using these estimated statistics the node calculates the
retrieval model score for each term from all documents in Lu.
These scores are then added to an index for use when scoring
documents for queries. The query procedure is as follows.

1. A querying node issues a query comprised of a set of
terms, T , to z random nodes (including itself).

2. Each queried node, u, then:
(a) Compiles a top-k′ result list of the highest ranked

documents from Lu for query T , using the previ-
ously calculated scores.

(b) The node returns to the querying node two sets
of information: Ru and Gu. The former contains
summary information for the top-k′ documents
that the querying node needs to produce a final
top-k result list (e.g. document id, parameters
of the document required to calculate its score).
The latter contains information to estimate the
document collection global statistics, used by the
retrieval model scoring algorithm.

3. On receiving responses from all z queried nodes, the
querying node:
(a) Calculates new, improved estimates of global statis-

tics based on Gu returned from each node.
(b) Calculates a score for each received document us-

ing summary information from Ru and the new
global statistics.

(c) Ranks documents by their new score, and presents
a final top-k result list to the user.

For BM25, the estimate of the global statistic Pdoc(t) is
calculated in Step 3(a) with

P̂doc(t) =

∑
u∈Z DF (t, Lu)∑

u∈Z |Lu|
, (12)

and the estimate of the global statistic AV GDL is calculated
with

ˆAV GDL =

∑
u∈Z

∑
d∈Lu DL(d)∑

u∈Z |Lu|
. (13)

Therefore, for BM25, Gu consists of DF (t, Lu) for t ∈ T ,
|Lu|, and

∑
d∈Lu DL(d).

For the language model, the estimate of the global statistic
Pcoll(t) is calculated in Step 3(a) with

P̂coll(t) =

∑
u∈Z

∑
d∈Lu TF (t, d)∑

u∈Z
∑
d∈Lu DL(d)

, (14)

requiring Gu to consist of
∑
d∈Lu TF (t, d) for t ∈ T , and∑

d∈Lu DL(d).
For both BM25 and the language model, the summary

information Ru consists of TF (t, d) for t ∈ T and DL(d),
for each document d in the top-k′ result list.

The collections Lu on each node used by (12) to (14) are
not disjoint across nodes, but because a PAC architecture
distributes documents uniformly randomly, global statistics
are, on average, unaffected.

4.1 Evaluation
We begin our evaluation of the above technique by first

assuming there are no malicious nodes present. This demon-
strates the maximum gain in query accuracy. In Sect. 5 we
then consider the risk that malicious nodes may be able to
manipulate search results by returning corrupt global statis-
tics information.

4.1.1 Experimental Setup
A simulated network of n = 10, 000 nodes was used. The

document collection, C, was comprised of m = 1, 692, 096
documents from the WT10g [2] web corpus. Documents
were uniformly randomly distributed across nodes so that
each node indexed ρ documents. Fifty queries were drawn
randomly from the TREC 2009 Million Query track [8] and
used as the query test set. Each query was performed us-
ing the technique described above, where each queried node
returned the top k′ = 10 matching documents, and the accu-
racy of the final top-10 list calculated with (3). Each query
was repeated for a total of ten repetitions, and the aver-
age accuracy across queries for a given value of z recorded.
In our simulations we chose parameter z, the number of
nodes a query is issued to, and ρ, the number of documents
indexed per node, such that the theoretical expected av-
erage accuracy given by (4) would be 0.9. For values of
z = 1, 2000, 4000, 6000, 8000, 10000 this meant correspond-
ing values of ρ = 1692096, 1946, 973, 649, 486, 389. Such
large values of z, and correspondingly small values of ρ, were
chosen so that the global statistics technique was evaluated
under the most challenging circumstances. These experi-
ments were then repeated, first with the querying node using
only its local documents to estimate collection global statis-
tics in step (3a), and then again assuming each node had
access to the global statistics of the document collection.

We performed the above experiments for both BM25 and
the language model. For the former, the free parameters
were k1 = 2.0, b = 0.75, and for the latter µ = AV GDL.
These are typical choices [17].

