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Abstract. The use of query-independent knowledge to improve the
ranking of documents in information retrieval has proven very effective
in the context of web search. This query-independent knowledge is de-
rived from an analysis of the graph structure of hypertext links between
documents. However, there are many cases where explicit hypertext links
are absent or sparse, e.g. corporate Intranets. Previous work has sought
to induce a graph link structure based on various measures of similarity
between documents. After inducing these links, standard link analysis
algorithms, e.g. PageRank, can then be applied. In this paper, we pro-
pose and examine an alternative approach to derive query-independent
knowledge, which is not based on link analysis. Instead, we analyze each
document independently and calculate a “specificity” score, based on (i)
normalized inverse document frequency, and (ii) term entropies. Two re-
ranking strategies, i.e. hard cutoff and soft cutoff, are then discussed to
utilize our query-independent “specificity” scores. Experiments on stan-
dard TREC test sets show that our re-ranking algorithms produce gains
in mean reciprocal rank of about 4%, and 4% to 6% gains in precision
at 5 and 10, respectively, when using the collection of TREC disk 4 and
queries from TREC 8 ad hoc topics. Empirical tests demonstrate that
the entropy-based algorithm produces stable results across (i) retrieval
models, (ii) query sets, and (iii) collections.

Keywords: Query-independent knowledge, Specificity, Normalized
inverse document frequency, Entropy, Ranking, Information retrieval.

1 Introduction

It is now common for information retrieval to score documents based on a combina-
tion of query-dependent and query-independent information. Each resulting score
is an estimate of the relevance of the document. The use of query-independent
knowledge has proven particularly useful in the context of Web search [1,2,3,4].
Here, the graph structure created by the hypertext links between documents is
used to estimate the “importance” of a document. Two well-known measures of
document importance are Pagerank [1,2] and hyperlink-induced topic search
(HITS) [3,4], which are discussed in detail in Section 2.
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These graph-based algorithms rely on links between documents. However, there
are many collections, e.g. Intranets, where such links are absent or sparse. In these
cases, it is often not possible to apply query-independent graph-based measures
of document importance. To alleviate this problem, many researchers have pro-
posed inducing a graph structure within the collection, based, for example, on the
similarity between documents. This prior work is discussed in Section 2.

In this paper, we consider re-ranking documents based on documents’ query-
independent “specificity”. Our fundamental assumption is that documents with
a narrow focus (high specificity) are more important than documents with a
broad focus (low specificity). We propose two measures of specificity based on
(i) normalized inverse document frequency, and (ii) term entropies, as described
in Section 3.

In Section 4, we describe a number of experiments using standard TREC test
sets. The performance of the two specificity scores is compared. Subsequently,
the stability of the entropy-based method is investigated with respect to different
query sets and collections. Finally, we compare two different methods of combin-
ing query-dependent and query-independent scores. Section 5 then summarizes
our results and discusses remaining issues.

2 Related Work

To paraphrase George Orwell [5], “All documents are equal but some documents
are more equal than others”. While several documents may have equal or simi-
lar query-dependent scores, significant improvements in retrieval are obtained by
considering the query-independent “importance” of each document. Of course,
the importance of a document can be quite subjective. And many factors may in-
fluence a document’s importance. Considerable work has focused on approaches
related to citation analysis. In particular, for Web documents, the links between
documents are analogous to citations, and a number of graph-based link analysis
algorithms have been proposed.

The most well-known measure of document importance is PageRank [1,2].
PageRank assigns every webpage a numerical score between 0 and 1, representing
the likelihood that a person randomly clicking on links will arrive at a particular
webpage. The score of PageRank is computed based on the link structure of the
web graph. Berkhin [6], Langville and Meyer [2] investigated several methods for
efficient computation of PageRank scores.

