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Abstract—We compare the performance of three steganalysis
system for detection of ±1 steganography. We examine the
relative performance of each system on three commonly used
image databases. Experimental results clearly demonstrate that
both absolute and relative performance of all three algorithms
vary considerably across databases. This sensitivity suggests that
considerably more work is needed to develop databases that are
more representative of diverse imagery.

In addition, we investigate how performance varies based on
a variety of training and testing assumptions, specifically (i)
that training and testing are performed for a fixed and known
embedding rate, (ii) training is performed at one embedding
rate, but testing is over a range of embedding rates, (iii) training
and testing are performed over a range of embedding rates. As
expected, experimental results show that performance under (ii)
and (iii) is inferior to (i). The experimental results also suggest
that test results for different embedding rates should not be
consolidated into a single score, but rather reported separately.
Otherwise, good performance at high embedding rates may mask
poor performance at low embedding rates.

I. INTRODUCTION

Steganography is commonly framed as the prisoners’ prob-

lem [1]. In this context, two prisoners, Alice and Bob, wish to

exchange secret messages. The prison Warden, Eve, permits

the prisoners to engage in benign communications, but all

communications are first inspected by the Warden to ensure

that the messages are indeed benign, i.e. contain no hidden

message. If the Warden suspects that the communication

contains a covert message, then the Warden will prevent the

communication between the prisoners. If the Warden’s tests

indicate that the communication does not contain a covert

message, then the message is forwarded, unchanged, to the

recipient1. Benign content, e.g. images, are referred to as

cover texts (cover images). Content that contains a covert

message is referred to as stego text (stego image). Alice’s and

Bob’s goal is to develop steganographic algorithms that are

undetectable, which is very different from the watermarking

requirement of imperceptibility. And the Warden’s goal is

to develop increasingly sophisticated tests to detect covert

communication and thereby thwart Alice and Bob.

1In this case the Warden is said to be passive. The alternative case is that
of an active Warden, in which Alice’s message may be modified, e.g. lossy
compression, prior to forwarding to Bob.

Steganography has received considerable interest during

the last few years, especially after anecdotal reports alleged

that this technology was used by terrorist and organized

crime organizations. The concern is that multimedia content

commonly transmitted over the Internet could be used as

a cover to convey hidden, steganographic information. To

respond to this concern, research effort has been directed

towards the design and development of efficient steganalysis

tools. The objective of steganalysis is to detect the use of

steganography. Steganalysis tools are commonly categorized

as either targeted or blind. Targeted steganalysis seeks to

detect the use of a known steganographic algorithm, e.g.

±1 embedding. Blind steganalysis seeks to detect a range

of steganographic algorithms, possibly including previously

unknown algorithms.

A wide variety of steganalysis algorithms have recently

been proposed. However, their performances is often reported

under slightly different conditions, which hampers an ac-

curate comparison of algorithms. To illustrate this problem,

we focus on the evaluation of steganalysis techniques for

the detection of ±1 steganography applied to still images.

Section II first reviews three state-of-the-art steganalyzers

used to detect ±1 steganography. Section III then provides a

detailed description of the procedure applied to evaluate these

steganalyzers and emphasizes the different parameters which

may have an impact on classification performance e.g. the test

and training databases and the embedding rate. Section IV

details experimental results that clearly highlight very high

variability in the classification performance depending on

the experimental parameters. Finally, Section V provides a

summary and discussion of results.

II. LSB MATCHING STEGANALYSIS

Least Significant Bit (LSB) matching steganography, also

referred to as ±1 embedding, is a slightly more sophisticated

version of LSB embedding. It can be mathematically described

as follows:

ps =

⎧⎨
⎩

pc + 1, if b �= LSB(pc) and
(
κ > 0 or pc = 0

)
pc − 1, if b �= LSB(pc) and

(
κ < 0 or pc = 255

)
pc, if b = LSB(pc)

(1)
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where ps (resp. pc) denotes a pixel value in the range 0 . . . 255
in the stego image (resp. cover image), b is the message bit

to be hidden, and κ is an i.i.d. random variable with uniform

distribution on {−1, +1}2. Depending on the length of the

message to be hidden, the whole LSB plane could be used as

a cover or only a portion of it. The ratio between the size of

the LSB plane and the length of the message is referred to as

the embedding rate, denoted by ρ.

