
Probably Approximately Correct Search

Ingemar J. Cox1, Ruoxun Fu1, and Lars Kai Hansen2

1 University College London
2 Technical University of Denmark

ingemar@cs.ucl.ac.uk

Abstract. We consider the problem of searching a document collection
using a set of independent computers. That is, the computers do not
cooperate with one another either (i) to acquire their local index of doc-
uments or (ii) during the retrieval of a document. During the acquisition
phase, each computer is assumed to randomly sample a subset of the
entire collection. During retrieval, the query is issued to a random sub-
set of computers, each of which returns its results to the query-issuer,
who consolidates the results. We examine how the number of comput-
ers, and the fraction of the collection that each computer indexes, affects
performance in comparison to a traditional deterministic configuration.
We provide analytic formulae that, given the number of computers and
the fraction of the collection each computer indexes, provide the prob-
ability of an approximately correct search, where a “correct search” is
defined to be the result of a deterministic search on the entire collection.
We show that the randomized distributed search algorithm can have ac-
ceptable performance under a range of parameters settings. Simulation
results confirm our analysis.

1 Introduction

Searching the Web is critical to the Web’s success. Search is now common - Amer-
icans alone are estimated to have performed over 13 billion searches in February
2009 [9]. And the size of the indexed web is now estimated to be about 65 billion
webpages, of which Google is estimated to index over 17 billion pages [16].

The frequency of searches together with the size of the index prohibit a single
computer being able to cope with the computational load. Consequently, a variety
of computer architectures have been proposed. Commercial search engines such
as Google, use an architecture where the the index is distributed (and arguably
“virtually centralized”) over a number of disjoint partitions [1]. And within each
partition, the partial index is replicated across a number of machines. A query
must be sent to one machine in each partition and their partial responses are then
consolidated before being returned to the user. The number of partitions and the
number of machines per partition is a careful balance between throughput and la-
tency [6]. Changes to the collection or to the query distribution may necessitate
that the index be repartitioned, a process than can be quite complex and time con-
suming [6]. Note that while the index is distributed across machines, the machines
themselves are typically housed within a central server facility.

L. Azzopardi et al. (Eds.): ICTIR 2009, LNCS 5766, pp. 2–16, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Probably Approximately Correct Search 3

Peer-to-peer networks offer a more geographically dispersed arrangement of
machines that are not centrally managed. This has the benefit of not requir-
ing an expensive centralized server facility. However, the lack of a centralized
management can complicate the communication process. And the storage and
computational capabilities of peers may be much less than for nodes in a com-
mercial search engine. Li et al. [5] provide an overview of the feasibility of peer-
to-peer web indexing and search. Their analysis assumes a deterministic system
in which, if necessary, a query is sent to all peers in the network, for example.
The authors do comment on the possibility of “compromising result quality”
by streaming the results to the users based on incremental intersection. How-
ever such a “compromise” is quite different from the non-deterministic search
proposed here.

In this paper, we investigate the expected performance of a non-deterministic
information retrieval system consisting of a set of independent computers. We de-
fine a non-deterministic information retrieval system to be one in which (a) the set
of unique documents indexed may be selected (in part) randomly and/or (b) the
response to a query may (in part) be a function of a random process. By “inde-
pendent computers” we mean computers that do not communicate between one
another for the purposes of either building the index, or responding to a query. The
absence of communication/coordination between computers prevents the non-
deterministic IR system from overloading the communication infrastructure, and
provides a system architecture that is very scalable and reconfigurable.

Our system assumes two capabilities. First, the ability to randomly sample
documents from a collection. And second, the ability to randomly sample/query
computers within the network. The random sampling of documents within a
collection, is, of course, trivial if the collection is available as a static document
set with limited number of documents. However, if the collection is considered
to be the Web, then it is necessary to randomly sample pages from the Web.
This is more difficult. A comparison of several techniques can be found in [2,8].
The random sampling of computers within a network is straightforward when
the computers are a part of a “centralized” cluster. And recent work [4,14,13],
based on distributed hash tables, provides algorithms for choosing a random
peer within a peer-to-peer network.

