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Abstract

Searching very large collections can be costly in both
computation and storage. To reduce this cost, recent research
has focused on reducing the size (pruning) of the inverted
index. The inverted index represents a table, the rows and
columns of which are terms in the lexicon and documents
in the collection, respectively. A non-zero entry in the
table, known as a posting, indicates that the corresponding
document contains the term. Previous researches on static
index pruning was either (i) posting-oriented, in which less
important postings are removed from the table, or (ii) term-
oriented, in which less important terms are removed from
the table. In this paper, we investigate a new, document-
oriented pruning strategy that removes entire columns of
the table, i.e. removes less important documents from the
collection. Three methods for estimating the importance of
a document are proposed. Methods 1 and 2 are dependent on
the score function of the retrieval system (e.g. Okapi BM25),
while Method 3 is independent of the retrieval system.
Experimental results compare the three proposed methods
with Carmel et al.’s posting-oriented approach, using both
the FT and LA Times collections and using both ordinary
and difficult queries. Based on mean average precision and
precision at 10, experimental results show that Method 3
generally performs best on the FT collection for pruned
indexes down to 35% of the original size. However, for more
severe pruning, Carmel et al.’s algorithm is better. For the
LA Times collection, the performance of Method 3 and that
of Carmel et al. are reversed. This variation in performance
across collections has not been previously reported.

1. Introduction

Web search has been critical to the success of the Web.

Search engines are often the first point of entry for users. It

is well known that search engines can generate significant

revenue from paid placement advertising. However, less well

known is the fact that Web search can be very costly to

provide. It is estimated that Google and Microsoft currently

spend more than 1 billion U.S. dollars per annum to provide
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Figure 1. An example of an inverted index for informa-
tion retrieval systems

the computational, storage and network resources necessary

to support their services. Consequently, there is considerable

interest in reducing these costs, as even relatively small

improvements can produce large savings.

Web search involves the indexing of an enormous number

of documents. Therefore, one focus of attention has been on

reducing the size of the inverted index. An inverted index

is a data structure that is commonly used to implement

information retrieval (IR) [1]. Figure 1 gives an example of

the structure of an inverted index. Conceptually, it represents

a table, the rows and columns of which are terms (words)

in the lexicon (vocabulary) and documents in the collection,

respectively. An entry in the table, known as a posting,

indicates that the corresponding document contains the term.

In practice, the inverted index only records non-zero entries.

Each row of the index consists of a posting list, where each

posting is a pointer to a document containing the term.

Index pruning can be either dynamic or static. Dynamic

pruning [2], [3] decides during query processing, whether

certain terms or postings are worth adding to the accu-

mulated retrieval scores, and whether the ranking process

should continue or stop. By contrast, static pruning [3]

removes entries from the index in advance (of any query),

therefore reducing the index size. The focus of this paper is

on static index pruning, which can be considered equivalent
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to lossy compression of the inverted index. Since informa-

tion is discarded (lost) as part of the pruning (compression)

process, it is necessary to examine how the performance of

the IR system is affected by the pruning strategy. Besides

lossy compression, lossless compression is also possible.

Ntoulas and Cho [4] described a structure for a two-tiered

cache of the inverted index, in which the first tier stores the

pruned index and the second tier stores a full index.

Carmel et al. [3] first introduced the concept of static

index pruning and described a posting-oriented pruning
strategy. Their approach, described in Section 2, removes

less important postings from the inverted index, thereby

reducing its size. The basis of this strategy is to sparsify the

index table, i.e. to decide which of the individual postings

should remain in the index.

Blanco and Barreiro [5] extended the work of static index

pruning, by considering a term-oriented pruning strategy.

The feature of such strategy is to eliminate rows from the

index table, i.e. to decide which of the terms in the lexicon

should remain in the index. Their work was inspired by

the concept of stopwords. Blanco and Barreiro studied how

performance is affected by the removal of less important

terms from the lexicon. Their experiments demonstrated

that this approach can perform competitively to Carmel’s

posting-oriented pruning.