Although LSB replacement steganography is known to be

relatively easy to detect, LSB matching has proved to be a

much more difficult problem. A series of steganalyzers have

been developed for this purpose and the objective of this

paper is to provide a fair comparison between those different

approaches. To this end, three state-of-the-art steganalyzers

are briefly reviewed in the next subsections. They can be

roughly considered as sharing a common architecture, namely

(i) feature extraction in some domain and (ii) Fisher Linear

Discriminant (FLD) analysis to obtain a 2-class classifier.

A. High Order Statistics of the Stego Noise

Since LSB matching steganography adds or subtracts 1 to

a subset of pixel values, it can be modeled as the addition of

high frequency noise. In [2], Goljan et al. suggested estimating

this stego noise by applying some denoising techniques to

the detail bands of a first order wavelet decomposition of an

image, and subsequently characterizing this estimated noise

with a collection of central absolute moments defined as

follows:

mp
b =

1
|I|

∑
(i,j)∈B

|nb(i, j)− n̄b|p (2)

where nb is the estimated stego noise in subband b, n̄b is its

mean value, and B some bidimensional index covering all the

samples in the subband. Due to its construction, this system is

referred to as Wavelet Absolute Moment (WAM) steganalysis.

The authors suggested to use a feature vector fWAM consisting

of 27 moments (9 per band) and noted that this method is not

specific to ±1 steganography, i.e. it is a blind steganalysis

technique.

B. Center of Mass of the Histogram Characteristic Function

In [3], Harmsen and Pearlman noted that LSB matching

using an embedding rate ρ induces a low-pass filtering of

the intensity/color histogram of the image with the following

kernel:

ρ/4 1− ρ/2 ρ/4

This means that the histogram of a stego Work contains less

high-frequency power than the histogram of the corresponding

cover image, thus shifting the center of mass of the histogram’s

spectrum toward the origin. Using this feature to discriminate

stego from non-stego content, the authors observed better clas-

sification performances for RGB images than with grayscale

images.

2Note that this strategy may affect bit-planes other than the LSB plane.
For example, if the secret bit is a “0”, and the original 8-bit pixel value is
01111111, then incrementing this value results in 10000000.

Ker suggested that this difference in performances could

be due to a lack of sparsity in the histogram of grayscale

images [4]. He then proposed to use a two-dimensional adja-

cency histogram which tabulates how often each pixel intensity

is observed next to another. He showed that LSB matching

steganography also reduces to low-pass filtering the adjacency

histogram and defined a center of mass of the adjacency

histogram characteristic function. In addition, to reduce the

variability of this feature across images, Ker recommended

computing the same center of mass using a downsampled

version of the image. The final scalar feature f2D−HCFC to

be used during classification is then obtained by computing

the ratio between these two values. This steganalyzer, referred

to as 2D-HCFC, is targeted for ±1 steganography.

C. Amplitude of Local Extrema

Based on the same observation that LSB matching steganog-

raphy is equivalent to low-pass filtering the intensity his-

togram, Zhang et al. [5] chose to focus their attention on the

local extrema of the histogram. The filtering operation will

indeed reduce the amplitude of local extrema. As a result,

they rely on the sum of the amplitudes of all local extrema

in the histogram to distinguish stego content from non-stego

content.

Inspired by Ker’s work, Cancelli et al. [6] subsequently

extended this strategy to four 2D adjacency histograms (ad-

jacency in the horizontal, vertical, main diagonal and minor

diagonal direction). Combined with the previous features,

this results in a 10-dimensional feature vector, fALE. Due

to its construction, this steganalysis system is referred to as

Amplitude of Local Extrema (ALE). ALE is also targeted

toward LSB matching steganography.

III. EXPERIMENTAL SETUP

This section provides a detailed description of the experi-

mental setup used in this study. It first describes the different

databases used to obtain performances statistics and then re-

views the experimental protocol for evaluating all steganalysis

systems.

A. Databases

This study used three different databases that have been

previously used in the context of steganography and wa-

termarking. The three databases not only contain different

images, but, more importantly, the image sources are signifi-

cantly different, as discussed shortly. The motivation for using

more than one database was to determine any variability in

performance across databases. A fourth database was created

as the concatenation of the three primary databases3.

