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ABSTRACT 

 
Correlated steganography considers the case in which the 
cover Work is chosen to be correlated with the covert 
message that is to be hidden. The advantage of this is that, 
at least theoretically, the number of bits needed to encode 
the hidden message can be considerably reduced since it is 
based on the conditional entropy of the message given the 
cover. This may be much less than the entropy of the 
message itself. And if the number of bits needed to embed 
the hidden message is significantly reduced, then it is more 
likely that the steganographic algorithm will be secure, i.e. 
undetectable. In this paper, we describe an example of 
correlated steganography. Specifically, we are interested in 
embedding a covert image into a cover image. Comparative 
experiments indicate that selecting a cover Work that is 
correlated with the covert message can reduce the number 
of bits needed to represent the covert image below that 
needed by standard JPEG compression, provided the two 
images are sufficiently correlated. 

 
1. INTRODUCTION 

 
Steganography provides a covert communication channel 
between two parties. The problem is typically framed as the 
Prisoners' Problem [1] in which two prisoners, Alice and 
Bob, are permitted to communicate between one another 
while under the surveillance of a Warden, Eve. It is usually 
assumed that the Warden is passive, i.e. Eve will inspect 
Works sent by Alice, apply a steganalytic test to determine 
whether the Work contains a covert message, and forward 
the message to Bob, if the test is negative. However, if the 
test is positive, Eve will not forward the message, thereby 
preventing any covert communication. 

The goal of any steganographic algorithm is, therefore, 
to be undetectable. Cachin [2] defined undetectability in an 
information theoretic framework, stating that perfect 
security (undetectability) can be achieved provided the 
probability distribution functions (pdf) of the cover Works 
and the stego Works are identical. The system is considered 
to be -secure, if the Kullback-Leibler distance between the 
two distributions is less than . Various steganographic 
frameworks have been proposed in order to achieve 
undetectability in the sense of Cachin. These can be 

classified into three broad groups: model-based [3], 
statistics-preserving, such as OutGuess [4], and masking-
based, such as stochastic modulation [5]. In addition, 
several techniques have recently been developed to 
minimize the embedding impact, specifically, syndrome 
coding [6] and wet paper codes [7]. Our approach can be 
considered to complementary in that our goal is to reduce 
the number of bits needed to encode the message. The 
resulting code could then be embedded using one or other of 
the methods above, albeit with some modifications. 

Evaluation of the security of steganographic algorithms 
is usually performed as a function of the relative length of 
the embedded message, which is the ratio of the message 
length to the maximum message length. For example, if 
LSB embedding is used, then the maximum message length 
is the number of pixels in the cover image, but the actual 
message length can be much shorter. It is common 
knowledge that the smaller the message is, the more 
difficult it is to detect. For instance, it is trivial to embed an 
undetectable message length, say 8-bits, and guarantee 
undetectabilty. In fact, in this case, it is not even necessary 
to alter the cover Work, but just to choose a cover Work 
that hashes to the desired 8-bits value. Steganographic 
research therefore focuses on developing secure algorithms 
with large message length. 

The fact that security is easier to achieve if the message 
length is shorter suggests another direction of research 
known as correlated steganography [8, 9]. Previous work 
has assumed that the cover Work is uncorrelated with the 
hidden message. The sole purpose of the cover Work is to 
hide the embedded message. In this case, the hidden 
message is first compressed and then encrypted prior to 
embedding in the cover Work. However, correlated 
steganography utilizes the cover Work to allow the secret 
message to be more efficiently encoded. 

It is well-known that the minimum number of bits 
needed to compress a message is given by the entropy of the 
message. However, if the message is correlated with the 
cover Work, then the minimum number of bits is given by 
the conditional entropy. If the message and cover Work are 
sufficiently correlated, then the number of bits needed to 
represent the message may be very much less than the 
entropy of the message. In this case, fewer bits need to be 
embedded in the cover Work, and detection by steganalysis 
should therefore be more difficult. Interestingly, in [8], it 
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was shown that the information received by Bob can be 
very much greater than the number of embedded bits. In the 
limit, it achieves the entropy of the cover Work. This is 
because the cover Work also provides information to Bob, 
as it defines a probability distribution with which to very 
efficiently encode the hidden message. Note that while 
correlated steganography can aid in the design of a Cachin-
secure steganographic algorithm, it is not necessarily secure 
in the Shannon sense. This issue is discussed in [8]. 

In [8], an example of correlated steganography was 
provided based on an algorithm originally proposed in [10]. 
In the next section, we describe an improved version of this 
algorithm for embedding an image within an image. Section 
3 then provides experimental results comparing the number 
of bits needed to encode the hidden image using our 
conditional entropy coding with the number of bits needed 
using standard JPEG compression. Section 4 concludes with 
a summary and discussion. 
 
