
Ranked-Listed or Categorized Results in IR
2 Is Better Than 1

Zheng Zhu1, Ingemar J. Cox2, and Mark Levene1

1 School of Computer Science and Information Systems,
Birkbeck College, University of London

zheng@dcs.bbk.ac.uk, mark@dcs.bbk.ac.uk
2 Department of Computer Science, University College London

ingemar@ieee.org

Abstract. In this paper we examine the performance of both ranked-
listed and categorized results in the context of known-item search (target
testing). Performance of known-item search is easy to quantify based on
the number of examined documents and class descriptions. Results are
reported on a subset of the Open Directory classification hierarchy, which
enable us to control the error rate and investigate how performance de-
grades with error. Three types of simulated user model are identified
together with the two operating scenarios of correct and incorrect clas-
sification. Extensive empirical testing reveals that in the ideal scenario,
i.e. perfect classification by both human and machine, a category-based
system significantly outperforms a ranked list for all but the best queries,
i.e. queries for which the target document was initially retrieved in the
top-5. When either human or machine error occurs, and the user performs
a search strategy that is exclusively category based, then performance is
much worse than for a ranked list. However, most interestingly, if the user
follows a hybrid strategy of first looking in the expected category and
then reverting to a ranked list if the target is absent, then performance
can remain significantly better than for a ranked list, even with misclassi-
fication rates as high as 30%. We also observe that this hybrid strategy re-
sults in performance degradations that degrade gracefully with error rate.

1 Introduction

Search engines play a crucial role in information retrieval on the web. Given
a query, search engines, such as Google, Yahoo! and Windows Live, return a
ranked list of results, referred to as the result set. For many queries, the result
set includes documents on a variety of topics, rather than a single topic. This
variation is often due to ambiguous queries. For example, the query “Jaguar”
will often return documents referring to both the car and the animal. While the
user is only interested in one topic, it is not possible for the search engine to
know which topic is relevant based on the query alone. Moreover, the standard
ranking of the documents in the result set is independent of the topic. Thus, the
rank-ordered result set has an arbitrary topic ordering. Referring to the “Jaguar”
example, this means that a user must scroll through a ranked list in which many
documents are not relevant.

E. Kapetanios, V. Sugumaran, M. Spiliopoulou (Eds.): NLDB 2008, LNCS 5039, pp. 111–123, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

112 Z. Zhu, I.J. Cox, and M. Levene

There have been several proposals [1, 2, 3] to assist the user by organising the
documents in the result set into groups, all documents within a group referring
to a common topic. Thus, for the query “Jaguar”, a user might be shown two
distinct groups of documents, one referring to the animal and the other referring
to the car. A user can immediately ignore the non-relevant topic and focus his
attention only on the relevant topic. For this simple example, this grouping may,
on average, halve the number of documents the user must examine.

Intuitively, we would expect grouping to substantially reduce search time[4],
where search time is measured by the number of documents a user must examine
before finding the desired document. Although previous researchers have evalu-
ated their prototype systems, there has been no attempt, to our knowledge, of
formulating a generic user interaction model for a retrieval system, which allows
the benefits of grouping to be quantified in comparison to a standard retrieval
system which does not group its results.

In this paper, we attempt to quantify the benefits of grouping documents
based on classification, where for demonstration and ground-truth purposes we
make use of the Open Directory (dmoz)1, a large and comprehensive human-
edited directory on the web. However, we note that our experimental approach
may be applied to any method of grouping documents.

The remainder of the paper is organised as follows. Section 2 reviews re-
lated work. Section 3 then describes the architecture and ranking method of
the classification-based information retrieval (IR) system that have investigated.
Section 4 describes the experimental methodology used to evaluate the system
and Section 5 describes the experimental results. Finally, Section 6 provides a
summary and discussion.

2 Related Work

This concept of grouping search results has been discussed in Hearst and Peder-
sen [1], where it was shown that relevant documents tend to be more similar to
each other than to non-relevant documents, indicating that relevant documents
can be grouped into one category. The two main methods of grouping results
are clustering and classification.