We are interested in comparing the performance of non-deterministic and
deterministic IR systems. In this regard, we consider the results of the determin-
istic system to be correct, i.e. we are not judging the performance of our system
based on standard IR metrics such a mean average precision (MAP). Rather,
given a deterministic implementation of a specific IR system, how close will the
outputs of a non-deterministic system be to the deterministic system? Given this
measure, we refer to our system as a PAC (probably approximately correct) IR
system, in (broad) analogy with PAC learning [15].

In Section 2 we first define a number of terms and concepts before deriving
analytic expressions describing the expected coverage of a PAC IR system and
its expected level of correctness. Section 3 then discusses the performance of a
PAC for two specific configurations, the first of which models the architecture

4 I.J. Cox, R. Fu, and L.K. Hansen

used by search engine services, and the second models a hypothetical peer-to-
peer network configuration. Section 4 provides simulation results that support
the previous theoretical analysis. Finally, Section 5 summarizes our results and
suggests avenues for future work.

2 Framework

Our model of an IR system assumes a set of computers, and that each indepen-
dently samples a fraction of available documents to construct a corresponding in-
verted index. We refer to this as the acquisition stage. Next, a user query is issued
to a (small) subset of these computers and each computer independently responds
with a corresponding result set. These result sets are then merged by the query is-
suer to produce the overal result set. We refer to this as the retrieval stage.

In the next Section, Section 2.1, we first define a variety of terms and concepts.
Section 2.2 then considers the acquisition stage, and derives an analytic model
for the expected coverage of our PAC IR system. This model is then used in
Section 2.3 to derive an analytic model for the correctness of a PAC IR system.

2.1 Definitions

The entire set of unique documents is referred to as the collection. The size of
the collection is denoted by N . For the Web, N ranges from 17 to 65 billion
webpages, as noted earlier.

Let K represent the total number of computers available to perform searches.
Note that in the case of peer-to-peer networks, K is not constant. However, in
such a case, let us assume K represents the average number of available comput-
ers. For simplicity, we assume that the computers are homogeneous. However,
this is not needed in practice.

Each computer is assumed to be capable of indexing n unique documents,
which form an individual sample from the collection. We assume that n ≤ N ,
and, in practice, normally n � N . We define the “collection sample” as the
union of individual samples. As such, the collection sample may well contain
duplicate documents. We define coverage as the ratio of the number of unique
documents in a collection sample to the size of the collection. Finally, during
retrieval, we query a subset, k′, of computers, and the union of their indices is
known as the “retrieval index”.

2.2 Sampling the Collection

In order to index the N distinct documents, the K computers must sample
the collection (Web). In our analysis we assume that each computer operates
independently, with no cooperation between computers. In such a scenario, there
is no guarantee that the samples on each computer will be disjoint. In fact, it is
almost certain that documents will be sampled more than once, i.e. they will be
indexed by more than one computer. This redundancy is, in fact, helpful. First,

Probably Approximately Correct Search 5

it provides tolerance to node failures, and to the dynamic entry and exit of nodes
in a peer-to-peer network. Second, the redundancy allows only a subset of nodes
to answer a query (see Section 2.3), which both reduces the communication
overhead and increases the throughput, i.e. the number of queries that can be
answered per second.

Independent sampling of the N documents in the collection by each of the
K computers is analogous to having an urn with N labeled balls. Each of K
people, then randomly choose n balls each. An individual chooses his/her n
balls without replacement, thereby guaranteeing that there is no repetition on a
single computer. After indexing the n balls, they are returned to the urn. Thus,
the next person may also randomly select balls that have been previously chosen
by other people (i.e. indexed by other computers).

The key question to answer is, how many different balls have been drawn from
the urn after all K people have each randomly picked n balls? The answer to this
question determines the coverage obtained after all K computers have sampled
n documents.

Obviously, the coverage ranges from n
N in the worse case, where all comput-

ers sample the same set of n documents, to min(N,Kn)
N in the best case, where each

computer’s sample is disjoint from all other computers’ samples. Treating the cov-
erage as a random variable, we need to understand its probability distribution. Of
course the complete probability distribution may be quite complicated. However,
from a practical point of view, we believe that an analysis on the expected coverage
would be sufficient to explain the underlining rules of our algorithm.