Kleinberg [3,4] proposed an alternative measure called hyperlink-induced topic
search (HITS). The HITS algorithm assigns every webpage two scores. One is
the hub score, and the other is the authority score. Generally, a webpage that
links to many other webpages would be typically assigned a high hub score, and
a webpage that is linked to by many other webpages would be typically assigned
a high authority score. A systematic study of a number of HITS variants was
conducted by Borodin et al. [7].

Both PageRank and HITS rely on links between documents. However, there
are many collections where explicit hypertext links are absent or sparse. In these
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cases, we can not directly apply link analysis algorithms. To overcome this limi-
tation, Kurland and Lee [8,9] proposed inducing a graph structure for the top-k
retrieved documents in response to a query. The k nodes of the induced graph
are the top-k documents retrieved in response to a query. The weight on an edge
between two nodes di and dj is based on an estimation of the likelihood that if
document di is relevant to the query, then dj is also relevant. After constructing
the graph, standard link analysis algorithms, e.g. PageRank and HITS, are then
applied to re-rank the top-k retrieved documents. In [8], a method of structural
re-ranking was discussed, and in [9], cluster-based language models are used for
re-ranking. Specifically, in [9], Kurland and Lee reported a 4.6% gain for mean
reciprocal rank (MRR), a 6.4% gain for precision at 5 (P@5), and a 4.8% gain
for precision at 10 (P@10) based on the standard test set of TREC 8.

For other work on graph-based information retrieval, readers are directed to
[10,11,12,13,14].

Our research differs from prior work in that our query-independent document
score is not graph-based. Instead, we assume that documents with a narrow
focus are more important than documents with a broad focus. We refer to the
breadth of focus as “specificity”. In the next Section, we propose two methods
to estimate a document’s specificity.

3 Document Specificity

We assume that documents containing unusual (specific) terms are more impor-
tant than documents only containing common (broad) terms. To quantify this,
we propose two specificity scores using statistical properties of the documents
themselves. One is derived from the normalized inverse document frequency, and
the other is based on the theory of information entropy.

3.1 Normalized IDF-Based Method

Inverse document frequency (IDF) is widely used as the measure of a term’s dis-
criminative ability. It is defined as the logarithmic ratio of total number of docu-
ments in a collection, nd, to the number of documents containing the term (also
known as term ti’s document frequency), df(ti), as shown in Equation 1 [15].

IDF(ti) = log
(

nd

df(ti)

)
(1)

We use normalized inverse document frequency (NIDF), as proposed by Robertson
and Sparck-Jones [16]. The normalized IDF, defined in Equation 2, normalizes
with respect to the number of documents not containing the term (nd − df(ti))
and adds a constant 0.5 to both the numerator and the denominator in order to
moderate extreme values.

NIDF(ti) = log
(

nd − df(ti) + 0.5
df(ti) + 0.5

)
(2)
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Common words, such as “the”, “and”, “it”, are likely to appear in every doc-
ument within the collection and are therefore not discriminative. This poor
discriminative capability is reflected in a correspondingly low NIDF value. Con-
versely, terms that only occur in a small number of documents are quite useful
to discriminate between documents, and their NIDF values are correspondingly
high.

Our assumption is that documents that consist primarily of terms with low
NIDF values are less specific than documents that contain more discriminative
terms. Under such assumption, we define a document specificity score, S1, as:

S1(d) =
1
ld

∑
ti∈d

tf(ti)NIDF(ti) =
1
ld

∑
ti∈d

tf(ti) log
(

nd − df(ti) + 0.5
df(ti) + 0.5

)
(3)

where tf(ti) is ti’s term frequency in document d, and ld is the length of docu-
ment d. The purpose of having a denominator ld here is to reduce the influence
of different document lengths.

3.2 Entropy-Based Method

The information entropy of a discrete random variable X with possible values
{x1, x2, · · · , xn} is defined as

H(X) = −
n∑

i=1

Pr
X

(xi) log Pr
X

(xi) (4)

where PrX(xi) is the probability distribution function (pdf) of the random vari-
able X .1

Entropy measures the uncertainty associated with the random variable X .
Consider an example of a two-side coin. If the probability of the occurrence of
either side is 1/2, the entropy achieves its maximum value, because we have
the greatest uncertainty in the outcome (information content). However, if the
probability for one side is 1/4 and for the other side 3/4, the uncertainty in the
outcome reduces and the value of entropy reduces.

