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Abstract—Considerable progress has been made in the de-number of steganalysis algorithms have been proposedf all o
tection of steganographic algorithms based on replacement of which model LSB matching as the addition of noise. Harmsen
the least significant bit (LSB) plane. However, if LSB matching, and Pearlman [2] noted that, for images, adding noise in the

also known as+1 embedding, is used, the detection rates are . . L .
considerably reduced. In particular, since LSB embedding is spatial domain corresponds to low-pass filtering of therinte

modeled as an additive noise process, detection is especially poosity/colour histogram. Consequently, the histogram ofegjst

for images that exhibit high-frequency noise - the high-frequency image has less high-frequency power than the corresponding
noise is often incorrectly thought to be indicative of a hidden histogram of the cover image. Thus, the center of gravity of
message. To overcome this, we propose a fargeted steganalysisp )| which denotes the Fourier transform of the histogram
algorithm that exploits the fact that after LSB matching, the h will d fter LSB tchi beddi Thi )
local maxima of an images graylevel or color histogramdecrease '’ will decrease after matc II_’lg_ em_ e . Ing. IS propo
and the local minima increase. Consequently, the sum of the €rty was used as a feature for distinguishing between cover
absolute differences between local extrema and their neighbors and stego images. While good results were reported on a
in the intensity histogram of stego images will be smaller than small test set using colour histograms, subsequent expatim

for cover images. Experimental results on two datasets, each o eq] hat thi hni rform rlv on LSB matchin
of 2000 images, demonstrate that this method has superior .e ealed that this technique performs poorly on LS ag

results compared with other recently proposed algorithms when in grayscale 'ma_ge_s [3]-
the images contain high-frequency noise, e.g. never-compredse 10 address this issue, Ker [3] proposed two novel ways of
imagery such as high-resolution scans of photographs and video. applying the histogram characteristic function (HEased
However, the method is inferior to the prior art when applied to  on (i) calibrating the output using a downsampled image, and
decompressed imagery with little or no high-frequency noise. (i) computing the adjacency histogram instead of the usual
intensity histogram. Significant improvements in detectid
LSB matching in grayscale images were thereby achieved.
Steganography seeks to provide a covert communicationContemporaneously, the authors of [4] proposed a method
channel between two parties [1]. A common class of stegarfer steganalysis of LSB matching in the spatial domain. The
graphic algorithms embeds the secret message in cover Wafithod used a high-pass FIR filter and then recovered an
such as images, video, audio or text. The combination ofrcowgpproximate message length using a maximum likelihood
Work and secret message is referred to as the stego Westimator. However, they observe that this approach is not
and a goal of all steganographic algorithms is to ensade-  effective for never-compressed images derived from a szann
tectability, i.e. that a third party, referred to as the Warden, is Subsequently, Holotyak and Fridrich [5] described a blind
unable to distinguish between a cover Work and a stego Wogfteganalysis approach based on classifying higher-otats-s
The detection of a stego Work is the goal of steganalysigcal features derived from an estimation of the stego digna
Almost all steganalysis algorithms rely on the stegandyp in the wavelet domain. Goljaet al. [6] presented an im-
algorithm introducing statistical differences betweemwsstand proved version of [5] by using absolute moments of the noise
stego Works. residual. The proposed approaches are flexible and enable
There are two classes of steganalysis algorithms - blind afdiable detection of the presence of secret messages eeed
targeted. Blind steganalysis algorithms are intended tecl@ using a wide range of steganographic methods that include
wide range of steganographic algorithms, including prestp | SB matching, LSB replacement, stochastic modulation, and
unseen algorithms. Typically, they are based on machinmadeagthers.
ing techniques. In contrast, targeted steganalysis @fgosiare  Nevertheless, the steganalyzers mentioned above have poor
intended for a specific steganographic algorithm, knowrhes tdetection performance for LSB matching in grayscale im-
target. In the paper, we describe a targeted algorithm for thgjes with high levels of high-frequency noise, such as high-

detection of LSB matching oi-1 embedding. resolution scans of photographs. This is due to the fact that
Perhaps surprisingly, detection of LSB matching has proved

considerably more difficult than for LSB replacement. A lEssentially the FFT of the intensity/colour histogram.