The four image databases are:

1) NRCS Photo Gallery: This image database is provided

by the United States Department of Agriculture [8].

It contains 2,375 photos related to natural resources

and conservation from across the USA, e.g. landscape,

3To encourage the use of these databases, the authors have made them
accessible on their website [7].
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(a) NRCS database
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(b) Camera images database
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(c) Corel database

Fig. 1. Training and testing on individual databases: each figure depicts the vertically averaged ROC curves for the three steganalyzers under study (WAM,
2D-HCFC, ALE). LSB matching has been applied with an embedding rate, ρ = 0.5 bits per pixel. The error bar at each sampling point indicates the minimum
and maximum true positive value observed at a given false positive value. The number in the legend indicates the area under the ROC curve (AUC).

cornfields, etc. Typically, the image formats are in 32-

bit CMYK space color and in high resolution, i.e.

1500 × 2100. Unfortunately, there is no indication of

how these photos were acquired. This image database

has first been used in [4].

2) Camera Images: This image database is a collection

of 3,164 images captured using 24 different digital

camera (Canon, Kodak, Nikon, Olympus and Sony) by

researchers from Binghamton University, NY, USA. It

includes photographs of natural landscapes, buildings

and object details. All images have been stored in a

raw format i.e. the images have not undergone lossy

compression. A subset of these images was previously

used in [2].

3) Corel database: The Corel image database consists of

a large collection of uncompressed images [9]. They

include natural landscape, people, animals, instruments,

buildings, artwork, etc. Although there is no indication

of how these images have been acquired, they are very

likely to have been scanned from a variety of photos

and slides. A subset of 6,185 images has been extracted

from the database with dimension 512× 768.

4) Combined database: A fourth database was created by

concatenating 2375 randomly selected images from each

of the three databases.

Where necessary, all images have been converted to 8 bit-

depth grayscale. Moreover, a central cropping operation of

size 512× 512 was applied to all images to obtain images of

the same dimension across all three databases. Cropping was

preferred over resizing, in order to avoid introducing artifacts

due to resampling with interpolation.

B. Experimental Procedure

For each one of the four available image databases (NRCS,

Camera, Corel, Combined), the following procedure was per-

formed for each one of the three steganalyzers under study

(WAM, 2D-HCFC, ALE):

1) Apply LSB embedding steganography with embedding

rate ρ to all images in the database D to obtain the

database of stego images D∗;

2) Separate both databases D and D∗ into a training set,

{D(I),D∗(I)}, and a test set, {D(Ī),D∗(Ī)}, where I
is a subset of the image indexes and Ī is its complement.

The size of the training set was set to be equal to 20%

of the database size;

3) For the steganalyzer under test, compute the associated

feature vector for all images in the training set and

perform FLD analysis [10] to obtained the trained pro-

jection vector p;

4) For the steganalyzer under test, compute the associated

feature vector for all images in the test set, and project

the feature vector onto p;

5) Compare the resulting scalar values to a threshold τ
and record the probabilities of false positives and true

positives for different values of the threshold in order

to obtain the Receiver Operating Characteristic (ROC)

curve of the system.

Steps 2 through 5 are repeated 20 times for cross-

validation [10] and the ROC curves are vertically aver-

aged [11]. That is, for a fixed false positive value, the

corresponding true positive rates for each of the 20 curves

are averaged. The confidence level at each false positive point

depicted in the resulting curves indicates the minimum and

maximum true positive rates from the set of ROC curves.

The overall performance of the steganalyzer can be summa-

rized by computing the area under the ROC curve (AUC) [11].

An AUC value close to 1 indicates excellent discrimination,

while a value close to 0.5 indicates poor discrimination.

IV. EXPERIMENTAL RESULTS

In Section IV-A, we report experimental results that examine

the variability in performance across databases. Section IV-B

then discusses how performance is affected when the embed-

ding rate is not assumed to be known.