Clustering methods typically extracts key phrases from the search results for
grouping purposes and attach to each group a candidate cluster label [5, 3]. The
search results are treated as a bag of words/phrases, which are ranked according
to the statistical features that have been found.

Classification uses predefined category labels that are more meaningful to
users than generated labels. Chen and Dumais [2] suggest that category search
based on classification can improve search time in comparison to the tradi-
tional list-based search, where documents within a category are ranked accord-
ing to their relative ranking in the original search engine results list. A user
study comparing the two interfaces demonstrated the potential superiority of a

1 http://www.dmoz.org

Ranked-Listed or Categorized Results in IR 2 Is Better Than 1 113

classification-based user interface that can assist the user in quickly focusing in
on task-relevant information, this evaluation method is more or less similar to
Krishna’s work[4].

Previous research in this area has focused on evaluating the grouping of search
results versus the traditional list-based method and has not considered a hybrid
model; even when a hybrid model is implemented2, there has not been, to our
knowledge, a quantitive analysis of the model as considered here, where users
may use either interface to optimise their search performance. Further, the effect
of the error rate that can occur when grouping results on users’ performance has
not previously been given much attention.

3 Classification-Based Information Retrieval

We describe the architecture and ranking method of a classification-based IR
system that we have been developing in this section. We assume the existence of a
standard retrieval system that, given a query, returns a ranked list of documents
as the result set. Web search engines such as Google, Windows Live and Yahoo!
satisfy this assumption.

Given a ranked set of documents, it is necessary in our system to classify the
documents into their respective classes. Figure 1 provides a conceptual view of
the classification-based information retrieval system we are developing. Figure 1a
depicts the ranked set of documents provided by a standard IR system. Our
system classifies these documents into a number of classes, ranks the classes and
then displays a ranked list of classes to the user, as depicted in Figure 1b. When
a user clicks on a particular class, the ranked set of documents in this class is
then displayed to the user, as shown in Figure 1c.

(a) Standard IR model (b) Classification-
based IR model

(c) Results in
class B

Fig. 1. Conceptual framework of a classification-based IR system

We now provide a more formal framework for our system. We assume that
there are |D| documents in the original result set, D, and we denote the standard
IR rank of document, dk ∈ D as s(dk); we refer to this rank as the scroll rank
2 http://demo.carrot2.org/demo-stable/main

114 Z. Zhu, I.J. Cox, and M. Levene

(SR). For convenience of presentation we assume that the documents are ordered
such that document dk has scroll rank s(dk) = k. According to the eye tracking
experiment3 and [4], the position in the list can be approximated by the time to
find a result.

3.1 Class Rank

After performing classification on the original result set returned by the standard
IR system, the documents are grouped into |C| top-level classes. Each class, ci,
consists of a set of documents, di,j , where 1 ≤ j ≤ |ci|, and |ci| denotes the
number of documents in class, ci.

Each class, ci, consists of a set of documents, di,j , where 1 ≤ j ≤ |ci|, and |ci|
denotes the number of documents in class, ci.

Given the set of classes, C, a rank ordering of the classes is necessary. For
a document, di,j , let ψ(i, j) = k denote the corresponding index of the same
document in the initial result set as output by the standard IR system. Thus,
the score associated with document di,j is s(dψ(i,j)) = s(dk) = k. Then, the score
of class, ci is given by

φ(ci) = −min(s(dψ(i,j))) for 1 ≤ j ≤ |ci|,

where φ(ci) outputs the score for each class. In our case scores of each class based
on the scroll rank of the document within the class. For notational convenience,
we assume the classes to be ordered such that class ci has rank i.

We believe that this simple method of ranking classes is novel and, more
importantly, minimizes the affects of the ranking method on the performance of
the classification-based system. Conversely, if we had developed a sophisticated
ranking system for classes and documents within classes (see Section 3.2), then
it becomes increasingly difficult to determine whether differences in performance
compared with a standard IR system are due to classification or the new ranking
algorithm.