4.1.2 Results
Figure 1(a) shows average accuracy of queries for different

values of z, for BM25. There are curves for different combi-
nations of the global statistics Pdoc(t) and AV GDL, derived
either from assumed knowledge of the whole collection (coll),
or from only the collection on the querying node (node). As
would be expected, when both Pdoc(t) and AV GDL were de-
rived from the entire collection, average accuracy was about
0.9 for all values of z. However, when Pdoc(t) or AV GDL
were estimated only from the index of the querying node,
accuracy in general decreased as z increased, i.e. as the
number of documents per node, ρ, decreased and thus the
number of documents from which global statistics could be
estimated decreased. Deriving Pdoc(t) from only the index of
the querying node caused a drop in accuracy of up to nearly
35%, whereas doing the same for AVGDL caused a less se-
vere drop of up to about 10%. Figure 1(b) shows the results
for the language model. Here the estimated global statistic
is Pcoll(t), and using documents only from the querying node
to derive the estimate resulted in a drop of up to about 20%.

Fig. 1(c),(d) show the results when the global statistics
estimation technique is used. There are curves for different
values of k′, i.e. the maximum number of results returned
from each of the z queried nodes. For BM25, the global
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Figure 1: Average accuracy of queries, where each pair of z, ρ values is chosen to achieve a theoretical expected
average accuracy of 0.9. Global statistics are estimated from either the whole collection (coll) or from just the
querying node (node). (a) is for BM25, where the curves from top to bottom are for (coll Pdoc(t), coll AV GDL),
(coll Pdoc(t),node AV GDL), (node Pdoc(t), coll AV GDL), and (node Pdoc(t),node AV GDL). Note the last two
curves overlap. (b) is for the language model, where the curves from top to bottom are for (coll Pcoll(t)),
and (node Pcoll(t)). (c) and (d) are for BM25 and the language model respectively, using the global statistics
estimation technique with k′ = ρ (top) or k′ = 10 (bottom). Note the two curves in (c) overlap.
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Figure 2: The percentage of queries that achieve accuracy x when global statistics are estimated from either
the whole collection (coll) or from just the querying node (node). (a) is for BM25, where the curves from

right to left are for (coll Pdoc(t), coll AV GDL), (P̂doc(t), ˆAV GDL), and (node Pdoc(t),node AV GDL). Note the first
two curves overlap. (b) is for the language model, where the curves from right to left are for (coll Pcoll(t)),

(P̂coll(t)), and (node Pcoll(t)). For z = 10, 000, ρ = 389, and k′ = 10.

statistics estimation technique achieves accuracy that is very
close to the theoretical value of 0.9, for all values of z. The
same is true for the language model for k′ = ρ, but for
k′ = 10 average accuracy drops to 0.8 for larger values of z,
which is about 10% lower than the theoretical value.

We are also interested in how accuracy varies across differ-
ent queries. For parameters z = 10, 000, ρ = 389, and k′ =
10, Fig. 2(a),(b) show the proportion of queries that achieve
a given accuracy, for BM25 and the language model respec-
tively. With only 389 documents per node these results rep-
resent performance under challenging circumstances. Nev-
ertheless, for BM25, the proportion of queries achieving a
given accuracy when using the global statistics estimation
technique (P̂doc(t), ˆAV GDL) is almost identical to the case
where collection global statistics are available at each node
(coll Pdoc(t), coll AVGDL), e.g. about 95% of queries achieve
an accuracy of at least 0.7. When global statistics are de-
rived only from documents at the querying node (node Pdoc(t),
node AVGDL), this figure falls to 15%. For the language
model, the global statistics estimation technique does not
perform quite as well, with about 65% of queries achieving
an accuracy of at least 0.7, compared to about 90% for when
global statistics are available at each node, and 60% when
global statistics are estimated from only documents at the
querying node. However, for the global statistics technique
over 95% of queries achieve an accuracy of at least 0.3, com-
pared to less than 80% when global statistics are estimated
from only documents at the querying node.

4.1.3 Discussion
The experiments showed that the global statistics estima-

tion technique can achieve an average query accuracy that
is very close to what would be attained if global statistics
had been available at each node, at least for larger values of
k′, even for extreme cases where each node indexes only a
small proportion of the document collection. To understand
why this is the case, we observe that for each query global
statistics are estimated from zρ documents, a potentially
very large sample. Of course these documents are unlikely
to be distinct. The number of distinct documents, ndistinct,
is between ρ and min(m, zρ). It is straightforward to show
that the expected value of ndistinct is given by

E(ndistinct) = P (di)m , (15)

where P (di) is given by (1). It follows that the expected
coverage for an estimate, i.e. the proportion of documents
in the collection that the estimate is based on, is given by

E(Coverage) =
ndistinct

m
= P (di) . (16)

The expected average accuracy for a top-k query, as given by
(4), is also equal to P (di). Therefore, by choosing network
parameters ρ and z to increase theoretical expected average
accuracy, coverage is also increased for the global statistics
estimates, and accuracy moves towards the upper bound
predicted by the PAC framework. For example, a network
could be designed to achieve high theoretical accuracy, such



as 0.9, which means that estimates of global statistics will
be based on 90% of the document collection, and would be
expected to be very close to the correct global statistics.

