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Abstract—Considerable progress has been made in the de-
tection of steganographic algorithms based on replacement of
the least significant bit (LSB) plane. However, if LSB matching,
also known as±1 embedding, is used, the detection rates are
considerably reduced. In particular, since LSB embedding is
modeled as an additive noise process, detection is especially poor
for images that exhibit high-frequency noise - the high-frequency
noise is often incorrectly thought to be indicative of a hidden
message. To overcome this, we propose a targeted steganalysis
algorithm that exploits the fact that after LSB matching, the
local maxima of an images graylevel or color histogramdecrease
and the local minima increase. Consequently, the sum of the
absolute differences between local extrema and their neighbors
in the intensity histogram of stego images will be smaller than
for cover images. Experimental results on two datasets, each
of 2000 images, demonstrate that this method has superior
results compared with other recently proposed algorithms when
the images contain high-frequency noise, e.g. never-compressed
imagery such as high-resolution scans of photographs and video.
However, the method is inferior to the prior art when applied to
decompressed imagery with little or no high-frequency noise.

I. I NTRODUCTION

Steganography seeks to provide a covert communication
channel between two parties [1]. A common class of stegano-
graphic algorithms embeds the secret message in cover Works
such as images, video, audio or text. The combination of cover
Work and secret message is referred to as the stego Work
and a goal of all steganographic algorithms is to ensureunde-
tectability, i.e. that a third party, referred to as the Warden, is
unable to distinguish between a cover Work and a stego Work.
The detection of a stego Work is the goal of steganalysis.
Almost all steganalysis algorithms rely on the steganographic
algorithm introducing statistical differences between cover and
stego Works.

There are two classes of steganalysis algorithms - blind and
targeted. Blind steganalysis algorithms are intended to detect a
wide range of steganographic algorithms, including previously
unseen algorithms. Typically, they are based on machine learn-
ing techniques. In contrast, targeted steganalysis algorithms are
intended for a specific steganographic algorithm, known as the
target. In the paper, we describe a targeted algorithm for the
detection of LSB matching or±1 embedding.

Perhaps surprisingly, detection of LSB matching has proved
considerably more difficult than for LSB replacement. A

number of steganalysis algorithms have been proposed, all of
which model LSB matching as the addition of noise. Harmsen
and Pearlman [2] noted that, for images, adding noise in the
spatial domain corresponds to low-pass filtering of the inten-
sity/colour histogram. Consequently, the histogram of a stego
image has less high-frequency power than the corresponding
histogram of the cover image. Thus, the center of gravity of
|F (h)|, which denotes the Fourier transform of the histogram
h, will decrease after LSB matching embedding. This propo-
erty was used as a feature for distinguishing between cover
and stego images. While good results were reported on a
small test set using colour histograms, subsequent experiments
revealed that this technique performs poorly on LSB matching
in grayscale images [3].

To address this issue, Ker [3] proposed two novel ways of
applying the histogram characteristic function (HCF)1, based
on (i) calibrating the output using a downsampled image, and
(ii) computing the adjacency histogram instead of the usual
intensity histogram. Significant improvements in detection of
LSB matching in grayscale images were thereby achieved.

Contemporaneously, the authors of [4] proposed a method
for steganalysis of LSB matching in the spatial domain. The
method used a high-pass FIR filter and then recovered an
approximate message length using a maximum likelihood
estimator. However, they observe that this approach is not
effective for never-compressed images derived from a scanner.

Subsequently, Holotyak and Fridrich [5] described a blind
steganalysis approach based on classifying higher-order statis-
tical features derived from an estimation of the stego signal
in the wavelet domain. Goljanet al. [6] presented an im-
proved version of [5] by using absolute moments of the noise
residual. The proposed approaches are flexible and enable
reliable detection of the presence of secret messages embedded
using a wide range of steganographic methods that include
LSB matching, LSB replacement, stochastic modulation, and
others.

Nevertheless, the steganalyzers mentioned above have poor
detection performance for LSB matching in grayscale im-
ages with high levels of high-frequency noise, such as high-
resolution scans of photographs. This is due to the fact that

1Essentially the FFT of the intensity/colour histogram.
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Fig. 1. Histograms of the cover image and stego image using LSB matching.

the image noise masks the additive stego signal. It appears to
be very difficult for steganalyzers based on an additive noise
model to accurately distinguish between the stego signal and
naturally occurring noise in images.

To address this issue, Section II examines the effect of
LSB matching on the intensity histogram of graylevel images.
We show that the local maxima of the histogram of images
will decrease and the local minima will increase after LSB
matching. This property can be used to define a feature that
can be used to detect LSB matching. This feature is the sum
of the absolute differences between each local extremum and
its neighbors in the intensity histogram of stego images.

