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ABSTRACT
Hash tables have been proposed for the indexing of high-
dimensional binary vectors, specifically for the identification
of media by fingerprints. In this paper we develop a new
model to predict the performance of a hash-based method
(Fingerprint Hashing) under varying levels of noise. We
show that by the adjustment of two parameters, robustness
to a higher level of noise is achieved. We extend Fingerprint
Hashing to a multi-table range search (Extended Fingerprint
Hashing) and show this approach also increases robustness
to noise. We then show the relationship between Extended
Fingerprint Hashing and Locality Sensitive Hashing and in-
vestigate design choices for dealing with higher noise levels.
If index size must be held constant, the Extended Finger-
print Hash is a superior method. We also show that to
achieve similar performance at a given level of noise a Lo-
cality Sensitive Hash requires nearly a six-fold increase in
index size which is likely to be impractical for many appli-
cations.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Indexing methods

General Terms
Algorithms,Theory,Performance

1. INTRODUCTION
Identifying digital music files, e.g. mp3, is an essential

task of various applications. In particular, when importing
mp3 files, music management applications such as iTunes
need to identify the title of the song, the artist, etc. in or-
der to enter the file into their database. This identification is
typically performed by extracting one or more digital finger-
prints from the song and comparing the fingerprint against a
database of known fingerprints. Identification is also needed
for applications such as tracking illegal use of copyrighted
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media, or for the automatic monitoring of broadcast me-
dia for the purposes of royalty collection and advertisement
verification [1].

The problem of music identification can be broadly di-
vided into two sub-problems. The first relates to feature
extraction, i.e. the choice of features used to form the fin-
gerprint. The second relates to nearest neighbor search, i.e.
how to efficiently find the closest match to the extracted
fingerprint.

This paper concentrates on the nearest-neighbor search.
We note that the extracted fingerprint is often a high-dimen-
sional binary vector, e.g. of dimension 8,000, corrupted by
compression, transmission and other processes. We assume
that a good fingerprint generation scheme results in an ap-
proximately uniform distribution of fingerprints, and that
the correct answer to a query is likely within a certain range
which can be determined empirically. (A review of finger-
print generation methods can be found in [5].)

Nearest neighbor search is a well-studied problem [8]. Ear-
ly on it was recognized that algorithms which worked well
for low dimensions did not scale to higher dimensions [8].
Techniques have been developed for higher dimensions (to
about twenty) [3, 17, 7]; other work has focused on devel-
oping approximate methods for even higher dimensions [12,
14, 2, 16].

For music identification, one common search algorithm is
based on hashing subfingerprints [9]. Section 2 describes
three hash-based methods, fingerprint hashing and its de-
rivative extended fingerprint hashing, and the Locality Sen-
sitive Hash–based sample hash. We derive equations for the
search success rate as a function of bit error rate for each
method. In Section 3 we model search speed as a function
of the total number of retrieved results, and show that mod-
ifying the parameters of a sample hash, one can achieve a
lower search cost than an extended fingerprint hash, at the
cost of a larger index. The analysis in this paper links two
indexing methods under a common framework, one which
allows designers to implement binary database indexes in a
principled way.

2. HASH-BASED SEARCH
In this section we describe a basic fingerprint hash and

show that the successful search rate is a function of finger-
print length, hash-table key length and the underlying bit
error rate of the queries. We then describe an extended fin-
gerprint hash based on a range search and derive its corre-
sponding successful search rate. We also describe the Local-
ity Sensitive Hash–based sample hash, and show that there
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Figure 1: A diagram of fingerprint hashing for audio fingerprints.

is a link between sample hashing and extended fingerprint
hashing.