3.2 Document Rank

Having ranked each class, it is now necessary to rank the documents, di,j , within
each class, ci. To do so, we assume the existence of a function, ϕ(di,j), that
outputs a score for each document. Here we adopt one of the popular method,
the scroll ranks of the documents, s(dk), as output by the standard IR system,
as a score for each document and rank the documents accordingly. Thus, the
score for document, di,j , in class, ci is given by ϕ(di,j) = −s(dψ(i,j)).

Documents within the class are then ranked according to their scores, the
highest score being ranked first, as before. For notational convenience, we assume
the documents to be ordered such that document di,j has rank j in class ci.

3 http://www.useit.com/alertbox/reading pattern.html

Ranked-Listed or Categorized Results in IR 2 Is Better Than 1 115

3.3 In-Class Rank(ICR)

When a user selects a class, ci, the in-class rank measures the number of class
labels and documents that the user examines, when the target document, dk =
di,j is in class, ci. The in-class rank is

r(di,j) = i + j, (1)

since the user must look at the first i-ranked class descriptions and then the first
j-ranked documents within the known class.

However, a classification-based IR system introduces a small overhead. If the
target document is ranked high, then this overhead may be noticeable.

3.4 Scrolled-Classification Rank(SCR)

As we shall see shortly, it is often useful to talk about the scrolled classification
rank, denoted by s(di,j), which we define as the total number of classes and
documents a user must examine to find document di,j by sequentially scrolling
through each class and its associated documents in rank order.

In this case, the user will look at i classes, and all of the documents in the
previous i-1 classes together with the first j documents of the last class. Thus,
the scrolled classification rank of document, di,j is given by

s(di,j) = i +
i−1∑

k=1

|ck| + j. (2)

3.5 Out-Class/Scroll-Class Rank(OSCR) and Out-Class/Revert
Rank(ORR)

If the target document is not within the selected class, then the user must per-
form additional work.Upon failing to find the target document in the chosen
class, the user may choose to

(i) scroll through the classes and the documents in each class in rank order,
or

(ii) revert to the standard IR display and sequentially scroll through the ranked
result set.

The out-class/scroll-class rank and out-class/revert rank are, respectively, the
number of documents the user must then examine in order to find the target in
case (i) and (ii) above. We now formalise these notions.

The out-class/scroll-class rank, p(di,j), is the total number of class labels and
documents that a user must examine in order to find the document for case (i),
where the users chooses to scroll through the classes and documents in rank
order, after not finding the target in the selected class. Let ce denote the class
the user erroneously selects. Then the out-class/scroll-class rank is given by

p(di,j) =

{
(e + |ce|) + s(di,j) if e > i,
e + s(di,j) if e < i.

(3)

116 Z. Zhu, I.J. Cox, and M. Levene

The out-class/revert rank, q(di,j), is the total number of class labels and doc-
uments that a user must examine in order to find the document for case (ii),
where the user reverts to the standard result set, i.e. no classification is used in
the second phase of the search. The out-class/revert rank is given by

q(di,j) = (e + |ce|) + s(dψ(i,j)) = (e + |ce|) + s(dk) = (e + |ce|) + k, (4)

where ψ(i, j) = k. Note that the out-class/revert rank is a hybrid search strat-
egy that begins with a classification-based strategy and reverts to a ranked-list
strategy if the document is not present in the first class selected. This hybrid
strategy is different from the presentation in cluster-based search engines, where
the user is presented with the ranked listing in a main window and the clusters
in another.

3.6 Classification

We have, until now, ignored how classification is performed. In the experiments
of Section 5 we assume two cases.

In the first case we assume we have an oracle based on 16 top level cate-
gories of the Open Directory that correctly classifies the documents. Of course,
in practice, this is not possible. However, analysis of this case provides us with
valuable information regarding the best-case performance of the system. Any
other system in which classification errors occur will perform worse. In the sec-
ond case, we assume classification is performed based on a k-nearest neighbour
(KNN) classifier [6]. That is, given a document, dj , we find its k most similar
documents in a database of pre-classified documents.

4 Experimental Methodology

Target Testing. The experimental methodology simulates a user performing
a known-item search, also referred to as target testing.