Section III then compares the histogram extrema method
with the recent algorithm of Ker [3] and Goljanet al. [6].
We refer to the latter algorithm as GFH. Experimental results
are reported on two datasets, each of 2000 images, derived
from the Corel Image Database. Both datasets contain never-
compressed images that possess high frequency noise. The
experimental results demonstrate that the histogram extrema
method has substantially better performance. However, if the
datasets are JPEG compressed with a quality factor of 80, the
high frequency noise is removed and the histogram extrema
method performs worse.

Section IV discusses directions for future work.

II. A NALYSIS FOR LSB MATCHING

We assume that the cover and stego images are grayscale
images with pixels values in the range0 . . . 255. LSB
steganography modifies the least significant bits of the pixel
values so that they match the corresponding bits of the
message to be hidden.

There are two common methods of LSB steganography.
The earliest, and simplest method, simply replaces the LSB
bitplane of the cover image with the corresponding bits of the
message. This can be done for all pixels in the image or only
for a pseudo-randomly chosen portion, when the embedding
rate,ρ, is less than one, i.e. the length of the hidden message
is less than the number of pixels in the image. However, a
number of papers have reported very successful steganalysis
of LSB replacement [7]–[9]. This success is credited to the fact
that LSB replacement is inherently asymmetric, i.e. an even
valued pixel will either retain its value or be incremented by

one. However, it will never be decremented. The converse is
true for odd-valued pixels. This asymmetry is exploited for
steganalysis purposes.

The second method of LSB steganography is known as
LSB matching. Rather than simple replace the LSB with the
desired message bit, the corresponding pixel value is randomly
incremented or decremented, thereby removing the asymmetry
of odd and even pixels. Specifically, LSB matching can be
described by:

ps =







pc + 1, if b 6= LSB(pc) and
(

κ > 0 or pc = 0
)

pc − 1, if b 6= LSB(pc) and
(

κ < 0 or pc = 255
)

pc, if b = LSB(pc)
(1)

whereps (resp.pc) denotes a pixel value in the stego image
(resp. cover image),b is the message bit to be hidden, and
κ is an i.i.d. random variable with uniform distribution on
{−1,+1}2. Detection of LSB matching is known to be much
more difficult than detecting LSB replacement.

A. Effects of LSB matching steganography on histogram

Let pc(i, j) denote the pixel value at location(i, j) in the
cover image. The intensity histogram is then defined as:

hc(n) = |{(i, j)|pc(i, j) = n}| (2)

wheren is a grayscale level in the range0 . . . 255. In other
words,hc(n) indicates the number of pixels in the cover image
with grayscale valuen.

Let us now consider the effect of LSB matching, with
an embedding rateρ, on the cover image histogram. First,
there is a 50% chance that the pixel values at selected
locations will already have the desired LSB value. Hence,
a proportion(1 − ρ/2) of the pixels will not be modified.
The remaining pixels are incremented or decremented with
equal probability. Assuming that the embedding locations are
uniformly distributed and independent of the pixel values,the
histogram of the stego-image is given by:

hs(n) =
(

1 −
ρ

2

)

hc(n) +
ρ

4

(

hc(n − 1) + hc(n + 1)
)

(3)

2Note that this strategy may affect bit-planes other than the LSB plane.
For example, if the secret bit is a “0”, and the original 8-bit pixel value is
01111111, then incrementing this value results in10000000.



In other words, LSB matching reduces to low pass filtering
the intensity histogram with the kernel[ρ/4, 1 − ρ/2, ρ/4].

The histograms shown in Figure 1 clearly illustrate this
phenomenon. On the left is the histogram of a cover image and
on the right the histogram of the corresponding stego image
after LSB matching with an embedding rate ofρ = 1. It is
evident that the histogram of the stego-image is smoother than
that of the cover image. This low pass filtering attenuates the
energy in the high frequencies, and in particular the amplitude
of local extrema.

A local extremum,n∗, in a histogram,h(), is defined by:

(h(n∗) − h(n∗ − 1)) (h(n∗) − h(n∗ + 1)) > 0 (4)

According to Equation 3, for any local maximum,n∗, we
have

hs(n
∗) =

(

1 −
ρ

2

)

hc(n
∗) +

ρ

4

(

hc(n
∗ − 1) + hc(n

∗ + 1)
)

= hc(n
∗) −

ρ

4

[

(

hc(n
∗) − hc(n

∗ − 1)
)

+
(

hc(n
∗) − hc(n

∗ + 1)
)

]

< hc(n
∗) (5)

Similarly, for any local minimum point,n∗, we havehs(n
∗) >

hc(n
∗). Thus, after LSB matching, the local maxima of an

image histogram decrease and the local minima increase.
The attenuation of local extrema by LSB matching moti-

vated us to consider the sum of absolute differences between
each local extremum and its neighbors in the histogram. These
sums are denotedDc andDs for the cover and stego images
respectively. That is,