In this paper, we present a new perspective to prune the

inverted index, i.e. document-oriented pruning. Our strategy

is to decide whether all postings pointing to a specific

document should remain in the index. This is equivalent to

eliminating entire columns from the index table. Our work is

based on the assumption that not every document is equally

important in a collection (just as not every term is equally

important in the lexcion). Recent research on the “findabilty”

of documents [6], [7] also suggests that some documents in

a collection are unlikely to be retrieved by the IR system.

Three algorithms for statically scoring the importance of

documents are described, two of which are dependent on

the score function of the retrieval system, while the third is

independent of the retrieval system.

The remainder of this paper is organized as follows:

Section 2 describes our baseline algorithm, i.e. Carmel’s

posting-oriented pruning technique. Section 3 then presents

our document-oriented pruning algorithms. The experiments

and results are given in Section 4. Finally, Section 5 provides

a discussion of our results and directions for future work.

2. Carmel’s Posting-Oriented Index Pruning

Carmel et al. [3] introduced the concept of static index

pruning, and described a posting-oriented pruning strategy

that removes less important postings from an inverted index.

The importance score of a posting P(t, d)1 is determined

by the score function of the retrieval system. For the

term frequency inverse document frequency (TFIDF) of the

SMART retrieval system [8], the importance score of a

posting is given by

P(t, d) =

log(1+tf(t))
log(1+avgtf) log

(
N
Nt

)
|d| (1)

where tf(t) is term t’s frequency in document d, avgtf
is the average term frequency for document d, N is the

number of documents in the collection, Nt is the number

of documents containing term t, and |d| is the length of

document d.

Carmel’s pruning removes less important postings, by

setting some non-zero table entries to zero. They described

two closely related methods, “uniform pruning” and “term-

based pruning”. For uniform pruning, the pruning threshold

τ is the same for all terms, while for term-based pruning,

the threshold τt is selected for each term t. The posting of

the pruned index P∗(t, d) is equal to P(t, d) if the score is

greater than the threshold and zero otherwise.

For term-based pruning, Carmel et al. described two

algorithms, i.e. “top-k pruning” and “δ-top pruning”, to

define the pruning threshold τt for each term t. The threshold

of top-k pruning is chosen by τt = ε · zt, where zt is

the term’s kth highest posting score, and ε is a parameter

used to control the pruning rate. Instead of the kth highest

posting score, δ-top pruning uses another parameter δ times

the highest score z′t to define the pruning threshold, i.e.

τt = ε · δz′t. The nature of top-k pruning and δ-top pruning

are the same. The only difference is that whether the pruning

threshold is determined by the kth highest posting score zt

or δ times the highest score z′t. In this paper, we implement

Carmel’s top-k pruning as our baseline algorithm.

3. Document-Oriented Index Pruning

In this Section, we discuss our document-oriented prun-

ing. Our strategy is to decide whether all postings pointing

to a specific document should remain in the index, which

is equivalent to eliminating entire columns from the index

table. Our decision on which documents to remove is made

according to their importance scores. Three methods for

statically scoring documents are described, two of which

are dependent on the score function of the retrieval system,

while the third is independent of the retrieval system.

3.1. Method 1

First of all, we compute the importance score for all

the postings P(ti, dj) in the inverted index, by using the

1. In [3], Carmel et al. used the symbol A(t, d).
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score function of the retrieval system. Posting score P(ti, dj)
reflects term ti’s contribution to document dj . In the sense

of information retrieval, a posting with a high score is more

discriminative (important) than the one with a low score.

Thus, the value of P(ti, dj) reflects the importance of the

posting.

After assigning every posting an importance score accord-

ing to the retrieval system, we score documents by averaging

all the associated posting scores. Thus, Method 1 for scoring

document d is

S1(d) =
1
|d|

∑
ti∈d

tf(ti) · P(ti, d) (2)

The purpose of the denominator, |d|, is to reduce the affect

of different document lengths.

We assume that an important document should normally

contain more discriminative postings than a less important

document. In other words, the higher the document score, the

more important of the document is. Therefore, our pruning

strategy removes low scoring documents, i.e. all the postings

associated with such documents. Note that the score of a

document is an average over all its postings. Therefore, a

document can be removed, even if some individual postings

have high scores, but the overall document score is below

the threshold.