2.1 Fingerprint Hash
We briefly describe the fundamentals of hash-based search

for music identification, based on the work of Haitsma and
Kalker [9]. To distinguish between this method and other
hashed based methods in this paper, we denote this method
Fingerprint Hash.
In [9] each fingerprint consists of 8192 bits. This finger-

print is disjointly sub-divided into 256 subfingerprints of 32
bits. Using the subfingerprints as keys, a hash table is con-
structed. There are 232 possible subfingerprints, but only
those that exist in the database are entered in the hash ta-
ble. Buckets for each key contain pointers to songs that are
known to contain this subfingerprint. A single subfinger-
print can occur at many locations within a single song and
can also appear in multiple songs. This hash table is analo-
gous to an inverted index [19, 15] used in text retrieval. As
such, this hash-based method is sometimes referred to as an
inverted file index [5]. The data structure is illustrated in
Figure 1.
For a query, each subfingerprint is looked up in the hash

table, and a list of the candidate matching fingerprints is
generated. If more than one candidate exists, the Hamming
distances between the query and all candidate fingerprints
are computed, and the closest candidate is chosen.
The evaluation of an indexing and search system has mul-

tiple components: memory needed, compute cost, the effect
of false positives and false negatives. A fingerprint hash
search requires multiple retrievals, each of which may re-
turn multiple values. The retrieval of a hash table value is
of O(1), so we expect the bulk of the cost of a query will due
to the costly high-dimesional comparison between the query
and each candidate fingerprint retrieved. Thus we model
the cost of a query as the number of candidate fingerprints
retrieved per search. Another major factor we consider in
this paper is the storage size of the hash table index.
The hash table system described above works well as long

as the bit error is low (less than about 15%). This because

the system assumes that at least one subfingerprint is error

free. For bit error rates of less than 15%, this is very likely.
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Figure 2: The probability, P [p ∈ Q], that a finger-
print contains at least one error-free subfingerprint
as a function of the bit error rate, Pb

Consider a fingerprint query q corrupted by noise, and
let p be the correct match in the database. Querying the
database will return a set Q of candidate fingerprints, the
contents of all the buckets accessed by each subfingerprint
key. If one or more subfingerprints of p and q match, then
p ∈ Q and p can be found by considering each member of
Q.

Let Pb be the probability that a single bit is in error; this
is our underlying bit error rate. Then the probability that an
entire subfingerprint of length ψ is error free is (1−Pb)

ψ. The
probability of at least one error in a subfingerprint is given by
1−(1−Pb)

ψ. If a full fingerprint consists of ℓ subfingerprints,
then the probability that all ℓ subfingerprints have errors is
given by (1− (1−Pb)

ψ)ℓ. The probability that a fingerprint
has at least one error-free subfingerprint and will therefore
return the correct match p in the candidate fingerprint list
Q is therefore

P [p ∈ Q] = 1− (1− (1− Pb)
ψ)ℓ (1)
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Figure 3: Fingerprint Hash: The probability of
a successful search, P [p ∈ Q], for subfingerprint
lengths, ψ = 16, 32 and 64.

This probability is plotted in Figure 2 for the case where the
number of subfingerprints ℓ = 256 and each subfingerprint
consists of ψ = 32 bits.
As one might expect, the probability that a fingerprint

contains at least one error-free subfingerprint is high for low
bit errors and low for high bit errors, with a rapid transition
at a bit error rate of about 0.175. If we require a successful
search rate of 90%, this system will not work for bit errors
greater than about 0.136. This corresponds with empirical
observations that this method does not work well for higher
bit errors [9, 5]. In general, Equation 1 allows us to predict
the performance of a fingerprint hash for any bit error rate.
Such an analysis has not been presented before. Further-
more, Equation 1 identifies two parameters, the length of
a subfingerptint, ψ, and the number of subfingerprints, ℓ,
which can be altered to improve the robustness of the basic
hash-based search to higher bit error rates as required.
The effect of various subfingerprint lengths ψ is shown in

Figure 3. Decreasing ψ leads to a greater bit error rate Pb
for which P [p ∈ Q] is high. The search success rate P [p ∈ Q]
is maximized when ψ = 1 but it results in a hash table of
two keys, ‘1’ and ‘0’, and the search becomes exhaustive. In
practice, ψ is constrained on the one hand to be sufficiently
large that the hash table contains only a few entries in each
bucket, and on the other hand ψ must be sufficiently small
to ensure that for a given bit error rate, the probability is
high that at least one subfingerprint is error-free.
The effect of various fingerprint lengths ℓ is shown in Fig-