We consider each term ti in the lexicon as a random variable. Term ti is
possibly occurring in document dj , where j ranges from 1 to nd. Therefore, the
probability distribution of term ti across the collection is

Pr
ti

(dj) =
tf(dj)
tf(c)

(j = 1, 2, · · · , nd) (5)

where tf(dj) is ti’s term frequency in document dj , and tf(c) denotes ti’s term
frequency in the whole collection c. Under such definition, the entropy of a term
ti is

H(ti) = −
nd∑
j=1

Pr
ti

(dj) log Pr
ti

(dj) = −
nd∑
j=1

tf(dj)
tf(c)

log
(

tf(dj)
tf(c)

)
(6)

1 In the case of PrX(xi) = 0 for some xi, the value of the corresponding 0 log 0 should
be taken to 0, which is given by the limit lim

p→0
p log p = 0.
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The probability, Prti(dj), is the probability that a particular instance of the
term, ti, occurs in document dj . If the term is a common word, e.g. “the”, then
the probability is almost the same for all documents (uniform distribution),
and we have maximum uncertainty, i.e. a large entropy value. Conversely, if the
term is unusual, e.g. “aardvark”, then the probability is peaked, as only a few
documents contain the term. In this case, the uncertainty is much less, and the
entropy is correspondingly smaller. Note that the value of a term’s entropy is
inversely correlated to its normalized inverse document frequency. For NIDF,
rare words have high values, whereas common words have low values.

After computing the entropy of each term ti, our entropy-based measure of
document specificity is given by

S2(d) =
1
ld

∑
ti∈d

tf(ti)H(ti) = − 1
ld

∑
ti∈d

⎛
⎝tf(ti)

nd∑
j=1

tf(dj)
tf(c)

log
(

tf(dj)
tf(c)

)⎞⎠ (7)

Note that the higher the value of S2, the less specific the document is. This is
the inverse of our NDIF-based score.

4 Experimental Results

The use of both query-dependent and query-independent document scores re-
quires the two scores to be combined to provide a final document score with
which to rank documents. There are numerous methods to combine the two
scores [17,8].

Here we considered a strategy in which each document was first classified
as either “specific” or “unspecific” based on whether the document’s specificity
score was above or below a threshold. This classification was then used in one
of two ways. In the first set of experiments, we simply remove all “unspecific”
documents from our ranked list (hard cutoff ). In the second set of experiments,
the rank of “unspecific” documents is multiplied by an integer constant (soft
cutoff ). In both cases, performance is a function of the chosen threshold. Rather
than reporting arbitrary threshold values, we report the percentage of documents
in the collection that are classified as “unspecific”, which is directly proportional
to the threshold and provides a more meaningful value.

We use standard TREC collections in our experiments, as described in Table 1.
These document collections do not contain link information. All our experiments
are conducted using the LEMUR toolkit [18]. Documents are stemmed using the
Krovetz stemmer [19]. We use the stopword list suggested by Fox [20], which

Table 1. Details of collections used in our experiments

Collection Description Number of documents
Federal Register (FR94)

TREC disk 4 Financial Times (FT) 265,788

Federal Broadcast Information Service (FBIS)
TREC disk 5 Los Angeles Times (LA) 262,367
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includes a total of 421 stopwords. In all our experiments, the “title” part and
the “description” part of TREC topics are used as evaluating queries.

4.1 Hard Cutoff

In this set of experiments, we consider the case where “unspecific” documents
are removed from the ranked list. We refer to this as “hard cutoff”, and define
the hard cutoff rate as the percentage of documents in the collection that are
classified as unspecific.