The probability of a ball being picked by a single individual is n
N , and the

probability of not being picked is therefore 1 − n
N . Thus the probability, P (d̄i),

that document di will not be picked by any of the K people is

P (d̄i) =
(
1 − n

N

)K

(1)

Thus, the probability, P (di), of being chosen one or more times in the total
sample is

P (di) = 1 − P (d̄i) = 1 −
(
1 − n

N

)K

(2)

and the expected number of distinct documents in our total sample, N̂ , is

N̂ = P (di)N =
(

1 −
(
1 − n

N

)K
)

N (3)

To simplify our further analysis, let us now set

ε = P (d̄i) =
(
1 − n

N

)K

(4)

Then
N̂ = N(1 − ε). (5)

6 I.J. Cox, R. Fu, and L.K. Hansen

And the expected coverage can be defined as

E(Coverage) =
N̂

N
= 1 − ε. (6)

Thus, as ε approaches zero, our coverage approaches unity, i.e. we approach a
complete sampling of the document collection.

We can use Equation (4) - Equation (6) to determine the coverage. We are
interested in the relationship between coverage, the size of the individual sample,
n, and the number of computers, K, given a certain collection size, N . In par-
ticular, given a collection, how many machines do we need, and what capacity
should each of them have, to meet a desired level of performance for our system.

To help our analysis, let us first denote c as the size of the collection sample,
where c = Kn. The collection sample, c, is treated as a constant in the following
analysis. Also to simplify our analysis, let us first assume that c ≤ N . From
Equation (4), we have

ε =
(
1 − n

N

)K

=
(

1 +
− c

N

K

)K

(7)

Thus, if the collection sample, c = nK is a constant, then ε is a monotonically
increasing function with respect to K. The smallest value of ε = (1− n

N) occurs
when K = 1. In this case, n is at its largest, and the coverage is maximized
since there are no duplicates in our collection sample. Conversely, as the number
of computers, K, increases, ε increases, approaching the limit of e−

c
N as K

approaches infinity. The proof is shown as below.
From the property of exponential functions, we know that

ex = lim
n→∞

(
1 +

x

n

)n

(8)

From Equations (7) and (8), we have that

lim
K→∞

ε = lim
K→∞

(
1 +

− c
N

K

)K

= e−
c
N (9)

Next, the derivative of ε with respect to K is

∂ε

∂K
= ε

(
ln
(
1 +

(
− c

NK

))
−
(− c

NK

1 + (− c
NK)

))

From the property of natural logarithms, we also have

ln(1 + h) ≥ (
h

1 + h
), for h ≥ −1 (10)

Since
n ≤ N ⇒ nK ≤ NK ⇒ − c

NK
= − nK

NK
≥ −1

Probably Approximately Correct Search 7

So ln
(
1 +

(− c
NK

))− (− c
NK

1+(− c
NK)

)
≥ 0, because ε ≥ 0, we have

∂ε

∂K
= ε

(
ln
(
1 +

(
− c

NK

))
−
(− c

NK

1 + (− c
NK)

))
≥ 0 (11)

Combining Equations (9) and (11), we show that the ε increases monotonically
with an upper bound of e−

c
N , as K increases. Thus, the expected coverage ranges

from (1 − e−
c
N to c

N]. Figure 1 plots ε and coverage for the case where N =
1000000 and c = N .

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K

ep
si

lo
n

an
d

co
ve

ra
ge

 v
al

ue

epsilon
coverage

Fig. 1. Simulation calculating ε and coverage as a function of the number of computers,
K, when the number of computers, N = 1000000, and the collection sample is c = N

This monotonic property remains true when we relax the assumption that
c ≤ N , and allow c > N , provided n ≤ N . In this case, K cannot start from 1
since it would imply that n > N . Let us define Kmin as the smallest value of
K such that the property n ≤ N is maintained. Then, a more general form of
coverage can be written as (1 − e−

c
N , 1 − (1 − c

NKmin
)Kmin].