ure 4. Increasing ℓ leads to a greater bit error rate Pb for
which P [p ∈ Q] is high (although the improvement is much
smaller than corresponding changes to ψ). In this case, the
limiting factor is the length of the fingerprint. Increasing ℓ
increases the dimensionality of the fingerprint, and dimensi-
nality is directly proportional to the time needed to capture
a fingerprint query. Moreover, increasing ℓ also increases the
number of candidate subfingerprints that must be examined,
as discussed next.
Both of these methods increase robustness to higher bit

error rate Pb at the cost of returning more results, that is by
increasing the size of Q. Let n be the size of the database in
fingerprints, τ be the number of hash table accesses, and b
be the average number of items in a bucket (also known as
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Figure 4: Fingerprint Hash: The probability of a
successful search, P [p ∈ Q] for the number of subfin-
gerprints in a fingerprint, ℓ = 256, 512, 1024, and
2048.

the Load Factor in conventional hashing). Then the number
of results returned by the search, |Q| can be modeled by

|Q| = τb (2)

For a basic fingerprint hash as in [9], hash table accesses
τ = ℓ and the average number of fingerprints in a bucket
b = nℓ

2ψ
, leading to the number of candidate fingerprints

returned as

|QFH | =
nℓ2

2ψ
(3)

The number of candidate fingerprints returned scales as
ℓ2, but we can reduce this to ℓ by using multiple hash ta-
bles, that is ℓ tables, one per subfingerprint 1. The average
number of items in a bucket then becomes bFH = n

2ψ
and

Equation 2 becomes

|QFH | =
nℓ

2ψ
(4)

Irrespective of whether single or multiple hash tables are
used, the size of the fingerprint hash index is of O(nℓ).

2.2 Extended Fingerprint Hash
As bit error rate increases, the assumption no longer holds

that at least one subfingerprint is error free. However, it may
still be true that at least one subfingerprint has only one er-

ror. In this case, for a fingerprint hash to succeed, it needs
to search on the original subfingerprint key q, and all keys
within a Hamming distance 1 of q. For even higher error
rates, the approach can be generalized to assuming at least

one subfingerprint has no more than r errors and success
is achieved by exhaustively searching all possible subfinger-
print keys within a Hamming distance r of q. For binary
subfingerprints, these keys can be trivially generated by sys-
tematically flipping bits.

This approach, which we will call Extended Fingerprint

Hashing, was proposed in [9]. The probability of a correct
match is increased; Let e be the number of errors in a subfin-
gerprint, and the probability that e is less than r be P [e ≤ r].

1We implement this in practice by adding a positional prefix
to the subfingerprint key.
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Figure 5: The probability of a successful search,
P [p ∈ Q], as a function of bit error , Pb, for extended
fingerprint hash search values of r=0, 1, 2, and 3.

Then:

P [e ≤ r] =

r
∑

i=0

(

ψ

i

)

P ib (1− Pb)
ψ−i (5)

and hence:

P [p ∈ Q] = 1− (1− P [e ≤ r])ℓ (6)

The increased robustness of searching over r = 0 to 3 is
shown in Figure 5. We observer that for a fixed probability
of a successful search, P [p ∈ Q] = 0.9, the effective bit error
rates are Pb = 0.1364, 0.1930, 0.2425, 0.2840 for r = 0, 1, 2, 3
respectively.
There is a cost; for a fingerprint hash, the number of keys

to be searched per query fingerprint is ℓ. In contrast, an
extended fingerprint hash search must search the hash table

τEF = ℓ

(

1 +

(

ψ

r

))

= ℓ

(

1 +
ψ!

r!(ψ − r)!