4.1.1 Comparison of NIDF-Based Method and Entropy-Based Method

We first compare our NIDF-based and entropy-based methods using the collec-
tion of TREC disk 4. TREC 8 ad hoc topics are used to evaluate the performance.
Okapi BM25 [21] is used as the score function of the retrieval system.

Table 2. Comparison of NIDF-based method and entropy-based method at various
hard cutoff rates based on MRR and its gain

Hard cutoff rate % 0% 5% 10% 15% 20% 25%
MRR (NIDF-based method) 0.6883 0.6984 0.6967 0.7005 0.7030 0.7033
Gain (NIDF-based method) 0 +1.47% +1.22% +1.77% +2.14% +2.18%
MRR (Entropy-based method) 0.6883 0.6984 0.6970 0.7004 0.7011 0.7108
Gain (Entropy-based method) 0 +1.47% +1.26% +1.76% +1.86% +3.27%

Hard cutoff rate % 30% 35% 40% 45% 50% 55%
MRR (NIDF-based method) 0.7151 0.7042 0.7151 0.7059 0.6546 0.6669
Gain (NIDF-based method) +3.89% +2.31% +3.89% +2.56% -4.90% -3.11%
MRR (Entropy-based method) 0.7159 0.7058 0.6858 0.6885 0.6755 0.6620
Gain (Entropy-based method) +4.01% +2.54% +0.36% +0.03% -1.86% -3.82%

Hard cutoff rate % 60% 65% 70% 75% 80% 85%
MRR (NIDF-based method) 0.6644 0.6363 0.5915 0.5803 0.5537 0.5012
Gain (NIDF-based method) -3.47% -7.55% -14.06% -15.69% -19.56% -27.18%
MRR (Entropy-based method) 0.6478 0.6387 0.6146 0.5971 0.5717 0.5167
Gain (Entropy-based method) -5.88% -7.21% -10.71% -13.25% -16.94% -24.93%

Table 2 is a comparison of mean reciprocal rank (MRR) and MRR gain. The
reciprocal rank is the multiplicative inverse of the rank of the first relevant result.
For example, if the first relevant result is ranked third in the response list (i.e.
the first two documents are non-relevant), the reciprocal rank is 1/3. MRR is
defined as the average of the reciprocal ranks to a set of queries, i.e.

MRR =
1
nq

nq∑
j=1

1
Rank1st,rel

(8)

where nq is the number of evaluating queries.
Table 2 suggests that both the NIDF-based method and the entropy-based

method can provide improved performance compared with a ranking based only
on a query-dependent score. For both methods, we obtain the best MRR gain
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Fig. 1. Comparison of NIDF-based and entropy-based methods at various hard cutoff
rates based on a variety of precision measures

(3.89% for the NIDF-based method and 4.01% for the entropy-based method)
when the threshold is set such that the hard cutoff rate is 30%, i.e. 30% of the
collection is classified as “unspecific”.

Figure 1 compares our two methods based on various precision measures.
Precision (P) is the fraction of retrieved documents that are relevant, i.e.

P = Pr(relevant�retrieved) =
nrel,ret

nret
(9)

Measuring precision at fixed levels of retrieved results, such as ten or thirty, is
referred to as precision at k (P@k). Mathematically, it is the percent of retrieved
documents that are relevant after k documents (whether relevant or not) have
been retrieved, and then the values are averaged over all evaluating queries. P@k
is important for many applications, since users may only examine the first page
or the first few pages of the retrieved results. In this case, the quality of the top
results becomes much more important. R-precision measures precision after R
documents have been retrieved, where, for a given query, R is the total number of
relevant documents in the collection. The average precision (AP) is the average
of precisions after each relevant document is retrieved. The average of the AP
values across all queries, is the mean average precision (MAP), i.e.