As was apparent for the language model with k′ = 10,
the effectiveness of the global statistics estimation technique
may be reduced when k′ < ρ. Since the top-k′ result lists
are calculated using global statistics estimated from just the
local index of one node, ranking may be incorrect, and there-
fore relevant documents may not be returned to the query-
ing node. Consequently, no matter how accurate the final
global statistic estimate is, these documents will never ap-
pear in the top-k result list presented to the user. However,
in practice it is likely that a large value of k′ can be used,
since the communication cost associated with each result in
the result list is small. For example, both BM25 and the
language model require only a document id, and values for
term frequency and document length to be returned for each
result.

5. ADVERSARIAL ATTACKS
We now show that if an adversary can introduce mali-

cious nodes, the global statistics estimation technique can
be subverted to manipulate search results. In the analysis
that follows, it is assumed an adversary controls the pro-
portion f ∈ [0, 1] of the n nodes in the network. To ensure
no node has a greater influence on search results than any
other, each node is restricted to indexing the same number
of documents, ρ. In practical systems the capacity of each
node may differ, and can be dealt with by allowing nodes
with higher capacities to operate multiple ‘virtual’ nodes,
each of which has capacity ρ. This resembles the Sybil at-
tack [12], where an adversary impersonates a large number
of nodes to control the network. Therefore, the defensive
techniques discussed in [12] to restrict the number of nodes
operated by an individual need to be applied to both vir-
tual and physical nodes. For example, a check can be made
to verify that only a limited number of virtual or physical
nodes are associated with an email address.

We consider the following attacks.

• Censorship. Reduce the likelihood of a target docu-
ment appearing in the final top-k result list.

• Promotion. Increase the rank of a target document
so that it is more likely to appear in the final top-k
result list, and if it does appear, to rank higher.

• Disruption. Reduce the ‘correctness’ of the final top-
k result list, i.e reduce accuracy, as given by (3).

A node responding to a query returns Ru for the top-k′

matching documents, and Gu. The former contains result
summary information, such as document id, document length
etc, and the latter contains information on global statistics.
An adversary can perform the above attacks by using ma-
licious nodes to return corrupt information for Ru and/or
Gu. (We assume that malicious nodes cannot construct and
return corrupt documents that will score highly for a query;
this can be enforced by requiring documents to be digitally
signed by a trusted third party.)

In our analysis we initially assume the global statistics es-
timation technique is not used, and attacks only corrupt Ru.
This establishes the baseline vulnerability inherent to the
PAC architecture. We then consider the increase in attack

effectiveness that arises when the global statistics estimation
technique is used and an adversary can also corrupt Gu.

5.1 Baseline Vulnerability
Malicious nodes can perform the Censorship attack by

returning corrupt summary information for k documents in
Ru, such that each document would score higher than the
target document and prevent it from appearing in the final
top-k result list. For the Promotion attack, malicious nodes
would always include the target document in Ru, along with
corrupt summary information so that it will outrank any
other. For the Disruption attack, malicious nodes would
return k irrelevant documents, all with corrupt summary
information that ensures they will outrank other documents.
To have an effect on a query, these attacks require only a
single malicious node to be one of the z nodes randomly
sampled. If the proportion f of nodes are malicious, the
probability P (mi) of a query visiting at least one malicious
node is

P (mi) = 1− (1− f)z . (17)

For z = 1, 000, it would require an adversary to control
only f = 0.3% of nodes for there to be a 0.95 probability of
a malicious node being visited by the query, and therefore
allow the adversary to manipulate on average 95% of queries.