In summary, for any given c, we have a lower bound, 1−e−
c
N , for the expected

coverage. The smallest coverage occurs when K = c and n = 1, and approaches
1−e−

c
N if K is large enough. Conversely, coverage is maximized when K = Kmin,

and is given by 1 − (1 − c
NKmin

)Kmin .
Unfortunately, coverage is not our only concern. We must also consider the

throughput of the system, as well as the system’s latency. However though
smaller K promises a larger coverage, it results in a larger individual sample, n.

8 I.J. Cox, R. Fu, and L.K. Hansen

Let us define k′ as the number of machines that process a query simultaneously,
and p as the number of documents that each machine can process in a unit time.
Then, the query rate, T , can be defined as

T =
K

k′ ×
p

n
(12)

The first factor represents the query throughput of the system, and the second
factor is the inverse of the latency. Suppose k′ and the collection sample size, c,
are fixed, then

T =
K2 × p

k′ × c
∝ K2 (13)

Obviously larger K increases the query throughput, but, as we discussed earlier,
a larger K decreases coverage, when our sample collection size, c, is fixed. Thus,
for a given c, choosing appropriate values of K and k′ is a tradeoff between
coverage and query rate, and will depend on the application.

For example, consider the case where the size of collection sample, c, is equal
to the size of the collection, N . Using Equation 9, we can easily infer that ε
tends to be e−1 = 0.367 with a large K. Inserting this value in Equation (6),
we see that when we sample N documents, our expected coverage is at least
1 − ε = 0.63.

Next, let us assume we want complete coverage. Of course, this cannot be
guaranteed, but we can set ε to a small value such that the probability of missing
a document is low. For example, consider the case when ε = 10−2, say. That is,
99% coverage. In this case, from Equation (9) we have

ε = e−
c
N = 10−2 ⇒ c

N
≈ 4.6

Thus, if the size of the collection sample is 4.6 times the size of collection, we
can expect 99% coverage of the collection.

2.3 Retrieval

The previous theoretical analysis elucidated the connection between (i) the num-
ber of computers, K, (ii) the size of each computer’s sample, n and (iii) the
fraction of the collection that is not indexed, ε. By increasing K and/or n, we
can make ε as small as desired. Of course, in practice, economic considerations
can limit the values of both K and n.

When performing retrieval within such an architecture, we wish to send the
query to k′ randomly chosen nodes, where k′ ≤ K, and normally k′ � K. This
is because it is necessary to (i) limit the amount of communication generated
by a query, (ii) limit the computational resources expended in responding to a
query, and (iii) limit the latency between query issue and response.

Clearly, if we only interrogate k′ machines, we cannot guarantee the coverage
provided by all K machines. However, Equation (3) can be used to determine
the expected size of the index used during retrieval, i.e. the expected number of

Probably Approximately Correct Search 9

distinct documents in the retrieval index. For this, we simply have to replace K
with k′.

N̂ ′ = P (d′i)N =
(

1 −
(
1 − n

N

)k′)
N (14)

The probability of any document being present in the retrieval index is then

P (d′i) = 1 −
(
1 − n

N

)k′

(15)

In practice, information retrieval systems are seldom evaluated based on a sin-
gle target document. Instead, performance metrics such as precision and recall
are often used. In our case, we assume that the retrieval model is identical, ir-
respective of whether we are using a deterministic or non-deterministic search
architecture. Thus, if we want to compare our PAC strategy to a deterministic
implementation of the IR system, we need to consider what the expected overlap
in the two result sets is. Thus, given the top-r documents from the determin-
istic system, what is the probability that our PAC IR system will retrieve r′

documents from r, where r′ ≤ r.
We know from the Equation (15) that the probability of a specific document

being present in the result set is P (d′i). Thus, the probability of exactly r′ doc-
uments from r being present in the result set is

P (r′) =
(

r
r′

)
P (d′i)

r′(1 − P (d′i))
r−r′

(16)

This is a standard binomial distribution, and the expectation of r′ is therefore

E(r′) = rP (d′i) (17)

Equation (17) indicates that acceptable performance using PAC search can be
achieved provided the probability, P (d′i), is sufficiently high. We will discuss
this problem in more detail in the next section, where we consider two practical
applications.