A. Impact of Image Databases

For comparison purposes, we first examine the performance

of the three steganalyzers under study on each of the individual

databases. In this case, training is performed on the individual
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(a) Testing on NRCS database
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(b) Testing on Camera images database
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(c) Testing on Corel database

Fig. 2. Training on Combined dataset of 2375 NRCS + 2375 Camera + 2375 Corel images. Training was performed with 20% of the joint set. Testing was
performed with the remaining images in each databases.

databases, and the embedding rate ρ set to 0.5. Experimen-

tal results are depicted in Figure 1. Similar behaviour was

observed for other embedding rates but data is omitted for

brevity and clarity. It is clear from Figures 1 that the absolute

performance of the three algorithms varies considerable across

the three primary image databases. In addition, the relative

performance is also seen to vary.
For the NRCS and Camera testsets, the WAM steganalyzer

exhibits best performance. However, even across these two

testsets, the absolute performance varies significantly. For

example, for a false positive rate of 10%, the WAM algorithm

has a true positive rate of 30% and 60% for NRCS and

Camera respectively. There are similar variations for the other

two algorithms. For the Corel database, the ALE steganalyzer

performs much better. Interestingly, for the Corel database, we

observe very strange behaviour for the 2D-HCFC algorithm,

where the true positive rate remains almost constant as the

false positive rate increases from 0.2 to 0.7.
The experimental results clearly highlight that the stegan-

alyzers perform noticeably differently on different databases.

Thus, the three databases cannot be exchanged interchange-

ably. This variability not only makes comparison of steganal-

ysis algorithms tested on different databases impossible, but

may have significant affect on performance if the database

used for training does not adequately represent the class of im-

ages observed during testing. Certainly, a steganalyzer trained

on one database and tested on another may exhibit degraded

performance since the training database is unlikely to be

representative of the test database. When deployed in real life,

steganalyzed images will not be taken from some database that

the steganalyzer can use for training. Consequently, systems

need to be trained on large database that accurately model the

class of images under test.
To approximate the deployment scenario, we repeated the

same experiment using the combined database for training.

Classification results are reported in Figures 2 for each sep-

arate database that constitute the combined database, rather

than as a single curve. In this way, we are still able to

observe performance differences across the various classes of

imagery. As expected, the performance of the steganalyzers

generally degrades since training is no longer database spe-

cific. However, this degradation is more or less significant

depending on the steganalyser. Indeed, the AUC values for the

2D-HCFC algorithm remain almost unchanged, whereas the

performance of WAM is noticeably degraded, especially with

the Corel and NRCS databases. In the latter case, the relative

performance between steganalyzers is strongly affected, with

WAM becoming the worst algorithm whereas it was the best

in Figure 1(a).

B. Impact of Unknown Embedding Rates

The previous results were computed in the case where

both training and testing were conducted for a known, fixed

embedding rate ρ. However, in any real operating scenario, the

steganalyst is unlikely to have knowledge of the embedding

rate used by the steganographer. Thus, it is necessary to design

a steganalysis algorithm that performs well for a variety of

embedding rates. Figure 3 shows the performance of the three

steganalyzers when trained using embedding rates of ρ = 0.2,

0.5 and 1.0 bit per pixel (bpp). For each of these three trained

classifiers, test results are reported using stego content with

embedding rates of ρ = 0.2, 0.5 and 1.0 bpp4. Each row

represents one of the three training conditions and each column

represents performance on one of the three different test sets.

One would expect that a steganalyzer trained on data with

an embedding rate of ρ = 0.2 would exhibit improved

performance on test sets that used a higher embedding rate.

However, while this is generally true, it is not always the case.

For example, let us consider the performance of WAM in

the first row of Figure 3. It is clear that performance when

testing on ρ = 0.2, the same as for training, is actually better

than when tested with a dataset with an embedding rate of

ρ = 1.0. The same observation holds for WAM when trained

at 0.5 bpp, where for the 0.5 bpp test set the AUC=0.68, but

for the 1.0 bpp test set, the AUC=0.63. Clearly, performance

is always best when training and testing conditions match, but

the degradation in performances in case of mismatch varies

from one system to the other. Whereas WAM is very sensitive

to such mismatch, 2D-HCFC is completely immune to it since

4More exhaustive tests were conducted over a wider range of embedding
rates. However space limitations preclude including all experimental results.
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Fig. 3. Classification results on the combined database. Training at 0.2 bpp (top row), 0.5 bpp (middle row) and 1 bpp (bottom row) – testing with embedding
at 0.2 bpp (left column), 0.5 bpp (middle column) and 1 bpp (right column). Rows indicate the training regime whereas columns indicate the embedding rate
testing regime. Bounding boxes indicate setup with matching training and testing regimes.

it uses a scalar feature vector and has therefore no training

phase per se.