In our context we make use of target testing to evaluate the performance
of a classification-based retrieval system. The motivation is that target testing
allows us to evaluate the system automatically without users, and is a precursor
to user testing. Additionally, target testing allows us to evaluate the system on
numerous queries at a minimal cost in comparison to user testing. However target
testing has some shortcoming in that the queries generated for target testing do
not necessarily simulate “real” user queries. Moreover, good performance of the
system for target testing does not guarantee similar performance when testing
the system with “real” users.

Automatic Query Generation. For a given document repository, in our case
extracted from the Open Directory, we randomly select target documents. For
each target document, a user query is automatically generated by selecting a

Ranked-Listed or Categorized Results in IR 2 Is Better Than 1 117

Table 1. Summary of the operating conditions and the number of classes and docu-
ments examined in each case

simulated user/target correctly classified misclassified
knows class ICR (C1) OSCR (C4a) or ORR (C4b)
does not know class SCR (C2a) or SR (C2b) SCR (C5a) or SR (C5b)
thinks knows class OSCR (C3a) or ORR (C3b) OSCR (C6a) or ORR (C6b)

number of words from the target document. This can be performed in a variety
of ways (cf. [7], [8]). However, the exact procedure is not important. We only
require that queries can be generated such that the target document appears
within a designated range of scroll rank. In this way we can simulate a range of
good (high ranking) to poor (low ranking) queries.

User/Machine Models. Table 1 summarises the models and corresponding
user strategies we described in section 3. The three user models are (i) the user
knows class (case 1 and 4); (ii) the user does not know class (case 2 and 5) and,
(iii) the user think he knows (case 3 and 6). Note for each user model, there
are two cases associated with it because there are two machine models (cor-
rect/incorrect classification of the target document). In the Table 1, we assume
that the user employs the search strategies we introduced in Section 3.

5 Experiment

The dataset used in our experiments is derived from the Open Directory Project.
We have chosen the following 12 top level classes to construct our testset: Arts,
Business, Computers, Games, Health, Kids and Teens, Society, Science, Shop-
ping, Home, Sports and Recreation.

We crawled and downloaded all the documents from these 12 top-level classes
during September 2006. After removing the noisy data, we divided the remaining
792,030 documents into training set (500,430 documents) and test set (291,600
documents). The training set was used for classification with the k-nearest neigh-
bour classifier.

We randomly selected 600 target documents from the test set, and for each
target document we generated 10 queries. The queries were designed so that the
scroll rank of the target document output by the standard IR system fell into
intervals counting 5 ranks from 1 to 50.Thus, for each target document, we used
a set of 10 queries that ranged from “very good” (scroll rank between 1-5) to
“very poor” (scroll rank 36-50). The experimental results were averaged over all
600 target documents.

The underlying IR system is based on the open-source search software,
Lucene4. For stemming we make use of the open-source stemmer, Snowball 5.
The default document ranking algorithm from Lucene was used.
4 http://lucene.apache.org
5 http://snowball.tartarus.org

118 Z. Zhu, I.J. Cox, and M. Levene

5.1 Experimental Results

We performed three sets of experiments. In the first set we used the domz di-
rectory as an oracle to classify the result set, the second set used a k-nearest
neighbour classifier trained on a subset of the Open Directory to classify the
result set, and the last set used our classifier in a more realistic scenario.

Classification Based on an Oracle. Each of the 600 documents has been
manually classified into one of 12 classes. Thus, dmoz provides us with an oracle
with which to classify all documents in the original result set. This allows us
to first examine the best-case performance of our classification-based IR system,
i.e. when there are no machine classification errors and the simulated user knows
the correct class (case C1 in Table 1).

We can also introduce and control error rates for both the user and the ma-
chine classifier. Note that, from Table 1, user errors and machine classification
errors both result in the same search length (cases C3, C4, and C6). Moreover,
the two cases where the user is aware that they do not know the class (cases
C2 and C5) are unaffected by the machine misclassification. Thus, when we re-
port error rates, we do not distinguish between human and machine error rates.
Rather, the error rate represents the combination of the two.