)

(7)

times. The equation for the total cost of the search, |QEF |,
is given by:

|QEF | =
nℓ

2ψ

(

1 +

(

ψ

r

))

(8)

This equation, larger than the cost of a fingerprint hash
(Equation 4) by a factorial term, increases quickly for higher
r, but is unrelated to database size. This may make it a
realistic option for larger databases, as opposed to other
methods with search costs that increase with database size,
such as metric trees [18]. For instance, on a database of
n = 1010 fingerprints, an extended fingerprint hash searches
0.0014% of the database at a range of r = 2 and 0.03% of
the database at a range of r = 3.
We note that the size of an extended fingerprint index is

the same as that for a basic fingerprint hash index, and is
of O(nℓ).
The predictions of successful searches as a function of bit

error rate derived in Equations 1 and 6 for an extended
fingerprint hash were tested on a database of 100,000 syn-
thetically generated fingerprints, uniformly distributed over
the 8192-dimensional Hamming hypercube. The fingerprint
hash method detailed in uses parameters ψ = 32, ℓ = 256
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Figure 6: Experimental results on synthetically gen-
erated database of 100,000 uniformly distributed
points. Solid lines indicate theoretical predictions,
starred lines indicate experimental results. Results
are averaged over 1000 queries.

Database range searched

Size r=0 r=1 r=2

100k 0.0004% 0.0007% 0.0035%

Table 1: The average number of unique results re-
turned by an extended fingerprint hash as a percent-
age of the database size.

and r ranging from 0 to 3. Figure 6 shows the fraction of fin-
gerprints correctly found for increasing bit error. The solid
lines are the performance predicted by our model, and the
starred lines are the experimental results. The results are
averaged over 1000 queries. As can be seen from the figure,
the model predicts the performance of the inverted file index
for uniformly distributed data very closely.

For each range r, the number of unique results returned
as a percent of the total database, is given in Table 1. These
numbers are below what would be predicted by our analy-
sis, as entries for many of the keys generated by extended
fingerprint hashing do not exist for a small database.

2.3 Sample Hash (Locality Sensitive Hash)
Various researchers have independently proposed hash-

table based structures for the indexing of binary data [4,
11, 13, 6, 10]. Perhaps the best-known method of these is
Locality Sensitive Hashing (LSH) [10, 2].

The LSH approach defines a family H of locality sensitive

hashing functions h mapping R
d to a universe U such that

the probability that h(p) = h(q) is related to the Hamming
distance d(p, q) as follows:

• if d(p, q) ≤ R then PH[h(p) = h(q)] ≥ P1

• if d(p, q) ≥ cR then PH[h(p) = h(q)] ≤ P2

• P1 > P2

where c is a number greater than one.
A basic family of hash functions is the family

H = {∀hi(p)|hi(p) = pi and 1 ≤ i ≤ d}

where pi denotes the bit value of p at index i. This function



maps {0, 1}d to {0, 1}. Then

(

1−
R

d

)

= PH[h(q) = h(p)] ≥ P1 (9)

and if d(p, q) = cR then P2 =
(

1− cR
d

)

, satisfying the LSH
condition P1 > P2.
Another LSH family of hash functions is G, where

gj(q) = {hi1(p), . . . , hik (p)}

where the indexes i1 through ik are drawn randomly and
uniformly from d . This is equivalent to randomly sampling

k bits from p. We note that

P1 = PG [g(p) = g(q)] (10)

=
k
∏

i=1

P [qi = pi] (11)

=

(

1−
R

d

)k

(12)

and likewise if d(p, q) = cR then P2 =
(

1− cR
d

)k
. If d ≥

k ≥ 1 and c > 1, the LSH condition P1 > P2 is satisfied. A
set consisting of L of these randomly chosen functions form
the keys to the hash table (with a separate hash table for
each gi(p)) a method which we will call a Sample Hash.
Sample hashing accesses the hash table τSH = L times

and the average length of a bucket is bSH = n

2k
giving the

size of the results list returned as:

|QSH | =
nL

2k
(13)

The size of the sample hash index is O(nL).
We show here that fingerprint hash is also an LSH hash.

Fingerprint hash forms the keys to the hash table by par-
titioning the fingerprint vector p into ℓ subfingerprints of
length ψ,

F = {f1(p) = {p1, . . . , pψ},

f2(p) = {pψ+1, . . . , p2ψ},

. . . ,

fℓ(p) = {p(ℓ−1)ψ+1, . . . , pℓψ}}

In this case, analogously to the case above, (1 − R/d)ψ =

PF [f(q) = f(p)] ≥ Pψ1 , and the LSH properties follow.
Sample Hash accesses a hash table L times, with differ-

ent randomly generated g(q) functions. Fingerprint hash
accesses the table ℓ times, where ℓ = d

ψ
. The probability

of a successful Sample Hash search is of the same form as
Equation 1.