However, incorrect summary information in Ru can be de-
tected by retrieving the documents. For example, a querying
node, on receiving responses from all queried nodes, could
retrieve the documents in the final top-k result list, calcu-
late the summary information for each, and only display to
the user results with correct scores. The extra latency and
communication costs involved with this may be unaccept-
able, so an alternative is to display the top-k result list to
the user, unchecked. Only when a user chooses to view a
document is it retrieved and the score verified. If the score
proves to be incorrect, then the document is not made avail-
able to the user. Since incorrect summary information can
be easily detected, we assume an adversary does not per-
form attacks using this approach. A more subtle, and less
easily detectable alternative, is for malicious nodes to re-
turn correct summary information for documents in Ru, but
to exclude specific documents. Each node indexes random
documents, so it is more difficult to determine if a node is
not returning a given document because it is behaving mali-
ciously, or because the document is simply not in its index.
Attacks carried out by excluding documents form the base-
line of vulnerability for a PAC architecture.

5.1.1 Censorship
The Censorship attack can be performed by malicious

nodes excluding the target document. Let P ′(di) be the
probability of retrieving document di when the proportion f
of nodes are malicious and exclude it. From (1) it is straight-
forward to show that P ′(di) is given by

P ′(di) = 1−
(

1− ρ

m

)z(1−f)
. (18)

Using the property of exponential functions, this can be ap-
proximated with

P ′(di) ≈ 1− e−(1−f) zρ
m . (19)

Equations (2) and (4) can be used to estimate the expected
average accuracy for a query when there are no malicious



nodes present, E(aj). P ′(di), for a given proportion f of
malicious nodes, and E(aj) are both determined by zρ

m
. Fig-

ure 3 shows the effect on P ′(di) as f is varied. Each curve de-
picts different choices of zρ

m
to achieve E(aj) = 0.3, 0.6, 0.9.

As E(aj) increases, resilience to censorship also increases.
Typically, zρ

m
would be chosen to achieve high average ex-

pected accuracy, so resilience to censorship would be high.
For example, when E(aj) = 0.9, it would require about 70%
of nodes to be malicious to reduce the probability of finding
di by 50% from 0.9 to 0.45.
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Figure 3: Probability P ′(di) of retrieving document
di when the proportion f of nodes are performing
the Censorship attack by excluding di. For E(aj) =
0.9 (top), 0.6 (middle), 0.3 (bottom).

5.1.2 Promotion
The Promotion attack can be carried out by censoring

documents that rank higher than the target document, thus
improving the rank of the target document. If there are u
documents in the global top-k for a query that rank higher
than the target document, and if malicious nodes never re-
turn them when queried, the probability P (u′) of retrieving
u′ documents out of the total u is given by

P (u′) =

(
u

u′

)
P ′(di)

u′ (
1− P ′(di)

)u−u′
, (20)

where P ′(di) is the probability of retrieving one of the ex-
cluded documents, as given by (18). Since this is a standard
binomial distribution, the expected number of documents
retrieved is

E(u′) = u · P ′(di) . (21)

If document di is retrieved for a query, then its rank is one
plus the number of other documents retrieved that rank
higher. Therefore, (21) can be expressed in terms of the
expectations of the rank of the target document before the
attack, rbefore, and the rank after, rafter:

E(rafter) = (E(rbefore)− 1)P ′(di) + 1 . (22)

As for the Censorship attack in Sect. 5.1.1, we consider the
effectiveness of this attack for an example system designed to
achieve expected average accuracy of 0.9 when no malicious
nodes are present. This requires zρ

m
= 2.3. An adversary

would need to control over f = 50% of nodes to increase the
expected rank of a target document from 10 to 2.

5.1.3 Disruption
The Disruption attack can be performed in a similar man-

ner to the Promotion attack, except rather than excluding
the u documents that rank higher than a target document,

all k documents in the global top-k for a query are excluded.
The probability P (u′) of retrieving u′ documents from the
global top-k for the query is given by (20) (where u = k),
and the expected number of documents retrieved, E(u′), is
given by (21). If a′j denotes accuracy for a query j when
malicious nodes are censoring all global top-k documents,
then E(a′j) is given by

E(a′j) =
E(u′)

k
= P ′(di) . (23)

As an example, for zρ
m

= 2.3, expected accuracy for queries is
0.9 when no malicious nodes are present. If we assume users
find search results acceptable as long as expected accuracy
remains above 0.5, then an adversary would need to control
over f = 70% of nodes to reduce expected accuracy below
this threshold.