3 Discussion

Information retrieval systems can be broadly categorized into one of three ar-
chitectures, namely (i) single server search, (ii) distributed and, arguably, “vir-
tually centralized” search, and (iii) peer-to-peer decentralized search. We do not
consider the first case, as we assume that our collection and/or query rate is
too large to be handled by a single machine. The second case represents the
architecture used by commercial search engines such as Google [1]. Finally a
variety of peer-to-peer decentralized architectures have been proposed and de-
ployed [11,12,3,7,18,17,10] with a variety of search capabilities. In the following
two subsections we examine the second case and the third case, respectively.

10 I.J. Cox, R. Fu, and L.K. Hansen

3.1 Distributed Search

Due to the rate of queries and the huge size of the Web, modern commercial
search engines partition the Web index over many machines. A response to
a query requires each partition to be independently searched. Each partition
(Google refers to them as index shards [1]) contains a “randomly chosen subset
of documents from the full index” [1]. Note, however, that while the documents
may be chosen at random, each partition is disjoint. In addition, replicas are
added to each partition to increase the query throughput. This architecture is
referred to as a distributed cluster architecture.

The key parameter of such an architecture is the tradeoff between the repli-
cation and partitioning. While increasing the partitioning level, which reduce
the replication level, improves the query completion time since more machines
process the same query simultaneously, the reduced replication level decreases
the number of different queries that can be answered at the same time. A crucial
problem faced by these engines is to find a best compromise between parti-
tioning and replication, especially as the data set and the query rate change
continuously. Clearly this compromise changes over time, as the database and
query loads change. However, changing the partitions and replications can be
expensive in both time and bandwidth, as reported in [6].

In [6] it is claimed that Google partitions its index into 1000 disjoint sets.
Thus, the number of documents indexed by a single machine is n

N = 1
1000 . It is

further claimed that the data in any partition is replicated over 300 machines, so
the total number of machines is K = 300, 000, and the total number of samples
is Kn = 300N . Let us now examine the performance of such a system, when
configured for PAC IR.

First, let us consider the expected coverage when each of the K machines,
independently samples 0.1% of the Web. Solving for ε in Equations (7) and (9),
we have

ε =
(

1 +
(−300

300000

))300000

≈ e−300

This is a very small number and indicates that if all 300,000 machines were
to each, independently randomly sample and index 0.1% of the Web, then it
is almost certain the every document on the Web would be contained in the
combined index.

For the query part, let us consider the configuration ascribed to Google, in
which 1000 machines, one per partition, are used to service each query. In this
case, k′ = 1000 and n

N = 1
1000 , as before. Substituting in Equation (15) we get

P (d′i) = 1 −
(

1 − 1
1000

)1000

≈ 0.63

Thus, if a user is looking for a particular document, there is a 63% chance that
it is present in a subset of 1000 randomly chosen nodes. That is, approximately
two thirds of the time, the user will find the specific target document.

Probably Approximately Correct Search 11

Table 1. The probability of exactly r′ documents being present in the top-10

r′ Pr(d1 · · · dr′)

0 0.000045173

1 0.00077682

2 0.0060113

3 0.027566

4 0.082957

5 0.17119

6 0.24532

7 0.24106

8 0.15545

9 0.059405

10 0.010216

Assuming we are primarily interested in the top-10 results, i.e. r = 10, and
given P (d′i) = 0.63, substituting in Equation (17), gives

E(r′) = 10 × 0.63 = 6.3

This shows that we can, on average, expect 6 documents from the top-10 re-
trieved by a deterministic search algorithm to be present in our PAC IR top-10.

We can also use Equation (16) to calculate the probabilities for all possible
r′. These probabilities are enumerated in Table 1 for r = 10 and 0 ≤ r′ ≤ 10.

Table 1 indicates that there is over an 88% chance of retrieving 5 or more
documents in common with the deterministic solution. And the most likely sit-
uation, occurring about 25% of the time, is that 6 out of the 10 documents will
be common. There is approximately a 1% chance that the PAC search result set
will be identical to the deterministic case. In contrast, the likelihood that the
PAC search results do not contain any of the documents from the deterministic
case, occurs less than 0.01% of the time.