1− (1− (1− Pb)
k)L (14)

A sample hash forms its hash keys by randomly sampling

the fingerprint. In contrast, a fingerprint hash partitions the
fingerprint into disjoint subsets. Assuming the bits of the
vector p are independent and identically distributed2, it does
not matter which bits are chosen nor in which order they are
chosen to make up the hash table keys. A fingerprint hash
and a sample hash with ψ = k and ℓ = L will perform
similarly.

2In practice, this may not entirely be true, but a good finger-
print system’s bits will approach independent and identical
distribution.

Probability of a Hash Hash
correct search Table Table

Accesses Storage
P [p ∈ Q] τ

Fing.
1− (1− (1− P1)

ψ)ℓ ℓ O(nℓ)
Hash

Ext.Fing.
1− (1− P [e ≤ r])ℓ ℓ

(

1 +
(

ψ

r

))

O(nℓ)
Hash
Sample

1− (1− (1− P1)
k)L L O(nL)

Hash

Table 2: Three Hash Methods Compared

One advantage of a sample hash is that k and L are not
determined by fingerprint dimension d. One is free to in-
crease L to very high values without needing to increase the
dimension of the vector p, although eventually the same bits
will be sampled multiple times. The equivalent equations for
the probability of a successful search, the number of hash ta-
ble accesses and the size of the index for each method are
given in Table 2.

3. THE COST OF SEARCHING
This paper has so far detailed two general approaches for

increasing the robustness of hash tables to higher query bit
errors: i)modifying ψ and ℓ (or analogously k and L) and ii)
exhaustively searching within a Hamming distance r. For
each of these methods there is an increase in the number of
data items retrieved, and a corresponding decrease in the
performance of the algorithm, as each retrieved data item
must undergo further processing to determine the correct
match. In this section we define four methods and look at
the relative increase in |Q| for each one.

The four methods compared are:

• Method I: Extended Fingerprint Hash (Baseline)

• Method II: Sample Hash, modify k only

• Method III: Sample Hash, modify L only

• Method IV: Sample Hash, modify k and L

In practice, it is not necessary for P [p ∈ Q] to equal one,
i.e. applications can accept some (small) level of failure. Of
course, an acceptable failure rate will depend on the appli-
cation. For example, a song identification system may ac-
cept a higher error rate than an advertisement identification
system. This is because, in the former case, the misidentifi-
cation simply results in an incorrect entry in say the iTunes
database, while in the latter case, the misidentification may
result in the broadcaster being wrongly accused of failing
to air an advertisement. We choose a reasonable precision
value of 90%. In the following discussion we assume the
number of fingerprints n in the database to be 1010.

From Figure 5, it can be seen that a fingerprint hash or a
sample hash can handle a P0 of 0.1364 when P [p ∈ Q] = 0.90
(for parameters ψ = k0 = 32 and ℓ = L0 = 256). The first
column of Table 3 shows the higher bit error rate, Pb, that
can achieve P [p ∈ Q] = 0.90 for an extended fingerprint
hash by flipping r bits. This gives a baseline for comparing
Methods I through IV.



Pb r τ b
0.1364 0 256 2.33
0.1930 1 8,448 2.33
0.2425 2 135,424 2.33
0.2840 3 2,810,112 2.33

Table 3: Method I: Extended Fingerprint Hash. The
range over which the method searches is r and Pb is
the corresponding bit error rate for which the prob-
ability of a successful search is 90%. The number of
hash-table accesses is τ and the average number of
fingerprints in a bucket is b.

Pb k1 τ b
0.1364 32 256 2.33
0.1930 17 256 76,294
0.2425 13 256 1.2 · 106

0.2840 11 256 4.9 · 106

Table 4: Method II: Sample Hash, modifying k only.
Pb is the bit error rate for which the probability of a
successful search is 90%, and k1 is the length of sam-
ple needed to achieve this, given the number of sam-
ples L=256. The number of hash-table accesses is τ
and the average number of fingerprints in a bucket
is b.