5.2 Increased Vulnerability - Global Statistics
Estimation

Section 5.1 established a theoretical baseline for the vul-
nerability of a PAC architecture, which assumes attacks are
performed by excluding documents. In this section we inves-
tigate the increased vulnerability that the global statistics
estimation technique introduces. For the following analy-
sis, the global statistic to be estimated for BM25 is Pdoc(t),
calculated at the querying node with (12), and for the lan-
guage model Pcoll(t), calculated at the querying node with
(14). BM25 also requires the global statistic AVGDL, but
since AV GDL is a single value, it is feasible for every node
to store it. For a fixed document collection size, this is triv-
ial to implement; for a collection size that varies, a gossip
protocol can be used to compute it [14].

When estimating Pdoc(t) and Pcoll(t) with (12) and (14),
the numerator and denominator of both equations are values
returned from queried nodes. If no limits are placed on these,
even a single malicious node can dominate the result. This is
prevented for Pdoc(t), however, since we restrict the capacity
of each node to ρ. Pdoc(t) is then estimated with

P̂doc(t) =

∑
u∈Z min (ρ,DF (t, Lu))

ρ · z . (24)

To prevent a single node dominating the estimate of Pcoll(t),
it is assumed that the sum of document lengths on a node
is AV GDL · ρ. Approximate estimates of Pcoll(t) can then
be calculated with

P̂coll(t) ≈

∑
u∈Z min

(
ψ,
(∑

d∈Lu TF (t, d)
))

ψ · z , (25)

where

ψ = AV GDL · ρ . (26)

We shall see that this approximation can still yield very good
results.

Equations (24) and (25) are more succinctly expressed as

ĝt =
1

c

∑
u∈Z

x
(u)
t , (27)

where ĝt is an estimate of the global statistic gt. For BM25,

we have gt = Pdoc(t), and x
(u)
t equal to the numerator of (24)

and c equal to the denominator. For the language model,

we have gt = Pcoll(t), and x
(u)
t equal to the numerator of



(25) and c equal to the denominator. The Gu information

returned from each node then consists of x
(u)
t : t ∈ T .

We now investigate how an adversary may attempt the
attacks from Sect. 5. Experiments were performed for both
BM25 and the language model, but since findings for both
are similar, for brevity we only present results for BM25.

5.2.1 Censorship/Promotion
An adversary can decrease/increase the score of a target

document for query T by using malicious nodes to manip-
ulate ĝt : t ∈ T . However, this will not necessarily de-
crease/increase the rank, since the scores of other documents
may also be decreased/increased. A more effective approach
is to iterate through different values of gt : t ∈ T , calculate
the rank of the target document for each, and select the val-
ues that minimize/maximize rank. We denote these optimal
values as ġt : t ∈ T . An adversary then uses malicious nodes

to return a corrupt value, x′t, for x
(u)
t , and manipulates ĝt

to be ġt. To find the required value of x′t, we observe that
during the attack ĝt can be estimated with

ĝt =
z

c

(
(1− f)x

(u)
t + fx′t

)
. (28)

The value of x′t is then selected so that ĝt = ġt. If the
proportion of nodes an adversary controls, f , is too small to
select a value of x′t that will satisfy (28), then ġt : t ∈ T are
discarded and the iteration repeated until values of ġt : t ∈ T
are found that allow (28) to be satisfied.

Figure 4 illustrates the potential effect of these attacks
for the queries T1 =‘small dog’ and T2 =‘brown dog’ on the
rank of two documents selected from the WT10g corpus, D1

and D2. Each curve is calculated with (5) by assuming full
access to the document collection, and using global statistic
g1 when scoring the first term and g2 for the second. The
range of ranks achieved by varying g1 and g2, and therefore
the potential for manipulation, is considerable, but depends
heavily on the query-document combination.

We simulated these attacks using the experimental setup
from Sect. 4.1.1, but with a proportion f of nodes behav-
ing maliciously. Malicious nodes performed the attacks by
returning corrupt global statistics, as described above, and
by excluding specific documents, as described in Sects. 5.1.1
and 5.1.2. In order to observe the full range of ranks a doc-
ument may achieve when under attack, the final result list
for each query was not restricted to just the top-k, i.e. all
retrieved documents were treated as important, and each
queried node returned results for all documents it indexes,
i.e. k′ = ρ.