MAP =
1
nq

nq∑
j=1

(
1

nrel

∑
k

P@Rankkth,rel

)
(10)

where k is the rank of each relevant document to query qj in the response list.
Figure 1 suggests that under almost all precision measures, the entropy-

based method surpasses the NIDF-based method. There is nearly no precision
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degradation when 20% to 30% of the collection is classified as “unspecific”. In-
stead, for the entropy-based method, we obtain a 4.17% gain for P@5 (when
30% of the collection is classified as “unspecific”), a 6.28% gain for P@10 (30%
“unspecific”), a 1.65% gain for R-Precision (20% “unspecific”), and a 0.41% gain
for MAP (15% “unspecific”).

Note that our experimental results are comparable to that of Kurland and
Lee [9]. By using the method of inducing a graph structure, Kurland and Lee
[9] obtained a 4.6% MRR gain, a 6.4% P@5 gain, and a 4.8% P@10 gain on
their experiment of TREC 8 ad hoc topics. Note, however, that their document
collection was a mixture of TREC disks 4 and 5.

Since the entropy-based method surpasses the NIDF-based method for al-
most all precision measures, we restrict further experiments to the entropy-based
method only.

4.1.2 Performance Variation across Retrieval Models

Here we examine the sensitivity of our entropy-based specificity measure to dif-
ferent retrieval models. The document collection and the evaluating queries are
the same as before. Three different retrieval models are examined. In addi-
tion to the Okapi BM25 probabilistic model [21], we considered another two
widely used retrieval models, the Kullback-Leibler Divergence Language Model
(LM) [22] and the classical term frequency-inverse document frequency (TFIDF)
model [23].

Table 3 compares the three retrieval models based on MRR and MRR gain.
For BM25 and TFIDF, we obtain the best MRR gain (4.01% and 5.02% respec-
tively) when 30% of the collection is classified as “unspecific”, while for the K-L

Table 3. Comparison of different retrieval models (Okapi BM25, K-L Divergence LM
and Classical TFIDF) at various hard cutoff rates based on MRR and its gain

Hard cutoff rate % 0% 5% 10% 15% 20% 25%
MRR (Okapi BM25) 0.6883 0.6984 0.6970 0.7004 0.7011 0.7108
Gain (Okapi BM25) 0 +1.47% +1.26% +1.76% +1.86% +3.27%
MRR (K-L Divergence LM) 0.6166 0.6166 0.6179 0.6218 0.6231 0.6377
Gain (K-L Divergence LM) 0 0 +0.21% +0.84% +1.05% +3.42%
MRR (Classical TFIDF) 0.6395 0.6310 0.6448 0.6537 0.6550 0.6621
Gain (Classical TFIDF) 0 -1.33% +0.83% +2.22% +2.42% +3.53%

Hard cutoff rate % 30% 35% 40% 45% 50% 55%
MRR (Okapi BM25) 0.7159 0.7058 0.6858 0.6885 0.6755 0.6620
Gain (Okapi BM25) +4.01% +2.54% +0.36% +0.03% -1.86% -3.82%
MRR (K-L Divergence LM) 0.6366 0.6373 0.6305 0.6381 0.6524 0.6532
Gain (K-L Divergence LM) +3.24% +3.36% +2.25% +3.49% +5.81% +5.94%
MRR (Classical TFIDF) 0.6716 0.6481 0.6311 0.6245 0.6228 0.6263
Gain (Classical TFIDF) +5.02% +1.34% -1.31% -2.35% -2.61% -2.06%

Hard cutoff rate % 60% 65% 70% 75% 80% 85%
MRR (Okapi BM25) 0.6478 0.6387 0.6146 0.5971 0.5717 0.5167
Gain (Okapi BM25) -5.88% -7.21% -10.71% -13.25% -16.94% -24.93%
MRR (K-L Divergence LM) 0.6315 0.6240 0.5714 0.5637 0.5239 0.4879
Gain (K-L Divergence LM) +2.42% +1.20% -7.33% -8.58% -15.03% -20.87%
MRR (Classical TFIDF) 0.6089 0.5978 0.5907 0.5940 0.5408 0.4976
Gain (Classical TFIDF) -4.78% -6.52% -7.63% -7.11% -15.43% -22.19%
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Fig. 2. Comparison of different retrieval models (Okapi BM25, K-L Divergence LM and
Classical TFIDF) at various hard cutoff rates based on a variety of precision measures

Divergence LM, the best MMR gain (5.94%) occurs when 55% of the collection
is classified as “unspecific”. Note, however, that all three retrieval models exhibit
improvements (4.01%, 3.24% and 5.02%) when 30% of the collection is classified
as “unspecific”.