3.1 Method I–Extended Fingerprint Hash
Table 3 shows the numerical values of hash table accesses

τ and average bucket size b resulting for an extended finger-
print hash of a range search r = 0 to 3. We did not consider
values of r > 3 because the number of candidate matches
becomes impractical.
Let |Q0| be the size of the candidate results list from a

basic fingerprint hash, and let |Q1| be the size of the candi-
date results list from an extended fingerprint hash of range
r. From Equations 4 and 8 it can be seen that the rela-
tive increase in the size of the results list for Method I is in
general:

|Q1|

|Q0|
=

(

1 +

(

ψ

r

))

(15)

For the particular values in Table 3, going from r = 0 to
r = 1 is a 33-fold increase in the number of candidate results
returned.

3.2 Method II–modify k only
In order to achieve the same search success rate of 90% for

the four values of Pb given in Column 1 of Table 3, k0 = 32
must be reduced to a new value k1 by:

k1 = k0
ln(1− P0)

ln(1− Pb)
(16)

These values are given in the second column of Table 4.
However this means that the new average size of the bucket
b1 increases over the original b0 by:

b1 =
n

2k0−k1
= 2k0−k1b0 (17)

Values for hash table accesses and average bucket lengths
are given in Table 4. If |Q0| is the size of the results list
resulting from Method II with k0, and |Q1| is the size of the

Pb L1 τ b
0.1364 256 256 2.33
0.1930 20,500 20,500 2.33
0.2425 295,600 295,600 2.33
0.2840 1,998,500 1,998,500 2.33

Table 5: Method III: Sample Hash, modifying L
only. Pb is the bit error rate for which the prob-
ability of a successful search is 90%, and L1 is the
number of samples needed to achieve this, given a
sample size of k=32. The number of hash-table ac-
cesses is τ and the average number of fingerprints in
a bucket is b.

Pb k1 L1 τ b
0.1364 31 221 221 4.66
0.1930 31 1,815 1,815 4.66
0.2425 31 12,922 12,922 4.66
0.2840 31 74,119 74,119 4.66

Table 6: Method IV: Sample Hash, modifying k and
L. Pb is the bit error rate for which the probability
of a successful search is 90%, and L1 is the number
of samples needed to achieve this, given a smaller
sample size of k=31. The number of hash-table ac-
cesses is τ and the average number of fingerprints in
a bucket is b

results list resulting from Method II with k1, the relative
increase in the size of the results list can be derived from
Equations 2 and 17 giving:

|Q1|

|Q0|
= 2k0−k1 (18)

As we reduce k, the result set increases exponentially.

3.3 Method III–modify L only
The same performance for the four values of PBH given in

Column 1 of Table 3 can be achieved by increasing L0 = 256
to L1 using:

L1 = L0
ln(1− (1− P0)

k0)

ln(1− (1− Pb)k0)
(19)

These values are detailed in the second column of Table 5.
It can be seen that increasing L to match Method I per-
formance rapidly leads to parameters which are even more
impractical to implement than Method I (though the hash
table accesses are less than those of extended fingerprint
hashing for a range search r = 3).

If |Q0| is the size of the results list resulting from Method
III with L0, and |Q1| is the size of the results list resulting
from Method III with L1, the relative increase in the size of
the results list (by Equation 13) is:

|Q1|

|Q0|
=
L1

L0
(20)

Unlike Methods I and II, this method increases the size of
the index storage (which is O(nL)) as well.

3.4 Method IV–modify k and L

Another option is to change both k and L. We start with
a decrease in k0 by one bit (k1 = 31) and calculate the L1
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Figure 7: Comparing search success of an extended
fingerprint hash to a sample hash on synthetic data-
base of 25,000 uniformly distributed points. Results
are averaged over 25 queries.

needed to achieve the same performance for the four values
of Pb given in Column 1 of Table 3 using:

L1 = L0
ln(1− (1− P0)

k0)

ln(1− (1− Pb)k1)
(21)

which gives us the values for L1 for Method IV in the sec-
ond column of Table 6. Table 6 also gives values for the
corresponding increases in hash table accesses τ and aver-
age bucket size b. If |Q0| is the size of the candidate results
list resulting from Method IV with L0 and k0, and |Q1| is
the size of the candidate results list resulting from Method
IV with L1 and k1, the relative increase in the size of the
candidate results list is:

|Q1|

|Q0|
= 2k0−k1

L1

L0
(22)