Figure 2a summarises the results for these cases. It shows the cumulative
probability of finding the target document as a function of the rank of the target
document. We note that for the standard IR system, the rank corresponds to the
scroll rank (SR). For the error-free case, the rank corresponds to the in-class rank
(ICR). For non-zero error rates, the rank corresponds to the ranks summarised
in Table 1.

For the standard IR system, the scroll rank (SR) is a straight line, since the
scroll rank is evenly distributed within the 10 intervals described above. We see
that for the error-free case (ICR), the classification-based IR system performs
significantly better than the standard IR system (SR). In particular, we observe
that approximately 60% of all target documents can be found with a rank of 10
or less. That is, for an ideal user and no machine misclassification (case C1), the

5 10 15 20 25 30 35 40 45 50 55
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

SR
ICR
SCR
ICR+ORR 15%
ICR+ORR 20%
ICR+ORR 25%
ICR+ORR 30%

(a) cumulative distribution

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

scroll rank

m
ed

ia
n

se
ar

ch
 le

ng
th

ICR+ORR 15%
ICR+ORR 20%
ICR+ORR 25%
ICR+ORR 30%
SCR
ICR
SR

(b) Median search length of query results

Fig. 2. Results using dmoz oracle classifier

Ranked-Listed or Categorized Results in IR 2 Is Better Than 1 119

user must look at no more than 10 classes and documents in order to locate the
target document.

The oracle also allows us to control the misclassification rate. And the rates
we describe can best be thought of as the combined user and machine error rates.
We introduced an error rate of x% as follows: for x% of the 600 queries, the user
randomly selects a class that does not contain the target document, and then
uses the out-class/revert (ORR) ranking strategy to locate the document. For the
remaining (100−x)% of queries, the user chooses the correct class and the target
document is found using the in-class ranking (ICR) strategy. Thus, the curves for
non-zero error rates represent a combination of two strategies, ICR and ORR.

For an overall error rate of 15%, we observe a decline in performance, as
expected. However, at this error rate, the classification-based IR system still
performs significantly better than the standard system. For example, over 50% of
all target documents are found with a rank of 10 or less. As the overall error rate
increases, the performance degrades. However, this degradation is rather smooth
and even with an error rate of 30%, the performance remains significantly better
than that of the standard IR system.

Finally, for completeness, Figure 2a also shows the cumulative distribution
for the scrolled classification rank (SCR). This curve is significantly worse than
the scroll rank of the standard IR system. Figure 2a shows that in cases C2 and
C5, when the user does not know the class, he is best advised to abandon the
classification-based IR system and immediately return to the standard system,
i.e. follow the second strategy of scroll-rank (SR) in Table 1. Moreover, in cases
C3, C4 and C6, where we have either a user or machine error, then if the user
does not find the target in the class he knows or thinks is the correct class,
the advice is the same, i.e., revert to the standard system following the second
strategy of out-class/revert (ORR) in Table 1. That is, a hybrid-based search
strategy performs better than either a category-based or ranked-listing alone.

It is important to recognize that the cumulative distribution does not present
the full story. Figure 2b plots the median search length as a function of the scroll
rank. Note that here we use the median search length distribution since the
search length is highly biased by a small number of outliers, while the median
is more robust to this bias. It is clear that for target documents with a low
scroll rank (less than 5), the median search length using a classification-based
system is slightly longer, on average, due to the overhead of inspecting the class
description or when an error occurs. Thus, for very good queries, a classification
based system actually increases the search length slightly. Conversely, for poorer
queries,the median rank of the target document in the classification-based system
is always shorter, on average. Interestingly, both the standard IR system and the
classification-based system have regions of superior performance. Only when the
initial query is poorer, i.e. the scroll rank is below a certain threshold, does
the classification-based system offer superior performance.

Figure 2b also shows, as expected, that this threshold increases as the mis-
classification rate increases and it is more evident for poor queries. Thus, for

120 Z. Zhu, I.J. Cox, and M. Levene

example, for a misclassification rate of 25%, the scroll rank must be greater than
7 before a classification-based system is superior.