Figure 5 shows results for the query T =‘small dog’, when
performing the Censorship attack on D2, and when perform-
ing the Promotion attack on D1. There are z = 2, 000 nodes
involved in the query, and each node indexes ρ = 1, 946 doc-
uments. Considering first the Censorship attack (top left),
when varying the proportion of malicious nodes from 0 to
10% to 20% to 30%, rank decreases from 5 to 9 to 582 to
2166. Therefore, for top-k queries, when k = 10 it would
require an adversary to control less than 20% of nodes for
the target document to not appear in the final top-10. Com-
pared to the PAC architecture baseline, where correct global
statistics are available at each node, and the attack is per-
formed only by excluding D2, then from (18), with 20% of
malicious nodes there is still an expected 84% probability of
D2 being retrieved and appearing in the final top-10.
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Figure 4: Effect of global statistics on rank of doc-
uments D1 and D2 for queries T1 = ‘small dog’ and
T2 = ‘brown dog’, where g1 is the global statistic for
the first term, and g2 is for the second. For query-
document combinations T1, D1(top left), T1, D2(top
middle), T2, D1(bottom), T2, D2(bottom left).
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Figure 5: Censorship attack on D2 by manipulat-
ing global statistics (top left). Promotion attack on
D1 by manipulating global statistics and excluding
documents (top), or just by excluding documents
(bottom). For query T = ‘small dog’, and z = 2, 000,
ρ = 1, 946.

From the Promotion attack curve (top), it can be seen that
varying the proportion of malicious nodes from 0 to 10% to
20% to 30% increases the rank of D1 from 20778 to 84 to 11
to 9, demonstrating that fewer than 30% of malicious nodes
are required to bring D1 into the top-10. The Promotion
attack baseline curve (bottom) shows the PAC architecture
baseline, which is the theoretical expected rank calculated
with (22), when correct global statistics are available at each
node, and nodes perform the Promotion attack by only ex-
cluding documents. In this case, over 95% of malicious nodes
are required to promote D1 into the top-10. Clearly, for both
the Promotion and Censorship attacks, the global statistics
estimation technique can greatly increase vulnerability to
manipulation.

We repeated the simulations with k = k′ = 10, i.e. only
the final top-10 documents were considered important, and
each queried node returned the top-10 matching documents.
Results were very similar to the previous simulations for
documents at ranks 1 to 10.

5.2.2 Disruption
An adversary can achieve maximum disruption of a query

by using malicious nodes to return responses that make es-
timates of global statistics at the querying node, ĝt : t ∈ T ,
as ‘wrong’ as possible. For example a global statistic would
be assigned a high value, even though it should be low, and
vice-versa. The Disruption attack can be represented as an
optimization problem, where ĝt : t ∈ T are manipulated to
maximize the squared difference, δ, between the true global
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Figure 6: Disruption attack by manipulating global
statistics and excluding documents (bottom), or just
by excluding documents (top). For z = 2, 000, ρ =
1, 946.

statistic gt and the estimated value ĝt for each term t in the
query, as given by

δ =
∑
t∈T

(gt − ĝt)2 , (29)

with ĝt : t ∈ T constrained according to the global statis-
tics they represent, e.g. for gt = Pdoc(t) or gt = Pcoll(t),
we require 0 ≤ ĝt ≤ 1. Standard non-linear optimization
techniques can be used to find values of ĝt : t ∈ T that
maximize (29). As for the Censorship/Promotion attacks in
Sect. 5.2.1, we denote these optimal values as ġt : t ∈ T .
Again, an adversary can use malicious nodes to return x′t,
so that each value of ĝt, as calculated with (28), becomes ġt.

Simulations were performed using the setup from Sect. 4.1.1,
with fifty randomly selected queries and k = k′ = 10. Ma-
licious nodes returned corrupt global statistics information,
Gu, to maximize (29). In addition, they also excluded the
global top-k documents for the query, as described in Sect. 5.1.3.
Figure 6 shows the results for z = 2, 000 and ρ = 1, 946.
The bottom curve depicts average accuracy across the fifty
queries for different proportions of malicious nodes. Also,
as a baseline, the top curve depicts theoretical expected av-
erage accuracy, calculated with (23), that assumes correct
global statistics are available at each node and that ma-
licious nodes perform the Disruption attack by excluding
documents. Clearly, the potential for attack is much greater
when the adversary is able to corrupt global statistics. With
only 10% of malicious nodes, average accuracy drops from a
theoretical baseline of about 0.9 to about 0.6, a nearly 35%
fall.