In practice, things are even more complicated, as it is also

unlikely that steganographers will embed at a fixed embedding

rate. Thus, it is also instructive to consider the performance of

the steganalyzers when trained with a fixed embedding rate,

but tested with a range of embedding rates as illustrated by

Figure 4. Training is performed using the combined database

for a fixed embedding rate of either 0.2, 0.5 and 1 bpp.

Testing is conducted with using a test set that includes all

three embedding rates, 50% of images being cover images

and the remaining 50% stego images with embedding rates

uniformly distributed across 0.2, 0.5 and 1 bpp. It appears that

the performance, as measured by the AUC value, increases

as the training embedding rate increases. In other words, it

seems that, perhaps contrary to expectation, it is better to

train with a high embedding rate (e.g. 1 bpp) rather than a

low embedding rate (e.g. 0.2 bpp). The explanation is that,

since we are testing across a range of embedding rates that

are uniformly distributed but training on only one embedding

rate, performance is maximized if we train to detect stego

Works that are most easy to detect, i.e. with a high embedding

rate (1 bpp). This suggests that providing overall scores

averaged over all test data may be misleading. It may be more

informative to provide separate results for each embedding rate

included in the test set.

Since a steganalysis system will be used to test images

with different embedding rate, the steganalyst may also decide

to train with a combination of embedding rates. Figure 5

illustrates this arrangement. Training has been conducted using

the combined database with a training set that contains stego

Works with embedding rates of 0.2, 0.5 and 1 bpp. On the

other hand, testing is performed with separate tests sets for

each of the three embedding rates. As expected, performance

usually improves as the embedding rate (for testing) increases.

Only WAM seems to deviate from this rule.

V. SUMMARY AND DISCUSSION

Our experimental results demonstrate that the performance

of current state-of-the-art steganalyzers for detection of ±1
steganography is highly sensitive to the databases used for
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Fig. 4. Classification results on the combined database. Training at 0.2 bpp (left), 0.5 bpp (middle) and 1 bpp (right) – testing with all embedding rates.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives

Tr
ue

 p
os

iti
ve

s

WAM             0.52
2D−HCFC       0.56
ALE               0.62

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives

Tr
ue

 p
os

iti
ve

s

WAM             0.54
2D−HCFC       0.67
ALE               0.70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives

Tr
ue

 p
os

iti
ve

s

WAM             0.48
2D−HCFC       0.87
ALE               0.82

Fig. 5. Classification results on the combined database – Training with all embedding rates, testing at 0.2 bpp (left), 0.5 bpp (middle) and 1 bpp (right).

training and testing. This is not necessarily a problem of the

algorithm, but rather, highlights the need for better databases

and a detailed characterization of the classes of imagery that

they represent. It is only necessary for a steganalysis algorithm

to work within the class of imagery that the steganalyst

observes. However, at present this is not discussed and there

has been no work at describing and characterizing possible

operating scenarios and the associated classes of imagery.

Meanwhile, we believe it will benefit the research community

to agree on one or more standardized testsets to be used for

comparative purposes.

Our experimental results also suggest that it is not sufficient

to report performance for a single embedding rate, used for

both training and testing. This does not represent a real operat-

ing scenario where the embedding rate for testing is very likely

to be unknown. Experimental results indicate that it cannot be

assumed that if an algorithm performs well when trained and

tested with a low embedding rate, then the performance will

be better when tested (not trained) for higher embedding rates.

This is certainly not the case for the WAM algorithm. When

training and testing across a variety of embedding rates, our

experimental results suggest that summarizing detection rates

can be misleading - good performance at high embedding

rates may mask poor performance at low embedding rates.

We therefore recommend that test results be reported for each

tested embedding rate.

Our comparison revealed that no single steganalysis algo-

rithm was consistently superior. This suggests that improved

performance may be obtained by combining the results of

multiple algorithms.
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