In summary, the performance of our PAC IR system is approximately 63% of
the deterministic system, when utilizing equivalent resources. Of course, we can
improve performance by simply increasing the number of machines the query
is sent to. For example, if we send the query to 2000 servers, then the query
correctness increases to 86%. Unfortunately, this is at the expense of halving the
query throughput. However, this example serves to highlight the flexibility of
PAC search, which allows accuracy to be traded for throughput. That is, a PAC
IR system could choose to tradeoff accuracy for query throughput during peak
load periods.

Due to the unstructured nature of the PAC IR system, it is also straighforward
to add and remove machines as well as adjust the data present on a machine.

3.2 Peer-to-Peer Decentralized Search

Another possible implementation of PAC IR is in peer-to-peer decentralized
search. Following the estimation data in [5], suppose we have a peer-to-peer net-

12 I.J. Cox, R. Fu, and L.K. Hansen

work with one million machines (K = 106). Let us further assume that every
machine can provide 1GB for storing the index. If every document has, on av-
erage, 1000 distinct terms, and each term posting requires 20 bytes, then every
document consumes 20k bytes in the index, and each machine can therefore in-
dex 50k documents (n = 5 × 104). Thus the whole network has Kn = 5 × 1010

documents.
Now let us consider the case where we wish the peer-to-peer PAC IR system

to index 17 billion documents, which is the same of the estimated size of Google’s
collection. Thus, the coverage obtained by the collection sampling is

E(Coverage) = 1 −
(

1 − 5 × 104

1.7 × 1010

)106

= 0.947

This is not particularly surprising given that the size of our collection sample,
Kn, is about 3 times the collection size.

During retrieval we must once again transmit the query to only a subset of
the 1 million machines. If we assume that the query is sent to 10000 machines
[5], then k′ = 10000, and we have

P (d′i) = 1 −
(

1 − 5 × 104

1.7 × 1010

)10000

= 0.03

The expected number of documents common to the top-10 generated by a de-
terministic search is then E(r′) = 10 × 0.03 = 0.3, i.e. on average, there is less
than one document in common.

It is tempting to assume that this poor performance is due to the random
nature of PAC IR. However, if we consider the expected number of distinct
documents in a random selection of 10000 machines, we have

ndistinct =

(
1 −

(
1 − 5 × 104

1.7 × 1010

)10000
)

× (1.7 × 1010) ≈ 4.93 × 108

In comparison, if each machine sample is disjoint from one another, we have
5× 104 × 104 = 5× 108 distinct documents. Thus, the coverage provided by the
random sampling is 4.99

5 = 98.6% of the best possible coverage.
In fact, the root cause of the poor performance is due to the low capacity of

each machine. If we wish to reach a PAC performance of 63%, we need to query
340, 000 machines.

This conclusion can also be reached in the Bubble Storm algorithm[13], in
which the probability of a query meeting a document is 1 − e−

k′g
K , where k′ is

the query replication number, g is the document replication number and K is the
total number of machines in the network. Following the estimation data above,
the average document replication number is g = Kn

N ≈ 3, k′ = 10000 and K =

106. So the probability of a query meeting a document is 1 − e−
3×10000

106 = 0.03,
which is similar to the result of our PAC IR algorithm. And, of course, too low
to be practical.

Probably Approximately Correct Search 13

The simple solution to the problem is to increase each machine’s capacity.
Suppose each machine can provide 340GB for storing data, then

P (d′i) = 1 −
(

1 − 5 × 104 × 340
1.7 × 1010

)1000

= 0.63

Thus E(r′) = 10 × 0.63 = 6.3. However, it seems unlikely that most peers can
provide this storage requirement.

4 Simulation

The previous theoretical analysis examined the expected coverage and corre-
sponding query performance, which is the result of averaging over many trials.
In practice, any configuration for a PAC IR system represents a single instance
or trail. Thus, it is interesting to investigate the standard deviation form the
expected value, across trails. Clearly, we would like this to be small.