3.2. Method 2

In Method 1, the posting scores of the same term are

different across documents. In Method 2, we first average the

individual posting scores for a term ti, to obtain an estimate

of ti’s overall importance T(ti). In other words, T(ti) is a

constant across all documents containing ti, i.e.

T(ti) =
1

Nti

∑
dj

P(ti, dj) (3)

where Nti
is the number of documents containing term ti.

The document score of Method 2, is then an average of

the associated term scores, i.e.

S2(d) =
1
|d|

∑
ti∈d

tf(ti) · T(ti)

=
1
|d|

∑
ti∈d

⎛
⎝ tf(ti)

Nti

∑
dj

P(ti, dj)

⎞
⎠

(4)

3.3. Method 3

In the previous two methods, the importance score is a

function of the specific retrieval system. Thus, for example,

if we change our retrieval system from the Okapi BM25

probabilistic model to the language modeling approach, a

document’s score will be changed as well. However, a score

that is independent of the retrieval system may more reliably

reflect the importance of a document.

Inverse document frequency (IDF) is widely used as a

measure of a term’s importance. It is defined [9] as the

logarithmic ratio of the total number of documents in a

collection, N , to the number of documents containing the

term, Nti , i.e.

IDF(ti) = log
(

N

Nti

)
(5)

Common words, such as “the”, “and”, “it”, are likely to

appear in every document among the collection. Thus, they

have low IDF values. Conversely, terms that only occur in

some small number of documents have correspondingly high

IDF values.

The most common form of IDF weighting was introduced

by Robertson and Sparck-Jones [10]. It normalizes with

respect to the number of documents not containing the term

(N−Nti
) and adds a constant 0.5 to both the numerator and

the denominator in order to moderate extreme values. The

normalized inverse document frequency (NIDF) is defined

by

NIDF(ti) = log
(

N − Nti
+ 0.5

Nti + 0.5

)
(6)

We assume that documents containing frequently occur-

ring terms are less important than documents containing

less frequently occurring terms. Thus, Method 3 for scoring

documents replaces T(ti) in Equation 4 with NIDF(ti), i.e.

S3(d) =
1
|d|

∑
ti∈d

tf(ti) · NIDF(ti)

=
1
|d|

∑
ti∈d

tf(ti) · log
(

N − Nti
+ 0.5

Nti
+ 0.5

) (7)

4. Experimental Evaluation

In this Section, we first describe our experimental setup,

followed by experiments that compare the three proposed

methods with the baseline algorithm of Carmel et al.

4.1. Experimental setup

All our experiments are carried out on the LEMUR toolkit

[11]. Documents are stemmed using the Krovetz stemmer

[12], but stopwords are not removed in the initial stage. This

is because we need a full index to compute our importance

score for each document. Instead, stopwords are removed

after pruning. We use the stopword list suggested by Fox

[13], which includes a total of 421 stopwords.

In our evaluations, the “title” part and the “description”

part of TREC topics are used as evaluation queries. In all

our experiments, Okapi BM25 [14] is used as the score
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Figure 2. Performance as a function of various levels of pruning. Results are for the Financial Times collection
(evaluated by topics 301-450)

function between a query q and a document d. There are

three parameters in the BM25 scoring function, i.e. b, k1,

and k3. We use the recommended values [14] as b = 0.75,

k1 = 1.2, and k3 = 1000, respectively.

Carmel’s top-k pruning algorithm is implemented as our

baseline. The value of k is set to 10 as in [3], and the differ-

ent pruning levels are obtained by modifying the parameter

ε. We use the same measures as in [3], i.e. mean average

precision (MAP) and precision at 10 (P@10), to evaluate the

retrieval performance for different pruning levels. As in [3],

the percent of the index is defined as the ratio of the number

of postings in the pruned index to that in the original index.

4.2. Experiment 1: FT with topics 301-450

We first compare our document-oriented pruning with

Carmel’s pruning on the Financial Times (FT) collection

consisting of 210,158 documents. TREC 6, 7 and 8 ad

hoc topics (i.e. topics 301-450) are used to evaluate the

performance.