It is also worth noting that in Figure 2b the quality of the initial queries is
uniformly distributed, by design. Thus, 20% of queries have an initial scroll rank
between 1-5, another 20% between 6-10, and so on. In practice, the distribution
of queries is a function of (i) the user, (ii) the distribution of documents in
the database, and (iii) the document scoring function [8]. Thus the benefits
of a classification-based system will depend strongly on the distribution of the
queries. It is interesting to note that a number of studies such as [9, 10] have
reported poor correlations between user judgments of document rankings and
those produced by search engines, suggesting that classification-based systems
may be useful in practice.

K-Nearest Neighbour Classification. The experiments of the previous sec-
tion show that very good performance can be expected from a classification-based
system, especially for poorer queries. The definition of “poorer queries”, i.e.
queries for which the scroll rank is larger than a given threshold, varies with the
misclassification rate. Simulated misclassification rates of 15-30% suggest that (i)
performance degrades gracefully as the error rate increases, and (ii) that useful
performance improvements can still be obtained with relatively large error rates.

To investigate what misclassification rate we could expect from a classifier,
we implemented a simple non-disjoint k-nearest neighbour (KNN) classifier. The
repository of documents remains the same, permitting us to measure the misclas-
sification rate at 16%. Figures 3a and 3b show the cumulative distribution and
median search length, respectively, in this case. Clearly, even at this error rate,
significant improvements can be obtained, depending on the query distribution.

5 10 15 20 25 30 35 40 45 50 55
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

SR
SCR
ICR+ORR 16%

(a) cumulative distribution

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

scroll rank

m
ed

ia
n

se
ar

ch
 le

ng
th

ICR+ORR 16%
SCR
SR

(b) Median search length of query results

Fig. 3. Results for the KNN classifier with non-disjoint classes

K-Nearest Neighbour Classification in a More Realistic Scenario. To
investigate what misclassification rate expected from a classifier in a realistic
scenario, we implemented a k-nearest neighbor classifier over a real search engine.
Due to the absence of an oracle for retrieved results, we adopt the classifier’s

Ranked-Listed or Categorized Results in IR 2 Is Better Than 1 121

5 10 15 20 25 30 35 40 45 50 55
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank

C
um

ul
at

iv
e

di
st

rib
ut

io
n

ICR+ORR (NN snippet 27.2%)
ICR+ORR (NN text 29.2%)
SR

(a) cumulative distribution

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

Scroll Rank

A
ve

ra
ge

 S
ea

rc
h

Le
ng

th

Scroll Rank
ICR+ORR (NN snippet)
ICR+ORR (NN text)

(b) Median search length of query results

Fig. 4. Results for the KNN classifier in real case

accuracy on the target document as a measure of the classifier’s performance.
It may not fully reflect the performance of our classifier, but we can use this
measure to approximate our system’s performance.

Compared to the previous results shown in Figure 3a, Figure 4a shows the
misclassification rate of the k-nearest neighbor is about 30%, which is worse than
the previous results. However, we still can see that these results are consistent
with the previous conclusions. Moreover, for this more realistic case the classifier
trained from dmoz snippets reduces the misclassification rate to about 28%,
which is slight better than that trained on the full text of web pages.

Figure 4b shows that for poor queries, the combined class rank will achieve
a better performance than scroll rank. However the trend in the curve is not as
clear out as the previous curve in Figure 3b. It can also be seen that the curve
has high variance. However, our general conclusion that the hybrid-based search
strategy performs better than a category-based or ranked-list alone, is still valid.

6 Concluding Remarks

In this paper we have examined how a hybrid model of an IR system might
benefit a user. Our study was based on several novel ideas/assumptions.