We investigated this issue using a simulation with different settings of machine
capacity (n), number of machines (K) and collection size (N). In the first simu-
lation, we manually generated a collection with 1e + 6 documents (N = 1e + 6),
and set n = 1000, K = 1000. This synthetic collection was simply a set of doc-
ument identifiers. In each trial, each of the K machines samples n documents
to form a collection sample, which is then stored in disk. Then we repeat this
process to generate 20 trails and a corresponding 20 collection samples. Next, we
randomly generated 100 test queries and computed the top-10 ranking results
from the original full collection. Then, for each trial, the queries are replicated to
all 1000 nodes and an averaged query performance on each collection sample is
calculated. The results for each trial were then avaerged to provide an estimate
of the expected values for coverage and query performance.

In the second simulation, we change K to be 2000 with all other parameters
being the same as the first one.

In the third simulation, we use TREC45 as our experiment environment to
test the performance of PAC. TREC45 contains about 550,000 documents, i.e.
N = 556079. All other settings are set the same as for the first simulation.

The results from Tables 2 and 3 show that the variation across trials is very
small. This is very encouraging and supports our analysis in section 2, which
indicates that in spite of the random nature of the PAC search, the most com-
mon outcomes for coverage and query performance concentrate in a short range
centered around their expectations.

Table 2. Comparison of expected coverage, average coverage and standard deviation
across 20 trials

Simulation Expectation Average Std dev.

1 0.6323 0.6322 0.0003

2 0.8648 0.8648 0.0004

3 0.8347 0.8346 0.0004

14 I.J. Cox, R. Fu, and L.K. Hansen

Table 3. Comparison of expected query performance, average query performance and
standard deviation across 20 trials

Simulation Expectation Average Std dev.

1 0.6323 0.6264 0.0135

2 0.8648 0.8636 0.0124

3 0.8347 0.8377 0.007

5 Conclusion

We examined the problem of non-deterministic search in which a set of computers
(i) independently sample the collection/Web and (ii) queries are sent to a random
subset of computers. Equations are derived for the expected coverage of the
sample collection, and the accuracy of the retrieval results. The latter is measured
with respect to the results provided by a deterministic IR system. Under the
assumption that the deterministic system provides correct result, we consider the
probability of being approximately correct. We therefore describe our approach
as PAC search.

Our analysis of PAC IR in the context of commercial search engines sug-
gest that a performance level of 63% can be achieved using the same amount
of storage and computation. However, while the performance is lower, we be-
lieve that the PAC IR architecture may be simpler to manage. Moreover, more
sophisticated implementations might close this performance gap.

PAC IR was also analyzed in the context of peer-to-peer decentralized web
search. The key problem with such a configuration appears to be the much small
storage available on any machine. Consequently, it would be necessary to send
the query to many more computers, and the communication overhead may then
be too high.

The fact that a query is sent to a random set of machines means that the same
search, issued multiple time, is likely to produce different results. Users may find
this disconcerting. However, if a pseudo-random set of machines is selected based
on a function (hash) of the query, then the result set would remain the same
each time the same query is issued. For common queries, additional random
machines could be queried to determine if better results exist within the sample
collection. If so, these documents could be indexed by the pseudo-random set
of machines corresponding to the query. More generally, for common queries, it
is interesting to consider how to optimally learn the best set of k machines to
answer the query.

A further level of optimization is the caching of query results. First, it would
be interesting to analyze the expected cache hit rate for a given distribution of
queries when a query is sent to a random set of machines. And a similar analysis
should be performed when the query is sent to a pseudo-random (deterministic)
set of nodes.

A key assumption in our analysis is the ability to randomly sample the collec-
tion. This is difficult, but certainly possible. Moreover, in the case of a centrally

Probably Approximately Correct Search 15

managed system, common to commercial search engines, it would not be neces-
sary to for each machine to independently sample the Web. Rather, a centralized
crawler could still be used, and the documents from this crawl could be randomly
(and non-disjointly) partitioned across the computers.

We have also implicitly assumed that the deterministic and non-deterministic
IR systems both implement the same underlying retrieval model. Usually, most
retrieval models have parameter values that are based on the statistics of the
collection. However, for the PAC IR system, each computer only has access to its
local sample. Future work is needed to determine if, and under what conditions,
the statistics of the local samples will be sufficiently close to the statistics of the
overall collection.