Figure 2 shows the experimental result. We observe that

for P@10 (top set of curves), the performance of all four

algorithms is similar and is almost unaffected by low levels

of pruning (i.e. for the size of pruned indexes greater than

80% of the original index).

As the pruning increases, Carmel’s algorithm and Method

1, show slight performance degradations, while Methods

2 and 3 actually exhibit small performance improvements.

That is, the performance of Methods 2 and 3 is actually

better than the original unpruned index. Although perhaps

unexpected, clearly if, for the unpruned index, irrelevant

documents are retrieved in the top-10, and these documents

are subsequently pruned, then P@10 can actually improve.

For pruned indexes of less than 60% of the original size,

performance of all four algorithms begins to degrade below

that measured for no pruning. However, the degradation is

relatively smooth. It is observed that Method 3 exhibits

superior performance across all four methods, until pruning

reduces the index to less than 35% of its original size, after

which Carmel’s method performs best.

For MAP measure (bottom set of curves), the trend of

curves behaves similar to that of P@10 measure.

4.3. Experiment 2: FT with difficult topics

In the TREC 2003 and 2004 robust tasks, NIST selected

50 difficult topics to evaluate the robustness (reliability) of

an IR system. In our experiment, difficult queries help us

to understand whether our pruning techniques are stable

for both ordinary queries (that are tested in Experiment 1)

and difficult queries. In this experiment, we use the same

document collection as in Experiment 1, but difficult topics

as evaluation queries.

The results are provided in Figure 3. As expected, the
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Figure 3. Performance as a function of various levels of pruning. Results are for the Financial Times collection
(evaluated by 50 difficult topics)

absolute values of P@10 and MAP decline significantly for

all four algorithms, since these are, after all, difficult queries.

However, the relative performance for all four algorithms

generally remains very similar.

4.4. Experiment 3: LA with topics 401-450

Besides different types of queries, the performance across

different collections is also examined. We now use the same

document collection and the same evaluation queries as used

in [3]. The document collection is the Los Angeles (LA)

Times consisting of 131,896 documents. TREC 8 ad hoc

topics (i.e. topics 401-450) are used as evaluation queries.

The results of Figure 4 show that the relative performance

of Method 3 and Carmel’s method is swapped. Generally,

Carmel’s algorithm exhibits superior performance, while

Method 3 exhibits the best performance of our three pro-

posed algorithms. Such variability in performance across

collections has not previously been reported and further

investigation is needed to fully understand this.

5. Conclusions and Future Work

Previous work on static index pruning has either pruned

postings or pruned terms. In this paper, we investigate a

third possibility, that of pruning documents. Although this

approach may seem somewhat counterintuitive, we observe

that in some scenarios our algorithms are competitive or

better than posting-oriented pruning. Three methods for

determining which documents to remove are proposed. The

first two are dependent on the score function of the retrieval

system, while the third is independent of the retrieval system.

Experimental results on the FT collection show that

Method 3, which is independent of the retrieval system,

exhibits superior performance for indexes that are pruned

down to 35% of the original size. However, if further pruning

is performed, Carmel’s method has better performance. The

relative performance of the four algorithms is unaffected

when experiment is repeated on difficult queries from the

robust track of TREC. However, the relative performance is

significantly affected by changing the collection to the LA

Times. In this case, the relative performance of Method 3

and Carmel’s method is swapped, and Carmel’s method is

observed to exhibit best performance. Method 3 remains the

best of the three algorithms we proposed.

The variability of performance across collections has not

previously been reported and is clearly one avenue for future

work. In particular, we intend to examine the Web track of

TREC (WT10G and .Gov) in order to experiment with much

larger collections.

We also note that our methods are complementary to

that of Carmel. In fact, when a posting is removed, it does

not necessarily remove the document from the collection,

as other postings may still point to that document. It may
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Figure 4. Performance as a function of various levels of pruning. Results are for the Los Angeles Times collection
(evaluated by topics 401-450)

therefore be advantageous to consider a combined approach

that prunes both postings and documents.
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