In order to investigate the best-case performance, we constructed a system
using a subset of the Open Directory. All documents in this subset have been
manually classified and therefore provide “ground truth” for comparison. The
advantage of our approach to rank the class is two-fold. It is simple, however,
more importantly, this ranking closely approximates the scroll rank, thus allow-
ing comparison between the class rank and scroll rank. In addition, we identified
three classes of simulated users and rational user search strategies. By basing
our evaluation on known-item search, we are able to simulate a very large num-
ber of user searches and therefore provide statistically significant experimental
results. We acknowledge that real users may perform differently and future work
is needed to determine the correlation between our simulations, which provide

122 Z. Zhu, I.J. Cox, and M. Levene

an empirical upper bound on performance for real users, and the behavior of
real users.

Our experimental results not only demonstrate the advantage when the user
correctly identifies the class and there is no machine error, but also suggest the
strategy the user should take to achieve the optimal performance when the user
does not know the class or when there are user and machine errors.

Using the Open Directory, we were also able to control the error rates of
both the user and the machine classification. Simulation results showed that
the performance degrades gracefully as the error rate increases, and that even
for error rates as high as 30%, significant reductions in search time can still be
achieved. However, these reductions only occur when the query results in the
target document having an initial scroll rank above a minimum rank, and this
minimum rank increases with the error rate.

This may imply that a classification-based system may be more beneficial for
informational queries [11], where the user will probably inspect several search
results, rather than for navigational queries [11], which are similar to known-
item queries that target a single web page. Such a system could also be useful
for novice users who are more likely to generate poor queries.

References

[1] Hearst, M.A., Pedersen, J.O.: Reexamining the cluster hypothesis: Scatter/gather
on retrieval results. In: Proceedings of the 19th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 76–84.

[2] Chen, H., Dumais, S.: Bring order to the web: Automatically categorizing search
results. In: CHI 2000: Proceedings of the SIGCHI conference on Human factors
in computing systems, pp. 145–152. ACM Press, New York (2000)

[3] Zeng, H.J., He, Q.C., Chen, Z., Ma, W.Y., Ma, J.W.: Learning to cluster web
search results. In: SIGIR 2004: Proceedings of the 27th annual international ACM
SIGIR conference on Research and development in information retrieval, pp. 210–
217. ACM Press, New York (2004)

[4] Kummamuru, K., Lotlikar, R., Roy, S., Singal, K., Krishnapuram, R.: A hierarchi-
cal monothetic document clustering algorithm for summarization and browsing
search results. In: Proceedings of the 13th International Conference on World
Wide Web, pp. 658–665 (2004)

[5] Osinski, S., Weiss, D.: Carrot 2: Design of a flexible and efficient web informa-
tion retrieval framework. In: Proceedings of the third International Atlantic Web
Intelligence Conference, Berlin. LNCS, pp. 439–444. Springer, Heidelberg (2005)

[6] Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. 2nd edn. Wiley-
Interscience, New York (2000)

[7] Azzopardi, L., Rijke, M.D.: Automatic construction of known-item finding test
beds. In: Proceedings of the 29th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 603–604. ACM Press,
New York (2006)

[8] Vinay, V., Cox, I.J., Milic-Frayling, N., Wood, K.: Evaluating relevance feedback
algorithms for searching on small displays. In: 27th European Conference on IR
Research. ECIR (2005)

Ranked-Listed or Categorized Results in IR 2 Is Better Than 1 123

[9] Bar-Ilan, J., Keenoy, K., Yaari, E., Levene, M.: User rankings of search engine
results. J. American Society for Information Science and Technology 58(9), 1254–
1266 (2007)

[10] Su, L.T.: A comprehensive and systematic model of user evaluation of web search
engines: Ii. an evaluation by undergraduates. J. American Society for Information
Science and Technology 54(13), 1193–1223 (2003)

[11] Broder, A.: A taxonomy of web search. SIGIR Forum 36(2), 3–10 (2002)

	Introduction
	Related Work
	Classification-Based Information Retrieval
	Class Rank
	Document Rank
	In-Class Rank(ICR)
	Scrolled-Classification Rank(SCR)
	Out-Class/Scroll-Class Rank(OSCR) and Out-Class/Revert Rank(ORR)
	Classification

	Experimental Methodology
	Experiment
	Experimental Results

	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