Acknowledgements

The authors thank Vishwa Vinay of Microsoft Research, Cambridge, and Brad
Karp, David Rosenblum and Jun Wang of UCL for useful discussion on earlier
drafts of this paper.

References

1. Barroso, L.A., Dean, J., Holzle, U.: Web search for a planet: The google cluster
architecture. IEEE Micro. 23(2), 22–28 (2003)

2. Baykan, E., de Castelberg, S., Henzinger, M.: A comparison of techniques for sam-
pling web pages. In: Unknow, vol. 1000,

3. Harren, M., Hellerstein, J.M., Huebsch, R., Loo, B.T., Shenker, S., Stoica, I.: Com-
plex queries in dht-based peer-to-peer networks. In: Druschel, P., Kaashoek, M.F.,
Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, p. 242. Springer, Heidelberg
(2002)

4. King, V., Saia, J.: Choosing a random peer. In: PODC, pp. 125–130 (2004)
5. Li, J., Loo, B.T., Hellerstein, J.M., Kaashoek, M.F., Krager, D.R., Morris, R.: On

the feasibility of peer-to-peer web indexing and search. In: Kaashoek, M.F., Stoica,
I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 207–215. Springer, Heidelberg (2003)

6. Raiciu, C., Huici, F., Handley, M., Rosenblum, D.: ROAR: Increasing the flexibility
and performance of distributed search. In: Proc. ACM SIGCOMM 2009 Conference
on Data Communication, SIGCOMM 2009 (2009)

7. Reynolds, P., Vahdat, A.: Efficient peer-to-peer keyword searching. In: Proceedings
of the International Middleware Conference (2003)

8. Rusmevichientong, P., Pennock, D.M., Lawrence, S., Giles, C.L.: Methods for sam-
pling pages uniformly from the world wide web. In: Proc. AAAI Fall Symposium
on Using Uncertainty Within Computation, pp. 121–128 (2001)

9. http://news.ebrandz.com/google/2009/2495-google-continues-to

-lead-february-2009-us-search-engine-rankings-comscore-.html (2009)
10. Skobeltsyn, G., Luu, T., Zarko, I.P., Rajman, M., Aberer, K.: Web text retrieval

with a p2p query-driven index. In: SIGIR, pp. 679–686 (2007)
11. Stoica, I., Morris, R., karger, D., Kaashoek, F., Balakrishnan, H.: Chord: Scalable

peer-to-peer lookup service for internet applications. In: Proceedings of the 2001
ACM SIGCOMM Conference, pp. 149–160 (2001)

http://news.ebrandz.com/google/2009/
http://news.ebrandz.com/google/2009/

16 I.J. Cox, R. Fu, and L.K. Hansen

12. Tang, C., Xu, Z., Mahalingam, M.: psearch: Information retrieval in structured
overlays. In: HotNets-I (2002)

13. Terpstra, W.W., kangasharju, J., Leng, C., Buchmann, A.P.: Bubblestorm: re-
silient, probabilistic, and exhaustive peer-to-peer search. In: SIGGCOMM 2007
(2007)

14. Terpstra, W.W., Leng, C., Buchmann, A.P.: Bubblestorm: Analysis of probabilistic
exhaustive search in a heterogeneous peer-to-peer system. In: Technical Report
TUD-CS-2007-2 (2007)

15. Valiant, L.G.: A theory of the learnable. Communications of the ACM 27(11),
1134–1142 (1984)

16. http://www.worldwidewebsize.com/ (2009)
17. Yang, K.-H., Ho, J.-M.: Proof: A dht-based peer-to-peer search engine. In: Confer-

ence on Web Intelligence, pp. 702–708 (2006)
18. Yang, Y., Dunlap, R., Rexroad, M., Cooper, B.F.: Performance of full text search

in structured and unstructured peer-to-peer systems. In: INFOCOM (2006)

http://www.worldwidewebsize.com/

	Probably Approximately Correct Search
	Introduction
	Framework
	Definitions
	Sampling the Collection
	Retrieval

	Discussion
	Distributed Search
	Peer-to-Peer Decentralized Search

	Simulation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