With an increase in the storage size of the index proportional
to L1.
We tested the prediction that extended fingerprint hash-

ing and sample hashing would perform similarly using pa-
rameters taken from Tables 3 and 6. An extended finger-
print hash and a sample hash with ψ = k = 32, ℓ = L = 256
and r = 0 were tested on a database of 25,000 synthetic,
uniformly distributed points.
An extended fingerprint hash of ψ = 32, ℓ = 256 and

r = 1 was tested along with the equivalent sample hash
using parameters calculated by Equation 21 to be k = 31
and L = 1815. Results were averaged over 25 queries. As
can be seen from Figure 7, the performance of the extended
fingerprint hash and a sample hash are nearly equivalent.

3.5 Summary
The theoretical values of |Q| for each of the four meth-

ods in this section are plotted in Figure 8. Methods II and
III have a significantly higher search cost than extended fin-
gerprint hash, and we conclude that extended fingerprint
hash is superior to these two methods. Method IV has a
lower search cost; Method IV returns 43% of an extended
fingerprint hash search at r = 1 and 19% of an extended
fingerprint hash search at r = 2 for the same probability of
search success.
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Figure 8: The theoretical size of the results list |Q|
retrieved by altering parameters k, L and r while
holding P [p ∈ Q] constant.

The reduced search cost of Method IV comes at the cost of
an increased index size. A Method IV (for k = 31) compa-
rable to an extended fingerprint hash of r = 1 has an index
seven times larger, and a Method IV (k = 31) comparable
to an extended fingerprint hash of r = 2 has an index 50
times larger.

We looked at various combinations of k and L, but none
provides a reduced search cost without a increase in hash-
table index size of at least a factor of 5.7. For most appli-
cations, this is an unacceptable increase, and we conclude
that extended fingerprint hashing is the best option.

There are performance factors which have not been con-
sidered here, we have not discussed I/O costs or the dynamic
capabilities of these indexes. We have assumed a uniformly
distributed set of subfingerprints, and assumed a bit error
rate independent of bit position, neither of which may hold
for real data. Future work is planned to address these issues.

4. CONCLUSIONS
In this paper we have looked at a fingerprint hash method,

initially proposed by Haitsma and Kalker [9], and a sample
hash method, initially proposed by Indyk and Motwani [10].
We show how they are related, and develop a new analytic
model for predicting search success rate as a function of the
bit error rate of the queries. This model was verified by
simulation.

For both fingerprint hashing and sample hashing, perfor-
mance drops sharply as the bit error rate of the queries in-
creases. We look at various ways to improve performance
for larger databases and show that changing the size of the
sample and the number of samples improves performance
for sample hashing, though the index size is increased. Al-
ternatively, one can improve performance by using extended
fingerprint hash, a method whereby one searches on all pos-
sible bit errors within a Hamming distance of the query.

We compared performance of the two approaches based on
the number of candidate fingerprints returned per query and
the size of the index. Our analysis shows that if the database
index size must be fixed, the number of samples cannot be
changed, and extended fingerprint hashing is the superior
method. When the number of samples is changed, our anal-



ysis found that a sample hash needed nearly a six-fold in-
crease in database size to produce fewer candidate matches
than an extended fingerprint hash for the same search suc-
cess rate. This may be impractical for many applications,
and our conclusion is that the extended fingerprint hash of-
fers the best solution for extending the performance of a
hash-based index to queries with higher bit error rates.
While we have analyzed a system specifically within the

context of audio fingerprints, many applications in vision,
information retrieval and artificial intelligence are begin-
ning to require a high-dimensional database of features or
data items. Converting and storing these features as bi-
nary strings (as fingerprints) would lead to a more compact
database, and comparing binary strings is, in theory, effi-
cient if implemented with bitwise operators. With the anal-
ysis given in this paper, the design of a binary hash-based
index can be impelemented in a principled way, based on
the underlying bit error rate of typical queries presented to
the system.
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