Figure 2 shows various precision curves for the three retrieval models. Al-
though the performance of the three retrieval models are different (due to the
nature of the retrieval models themselves), our entropy-based method is stable
across all three retrieval systems. Specifically, based on Okapi BM25, we obtain
a 4.17% gain for P@5 and a 6.28% gain for P@10 when 30% of the collection
is classified as “unspecific”. Based on K-L Divergence LM, we obtain a 11.32%
gain for P@5 and a 4.08% gain for P@10 when 30% of the collection is classified
as “unspecific”. Based on Classical TFIDF, we obtain a 1.85% gain for P@5 and
a 1.09% gain for P@10 when 30% of the collection is classified as “unspecific”.
This provides some empirical evidence that performance improvements based on
the specificity score are robust to various retrieval models.

4.1.3 Performance Variation across Query Sets

Here we examine the sensitivity of our entropy-based specificity measure across
query sets. In previous experiments, we used ordinary queries (i.e. TREC 8 ad
hoc topics). Here we test the performance on difficult queries2. The difficult
queries are helpful for us to understand whether our measure of document speci-
ficity is stable for both the ordinary queries and difficult queries.
2 In the TREC 2003 and 2004 robust tasks, NIST selected 50 difficult topics to evaluate

the robustness (reliability) of a retrieval system.
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Table 4. Comparison of ordinary queries and difficult queries on TREC disk 4 at
various hard cutoff rates based on MRR and its gain

Hard cutoff rate % 0% 5% 10% 15% 20% 25%
MRR (Ordinary queries) 0.6883 0.6984 0.6970 0.7004 0.7011 0.7108
Gain (Ordinary queries) 0 +1.47% +1.26% +1.76% +1.86% +3.27%
MRR (Difficult queries) 0.5528 0.5648 0.5663 0.5734 0.5734 0.5763
Gain (Difficult queries) 0 +2.17% +2.44% +3.73% +3.73% +4.25%

Hard cutoff rate % 30% 35% 40% 45% 50% 55%
MRR (Ordinary queries) 0.7159 0.7058 0.6858 0.6885 0.6755 0.6620
Gain (Ordinary queries) +4.01% +2.54% +0.36% +0.03% -1.86% -3.82%
MRR (Difficult queries) 0.5799 0.5752 0.5555 0.5507 0.5291 0.5541
Gain (Difficult queries) +4.90% +4.05% +0.49% -0.38% -4.29% +0.24%

Hard cutoff rate % 60% 65% 70% 75% 80% 85%
MRR (Ordinary queries) 0.6478 0.6387 0.6146 0.5971 0.5717 0.5167
Gain (Ordinary queries) -5.88% -7.21% -10.71% -13.25% -16.94% -24.93%
MRR (Difficult queries) 0.5255 0.5088 0.4941 0.4802 0.4201 0.3923
Gain (Difficult queries) -4.94% -7.96% -10.62% -13.13% -24.01% -29.03%

Table 4 and Figure 3 summarize the experimental results on the collection of
TREC disk 4 when using the Okapi BM25 [21]. For both ordinary and difficult
queries, we obtain the best MRR gain when 30% of the collection is classified as
“unspecific”. A 4.01% MRR gain is obtained for ordinary queries, and a 4.90%
MRR gain for difficult queries. For the precision curves shown in Figure 3, as
expected, the absolute precision values of difficult queries decline significantly,
since these are difficult queries. However, the relative performances generally
remain similar. Specifically, based on ordinary queries, we obtain a 4.17% gain
for P@5 and a 6.28% gain for P@10 when 30% of the collection is classified as
“unspecific”. Based on difficult queries, we obtain a 10.13% gain for P@5 when
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Fig. 3. Comparison of ordinary queries and difficult queries on TREC disk 4 at various
hard cutoff rates based on a variety of precision measures
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35% of the collection is classified as “unspecific”, and a 6.15% gain for P@10
when 20% of the collection is classified as “unspecific”.