I. INTRODUCTION
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Fig. 1. Histograms of the cover image and stego image using LSBhinat

the image noise masks the additive stego signal. It appear®ohe. However, it will never be decremented. The converse is

be very difficult for steganalyzers based on an additiveenoitrue for odd-valued pixels. This asymmetry is exploited for

model to accurately distinguish between the stego signal asteganalysis purposes.

naturally occurring noise in images. The second method of LSB steganography is known as
To address this issue, Section Il examines the effect bSB matching. Rather than simple replace the LSB with the

LSB matching on the intensity histogram of graylevel imagedesired message bit, the corresponding pixel value is ralydo

We show that the local maxima of the histogram of imagéscremented or decremented, thereby removing the asympmetr

will decrease and the local minima will increase after LSBf odd and even pixels. Specifically, LSB matching can be

matching. This property can be used to define a feature tlatscribed by:

can be used to detect LSB matching. This feature is the sum . _

of the absolute differences between each local extremum and pe+1, !; 27& LSB(pc) ang (x>0 o0rp B 0)

its neighbors in the intensity histogram of stego images. ps=9 pe— 1 it b#LSB(p.) and (<0 or p. = 255)

Section 1ll then compares the histogram extrema method Pe> if b = LSB(pc) Q)

with the recent algorithm of Ker [3] and Goljaet al. [6]. \yhare;,  (resp.p.) denotes a pixel value in the stego image
We refer to the latter algorithm as GFH. Experimental reasul resp. cover image) is the message bit to be hidden, and

are reported on two datasets, each of 2000 images., deri\kegs an i.i.d. random variable with uniform distribution on
from the Corel Image Database. Both datasets contain never- +112. Detection of LSB matching is known to be much
compressed images that possess high frequency noise. % difficult than detecting LSB replacement.
experimental results demonstrate that the histogram regtre

method has substantially better performance. Howeveheif tA. Effects of LSB matching steganography on histogram

datasets are JPEG compressed with a quality factor of 80, th¢et 5. (i, j) denote the pixel value at locatid, j) in the

high frequency noise is removed and the histogram extreigver image. The intensity histogram is then defined as:
method performs worse.

Section 1V discusses directions for future work. he(n) = {(4,5)Ipe(i, 5) = n}| 3

Il. ANALYSIS FORLSB MATCHING wheren is a grayscale level in the range .. 255. In other

We assume that the cover and stego images are graysc‘,“éf?éds’hc(”) indicates the number of pixels in the cover image
images with pixels values in the range...255. LSB With grayscale value. , ,
steganography modifies the least significant bits of thelpixe L&t US now consider the effect of LSB matching, with
values so that they match the corresponding bits of t§8 embedding rate, on the cover image histogram. First,
message to be hidden. there is a 50% chance that the pixel values at selected

There are two common methods of LSB steganograpﬁ??ations will already have the desired LSB value. Hence,
The earliest, and simplest method, simply replaces the L&gProportion(1 — p/2) of the pixels will not be modified.
bitplane of the cover image with the corresponding bits ef thf "€ remaining pixels are incremented or decremented with
message. This can be done for all pixels in the image or orfilual probability. Assuming that the embedding locatiores a
for a pseudo-randomly chosen portion, when the embeddifgiformly distributed and independent of the pixel valui,
rate, p, is less than one, i.e. the length of the hidden messdggtogram of the stego-image is given by:
is less than the number of pixels in the image. However, a ( P) P

" Che(n) = (1—%) he ~(he(n —1) + he 1 3
number of papers have reported very successful stegamalysi (n) 2 (n) + 4( (n=1)+he(n+ )) ®)
of LSB replacement [7]-[9]. This success is credited to &ut f _ .
that LSB replacement is inherently asymmetric. i.e. an ev Note that thIS strategy may affect bit-planes qther thar_l_ tB8 lplang.

g p el e y asyl by LS =4 example, if the secret bit is a “0”, and the original 8-hitgb value is
valued pixel will either retain its value or be incrementgd bo1111111, then incrementing this value results i6000000.



In other words, LSB matching reduces to low pass filtering 1
the intensity histogram with the kerngl/4,1 — p/2, p/4]. ool
The histograms shown in Figure 1 clearly illustrate this 08l
phenomenon. On the left is the histogram of a cover image and
on the right the histogram of the corresponding stego image
after LSB matching with an embedding rate @of= 1. It is
evident that the histogram of the stego-image is smootfar th
that of the cover image. This low pass filtering attenuates th
energy in the high frequencies, and in particular the annbdit
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A local extremumy*, in a histogramp(), is defined by:
(h(n*) —h(n* =1)) (h(n*) —h(n"+1)) >0 (4)