Dc =
∑

n
∗

|2.hc(n
∗) − hc(n

∗ − 1) − hc(n
∗ + 1)| (6)

Ds =
∑

n
∗

|2.hs(n
∗) − hs(n

∗ − 1) − hs(n
∗ + 1)| (7)

It is expected thatDc > Ds for any image after LSB matching
steganography and experimental results support this claim.
In fact, for extrema in a cover histogram and corresponding
extrema in the stego histogram, it can be shown that the
corresponding value of the maxima in the stego histogtram is
less than in the cover histogram. Similarly, the local minima
in the stego histogram increase in value compared to their
corresponding minima in the cover histogram.

In the next Section we compare this discriminant to the
previous work of Ker [3] and Goljanet al. [6].

III. C OMPARISON WITH KER’ S AND GOLJAN et al’ S

ALGORITHMS

All experimental results are reported on two image tests sets
derived from the Corel Image Database. Each set consists of
2000 never-compressed images. Set #1 includes 2000 color
images of artwork. The original images are 24-bit, with
dimensions512 × 768 pixels. For convenience, we crop the
original color images to512 × 512 and covert them to 8-bit
grayscale. However, we do not resample the original images.
Set #2 also includes 2000 color images of various topics
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Fig. 2. ROC curves comparing our method to that of Ker and GFH, with
an embedding rate ofρ = 0.5. Both datasets have never been compressed.

including natural landscapes, people, animals, and cars. Once
again, we crop the images to512 × 512 and convert them to
8-bit grayscale. Since the images have not been compressed,
they typically exhibit high frequency noise. Each image was
embedded with a randomly generated message. The message
embedding rateρ = 0.5.

We compare our method with (i) the calibrated adjacency,
HCF-COM, version of Ker’s method, which is a tageted
steganalysis method, and (ii) the blind steganalysis method
of GFH. Due to space limitations, the reader is directed to [3]
for further details.

Figure 2 demonstrates a significant improvement in perfor-
mance over that of Ker [3] and GFH [6]. We note, that the
performance of both algorithms varies across the two datasets.
However, the variation in performance of our histogram ex-
trema method is much less. For example, at a false positive
rate of 50% the detection rates of Ker’s method are 79% in
Set #1 and 45% for Set #2, and the detection rates for GFH
method are 50% and 90%, respectively. In comparison, our
method has detection rates of almost 100%.

Figure 3 compares the performance of the two algorithms
when the two datasets have been JPEG compressed with a
quality factor of 80, prior to LSB matching. In this case we
see that the histogram extrema method is inferior to Ker’s and
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Fig. 3. ROC curves comparing our method to that of Ker and GFH, with an
embedding rate ofρ = 0.5. Here both datasets have been JPEG compressed
with quality factor 80.

GFH algorithms. This is expected as the histogram extrema
algorithm is not designed for the case where high-frequency
noise is absent. Interestingly, while the GFH method performs
better on both datasets after compression, the performanceof
Kers method actually decreases for dataset #1. We currently
do not understand the reason for this.

IV. CONCLUSION

Detection of LSB matching in cover images that exhibit
high-frequency noise, such as never-compressed grayscale
images and scans of photographs, is difficult for current
steganalysis algorithms. This is because LSB matching is often
modeled as an additive noise process and the high-frequency
noise confusing current steganalysis algorithms.

It has previously been noted that the addition of noise
to an image has a low-pass filtering effect on the intensity
histogram of the image. We showed that LSB matching also
manifests itself on the extrema of the histogram. Specifically,
the local maxima of the intensity histogram of cover images
will decrease, while its local minima will increase after LSB
matching. We used this property to construct a new discrim-
inant feature, the sum of absolute differences between each
local extremum and its neighbors in the histogram. A key

distinction from prior work, is that our features are local rather
than global properties of the intensity histogram.

Experimental comparisons were performed between our
histogram extrema method and the algorithms of Ker and
Goljan et al.. Two datasets of 2000 never-compressed images
were used. The experiments clearly demonstrated the improved
performance of the histogram extrema method on datasets that
contain high-frequency noise. However, when these datasets
are JPEG compressed with a quality factor or 80, the histogram
extrema method performs worse.

The complimentary nature of the histogram extrema method
and that of Ker and Goljanet al. suggests a future research
direction to develop a hybrid method that combines the ad-
vantages of all three methods.

It is well-known that the performance of steganalysis meth-
ods can vary greatly depending on the datasets. And we
observed this in our experimental results. Further work is
needed to understand this variability and to characterize it for
particular algorithms.
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