4.1.4 Performance Variation across Collections

In addition to testing the sensitivity of our entropy-based specificity measure
to retrieval models and query sets, we also examined the sensitivity across col-
lections. In previous experiments, we used the TREC disk 4 as our document
collection. Here we compare the experimental results on TREC disk 5.

Table 5. Comparison of ordinary queries and difficult queries on TREC disk 5 at
various hard cutoff rates based on MRR and its gain

Hard cutoff rate % 0% 5% 10% 15% 20% 25%
MRR (Ordinary queries) 0.6218 0.6237 0.6301 0.6232 0.6295 0.6388
Gain (Ordinary queries) 0 +0.31% +1.33% +0.23% +1.24% +2.73%
MRR (Difficult queries) 0.4572 0.4602 0.4639 0.4563 0.4635 0.4846
Gain (Difficult queries) 0 +0.66% +1.47% -0.20% +1.38% +5.99%

Hard cutoff rate % 30% 35% 40% 45% 50% 55%
MRR (Ordinary queries) 0.6380 0.6570 0.6435 0.6588 0.6489 0.6445
Gain (Ordinary queries) +2.61% +5.66% +3.49% +5.95% +4.36% +3.65%
MRR (Difficult queries) 0.4686 0.4841 0.5014 0.5071 0.4972 0.5018
Gain (Difficult queries) +2.49% +5.88% +9.67% +10.91% +8.75% +9.76%

Hard cutoff rate % 60% 65% 70% 75% 80% 85%
MRR (Ordinary queries) 0.6223 0.6107 0.5947 0.5459 0.4583 0.4272
Gain (Ordinary queries) +0.08% -1.79% -4.36% -12.21% -26.29% -31.30%
MRR (Difficult queries) 0.5069 0.4964 0.4398 0.4023 0.3329 0.3111
Gain (Difficult queries) +10.87% +8.57% -3.81% -12.01% -27.19% -31.96%
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Fig. 4. Comparison of ordinary queries and difficult queries on TREC disk 5 at various
hard cutoff rates based on a variety of precision measures
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Table 5 and Figure 4 summarize the experimental results on the collection of
TREC disk 53 when using the Okapi BM25 [21]. For both ordinary and difficult
queries, we obtain the best MRR gain when 45% of the collection is classified as
“unspecific”. A 5.95% MRR gain is obtained for ordinary queries, and a 10.91%
MRR gain for difficult queries. For the precision curves shown in Figure 4, the
relative performances are similar to our previous experiment using the TREC
disk 4. Specifically, based on ordinary queries, we obtain a 3.85% gain for P@5
and a 1.68% gain for P@10 when 20% of the collection is classified as “unspecific”.
Based on difficult queries, we obtain a 13.24% gain for P@5 when 40% of the
collection is classified as “unspecific”, and a 3.88% gain for P@10 when 35% of
the collection is classified as “unspecific”.

4.2 Soft Cutoff

The experiments of Section 4.1 used a “hard cutoff” strategy, in which doc-
uments classified as “unspecific” were removed from the ranked list. Note that
“unspecific” documents cannot be retrieved under the hard cutoff strategy. In or-
der to overcome this limitation, we consider an alternative strategy in which the
query-dependent document ranks are weighted by some function of the query-
independent document scores. Here, we report performance on such a “soft cut-
off” strategy.

Our soft cutoff strategy multiplies the query-dependent ranks of “unspecific”
documents by a factor of two. For example, if an “unspecific” document is ini-
tially ranked 4th, its rank is increased to 4 × 2 = 8. In the case where the final
rank is greater than the length of the ranked list, the rank of the “unspecific”
document will be increased to the bottom of the ranked list. Okapi BM25 [21] is
once again used as the query-dependent score function of the retrieval system.