According to Equation 3, for any local maximum?, we
have

he(n*) = (1 . g) he(n*) + g(hc(n* —1) + he(n* + 1))
= he(n*) - g[(hc(n*) — he(n® — 1))
+ (he(n*) — he(n® + 1))}
< he(n®) ®)

Similarly, for any local minimum pointp*, we haveh,(n*) >
h.(n*). Thus, after LSB matching, the local maxima of an

i i i i
0.1 0.2 03 0.4 0.5
Probability of false positive

(a) Set #1

o

—%— CAD-HCF |]
—6— GFH |
—=&— Our method

Probability of detection

image histogram decrease and the local minima increase. ol - = - - J
The attenuation of local extrema by LSB matching moti- Probabily of false posiive
vated us to consider the sum of absolute differences between (b) Set #2

each local extremum and its neighbors in the histogram.& hes

sums are denote®,. and D, for the cover and stego imagesFig- 2. R(_)C curves comparing our method to that of Ker and GFHh wi
. . an embedding rate gf = 0.5. Both datasets have never been compressed.
respectively. That is,

Do = Y [2.he(n*) = he(n* —1) = he(n* + 1)| (6)
n* including natural landscapes, people, animals, and carse O

Z |2.hs(n*) — hy(n* — 1) — hy(n* +1)| (7) @again, we crop the images t@2 x 512 and convert them to

oy 8-bit grayscale. Since the images have not been compressed,

Itis expected thab, > D, for any image after LSB matchingthey typically exhibit high frequency noise. Each image was

steganography and experimental results support this claf?‘ﬁnbedded with a randomly generated message. The message

In fact, for extrema in a cover histogram and correspondiﬁdnbEdd'ng rate = 0.5.

extrema in the stego histogram, it can be shown that the'Vé compare our method with (i) the calibrated adjacency,

corresponding value of the maxima in the stego histogtramf&F-COM, version of Kers method, which is a tageted

less than in the cover histogram. Similarly, the local mimimStéganalysis method, and (i) the blind steganalysis naetho

in the stego histogram increase in value compared to th@fGFH. Due to space limitations, the reader is directed jo [3

corresponding minima in the cover histogram. for further details. o _
In the next Section we compare this discriminant to the Figure 2 demonstrates a significant improvement in perfor-

D

previous work of Ker [3] and Goljaet al. [6]. mance over that of Ker [3] and GI_:H [6]. We note, that the

performance of both algorithms varies across the two ditase

I1l. COMPARISON WITHKER'S AND GOLJAN et al’s However, the variation in performance of our histogram ex-
ALGORITHMS trema method is much less. For example, at a false positive

All experimental results are reported on two image tests seate of 50% the detection rates of Ker's method are 79% in
derived from the Corel Image Database. Each set consistsSeft #1 and 45% for Set #2, and the detection rates for GFH
2000 never-compressed images. Set #1 includes 2000 cotwthod are 50% and 90%, respectively. In comparison, our
images of artwork. The original images are 24-bit, wittnethod has detection rates of almost 100%.
dimensions512 x 768 pixels. For convenience, we crop the Figure 3 compares the performance of the two algorithms
original color images t&12 x 512 and covert them to 8-bit when the two datasets have been JPEG compressed with a
grayscale. However, we do not resample the original imagegiality factor of 80, prior to LSB matching. In this case we
Set #2 also includes 2000 color images of various topisge that the histogram extrema method is inferior to Kerss an



09 : : : : distinction from prior work, is that our features are locather

0sl ] than global properties of the intensity histogram.
ol e | Experimental comparisons were performed between our
. o histogram extrema method and the algorithms of Ker and
S 0.6 o q . .
g Goljanet al.. Two datasets of 2000 never-compressed images
2% - ] were used. The experiments clearly demonstrated the iragrov
g °-4’( e —7— cho-Her || performance of the histogram extrema method on datasets tha
& 03y —=— Our method| | contain high-frequency noise. However, when these dataset
02} . ] are JPEG compressed with a quality factor or 80, the histogra
ol ] extrema method performs worse.
‘ ‘ ‘ ‘ The complimentary nature of the histogram extrema method
’ 1 provaniiy ofaise posiive o and that of Ker and Goljaet al. suggests a future research
direction to develop a hybrid method that combines the ad-
(a) Set #1
vantages of all three methods.
1 : : e —— It is well-known that the performance of steganalysis meth-
ool e ] ods can vary greatly depending on the datasets. And we
o8l ] observed this in our experimental results. Further work is
ol / . cnn ] needed to understand this variability and to charactetif@r i
% ool Y particular algorithms.
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