6. ROBUST GLOBAL STATISTICS ESTIMA-
TION

Section 5.2 showed that when the global statistics estima-
tion technique is used, even a small proportion of malicious
nodes can significantly affect query results. We now pro-
pose a defense. The querying node calculates estimates of
the global statistics, ĝt : t ∈ T , using (27) with values of

x
(u)
t : t ∈ T returned from each queried node u. Values of

x
(u)
t from non-malicious nodes are expected to be normally

distributed, since each node determines the value from its
local collection of random documents. If an adversary at-
tempts to bias ĝt by using malicious nodes to return skewed

values of x
(u)
t , then this normal distribution will be skewed

in one direction. We propose that the querying node mea-
sures this skewness, Kt, using a standard measure [13] given
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Figure 7: Censorship and Promotion attacks. As
Fig. 5, but with skewness defense in operation.
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Figure 8: Disruption attack. As Fig. 6 but with
skewness defense in operation.

by

Kt =

√
z(z − 1)

z − 2

 1
z

∑
u∈Z (x

(u)
t − x̄

(u)
t )3(

1
z

∑
u∈Z (x

(u)
t − x̄

(u)
t )2

) 3
2

 , (30)

where x̄
(u)
t = 1

z

∑
u∈Z x

(u)
t . If Kt is greater than a thresh-

old τ , the querying node sorts values of x
(u)
t , and repeatedly

discards the largest value until skew is within the limit. Sim-
ilarly, if Kt < −τ , the smallest value is repeatedly discarded.

We reran the attack simulations from Sect. 5.2, but with
the querying node reducing skewness to within the threshold
τ = ±0.1. Figures 7 and 8 show the results for the Censor-
ship/Promotion, and Disruption attacks respectively. For a
proportion of malicious nodes f < 40%, the attacks have

very little effect. This is because malicious values of x
(u)
t

are being removed, and the only impact of the attacks is to
reduce the number of non-malicious values available for com-
putation of global statistics. When f rises above 40%, the
defense rapidly breaks down due to the proportion of mali-
cious nodes nearing that of the proportion of non-malicious
nodes, and therefore it is no longer possible to distinguish
between malicious and non-malicious nodes.

The defense is effective because in order to manipulate
global statistics, an adversary needs to introduce skew, but
the defense directly measures skew and limits it. With this
defense the global statistics estimation technique can be
safely used to improve query accuracy when fewer than 40%
of nodes are malicious. For many situations this may be suf-
ficient. For example, to select a random subset of nodes for
each query, a gossip-based secure peer sampling service like
Brahms [4] can be used. Brahms can withstand up to 20% of
nodes behaving maliciously before sampling becomes signif-
icantly biassed. Consequently, it would be Brahms that im-
poses the limit on the maximum number of malicious nodes
tolerated, and not the technique to estimate global statistics.



7. CONCLUSIONS AND FUTURE WORK
In unstructured P2P information retrieval, performance

can be severely degraded by poor estimates of the global
statistics of the collection. For the case of unstructured P2P
PAC search, we proposed that a querying node estimates
the global statistics of the collection using information de-
rived from the local statistics of the responding nodes. We
showed, both theoretically, and experimentally with BM25
and a language model, that such an approach can provide
accurate estimates of global statistics and significantly im-
prove retrieval performance. The solution is well suited to a
PAC architecture because it requires only a minimal amount
of extra information to be returned from queried nodes. Un-
fortunately, it greatly increases the ability for an adversary
to manipulate search results. We identified attacks where
an adversary may attempt to (i) censor a document, (ii)
promote a document, or (iii) disrupt overall search results.
Through theoretical modeling and simulations we showed
that while a PAC architecture is resilient to even a large
proportion of malicious nodes, when the global statistics
estimation technique is used, an adversary would need to
control only 10% of nodes to have a significant impact. To
protect against this, we proposed that the querying node fil-
ters out the most skewed responses, and showed that more
than 40% of nodes would need to be malicious before these
attacks become effective.

Our work assumed that a peer’s local collection consists of
a uniform random sample from the global collection. Future
work is needed to analyze the case where document sampling
is non-uniform, such as when based on document popular-
ity. In this case, we believe that hash sketches, described in
Section 2, may form the basis of a solution.
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