Page limitations prohibit enumerating comprehensive experimental results
similar to those of Section 4.1. Instead, we report results for a threshold setting

Table 6. Comparison of original ranking, hard cutoff strategy and soft cutoff strategy.
For each precision measure, the best result is given in italic.

P@5 P@10
Collection Query Original Hard cutoff Soft cutoff Original Hard cutoff Soft cutoff

Ordinary 0.4800 0.5000 0.4880 0.3820 0.4060 0.3920
Disk 4 Difficult 0.3160 0.3400 0.3240 0.2600 0.2740 0.2660

Ordinary 0.4160 0.4320 0.4240 0.3580 0.3540 0.3660
Disk 5 Difficult 0.2720 0.2920 0.2800 0.2580 0.2660 0.2640

R-precision MAP
Collection Query Original Hard cutoff Soft cutoff Original Hard cutoff Soft cutoff

Ordinary 0.3082 0.3115 0.3127 0.2956 0.2925 0.2978
Disk 4 Difficult 0.1961 0.2008 0.1985 0.1567 0.1614 0.1607

Ordinary 0.2755 0.2590 0.2784 0.2588 0.2322 0.2589
Disk 5 Difficult 0.1658 0.1644 0.1719 0.1406 0.1298 0.1417

3 Here we only report the results on the TREC disk 5, since the results on the TREC
disk 4 was reported in Section 4.1.3.
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where 30% of the collection are classified as “unspecific”. Table 6 summarizes
the experimental results.

Table 6 suggests that the hard cutoff strategy is superior when performance
is based on the precision of the top-k retrieved documents, e.g. P@5 and P@10.
However, for R-precision and MAP, the soft cutoff is generally superior. This may
be because overall retrieval performance, as measured by R-precision and MAP,
is likely to be more affected by the fact that the hard cutoff strategy discards
all “unspecific” documents, than constrained retrieval performance, e.g. P@k.

5 Conclusions and Future Work

The use of query-independent knowledge to re-rank retrieved documents has
previously been studied based on an explicit or implicit analysis of the graph
structure between documents. In this paper, an alternative approach to derive
query-independent knowledge is investigated, which is not based on link analy-
sis. We assume that documents with a narrow focus are generally more relevant
than documents with a broad focus, and propose two measures of this docu-
ment “specificity”. The two measures are based on normalized inverse document
frequency and term entropies, respectively.

In our first set of experiments, documents were classified as either “specific”
or “unspecific”, and the latter were removed from the retrieval list. We referred
to this as “hard cutoff”. Experiments on the collection of TREC disk 4 and
queries drawn from TREC 8 ad hoc topics showed that our re-ranking algo-
rithms produce gains in mean reciprocal rank of about 4%, and 4% to 6% gains
in precision at 5 and 10, respectively. The entropy-based specificity measure
performed slightly better than that based on NIDF. Subsequent empirical tests
with the entropy-based method produced stable results across (i) retrieval mod-
els, (ii) query sets, and (iii) collections. Further experimentation is recommended
to verify this over a more varied set of parameters.

The hard cutoff strategy is equivalent to discarding “unspecific” documents
from the collection. As such, “unspecific” documents can never be retrieved. To
address this limitation, we also considered a “soft cutoff” strategy, in which docu-
ments classified as “unspecific” were not removed from the retrieval list, but had
their rank increased. Experimental results showed that our soft cutoff strategy is
superior on the overall retrieval performance, e.g. MAP. However, the precision
gains based on top retrieved documents, e.g. P@5, favor the hard cutoff strategy.

In future work, we plan to investigate more sophisticated soft cutoff strategies,
based on a Bayesian formulation. We will also try to refine our measures of docu-
ment specificity and provide a thorough comparisonwith graph-based approaches.
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