2. JPEG BASED CONDITIONAL ENTROPY CODING 
 
We consider the situation in which we wish to embed a 
hidden graylevel image within a cover image of the same or 
larger dimensions. Our proposed conditional entropy coding 
proceeds as follows: 
1. Partition the cover image, c, and hidden image, m, into 

8×8 blocks, each block is denoted by ci and mj 
respectively. The discrete cosine transform (DCT) of 
each block is denoted by Ci and Mj respectively. 

2. The error matrix Ei,j between two blocks, Ci and Mj, is 
defined as 
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where Mj(u,v) and Ci(u,v) are the DCT coefficients of  
the 8×8 blocks Mj and Ci respectively, and Ei,j(u,v) are 
the elements of error matrix Ei,j. 

3. For each block of the hidden image, Mj, find the 
closest block, Ci, in the cover image such that the sum 
of squared errors, Si,j, between corresponding AC 
coefficients is a minimum. 
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For each given block Mj in the hidden image, we 
denote the index i with the minimum distance in the 
cover image by B(j). 

4. The associated error matrix EB(j),j is then quantized, and 
the elements are arranged in the JPEG zigzag order. 

5. For each block of the hidden image, the run length 
encoding (RLE) is used to code the quantized AC 
coefficients as well as the differential pulse code 
modulation (DPCM) is used to code the quantized DC 
coefficient. Both data streams are then canonically 
Huffman encoded. 

Note that the sum of squared errors is computed only 
over the AC coefficients and ignores the DC coefficient of 
each block, which is coded separately. The DC coefficient is 
ignored as its magnitude is often much larger than the AC 
coefficients. Thus, if the DC term is incorporated into 
Equation (1) and (2), the sum of squared errors is dominated 
by the difference in the DC coefficients. Consequently, the 
search for similar blocks reduces to find two blocks that 
have approximately the same brightness, even though their 
AC coefficients may be very different. To avoid this, we 
ignore the DC coefficient in our calculation of Equation (2), 
which only measures the difference in AC coefficients, 
determining the texture and detail of each block. Thus, the 
two blocks that have minimum distance will be most similar 
in texture and detail, even though their average brightness 
may be very different. Although we ignore any correlation 
between the DC coefficients in the hidden and cover blocks, 
we exploit the spatial correlation within the hidden image 
itself to encode the DC coefficient using DPCM coding. 
However, it should be noted that this correlation is not the 
same as the correlation used for conditional entropy coding. 
Emphasizing this point, we only exploit the correlation of 
AC coefficients between the hidden and the cover images. 

Quantization of the error matrix EB(j),j is performed 
using the default luminance quantization matrix of JPEG, 
which is shown below: 

9910310011298959272
10112012110387786449
921131048164553524
771031096856372218
6280875129221714
5669574024161314
5560582619141212
6151402416101116

QuantMatrix         (3) 

Similarly, we use the standard codebook of canonical 
Huffman coding in JPEG, to code our quantized EB(j),j data. 
This has the advantage that we do not have to embed either 
the quantization matrix or the Huffman table, since both can 
be assumed known by the embedder and the decoder. 
Therefore, the number of bits needed to encode the hidden 
image is reduced. 

Thus, the output bit stream that must be embedded in 
the cover image consists of only two parts, the error matrix 
EB(j),j and the block index B(j). If there are total n blocks in 
the cover image, then each block index is represented by 
|log2(n)| bits. In this paper, we do not consider compressing 
these bits. However, this issue is discussed in the Section 4. 
 

3. EXPERIMENTS 
 
In this section, we first examine how the choice of cover 
image can affect the compression of the hidden image, and 
then investigate two extreme cases, one in which the cover 
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and hidden images are very similar and one in which they 
are identical. Obviously the latter situation has not practical 
purpose, but it serves to identify the limits to the 
performance of our algorithm. 

To examine the affect of the cover image on the 
compression capability of our algorithm, we use the Lena 
image of Figure 1 with dimensions 128×128 as the hidden 
image. We then embed it in each of 1000 cover images with 
dimensions 768×512 from the Corel image database. 
Strictly, the Lena image we embed is a compressed version. 

 

 
 

Figure 1. Lena: 128×128 pixels 
 

If we use JPEG baseline sequential coding to compress 
the hidden image, Lena, it requires 1.6816 bits/pixel, and 
the decompressed image has a 31 dB PSNR compared with 
the original uncompressed image, where PSNR is defined as 
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and xi,j denotes the original pixel value, and xi,j' denotes the 
decompressed pixel value. 

 

 
 

Figure 2. Percentage of saved bits compared with 
JPEG compression. The 1000 cover images are in descending 
order with respect to bits saved. Negative values indicate that 

more bits are needed than for JPEG compression. 
 

Figure 2 shows the percentage of saved bits compared 
with using JPEG coding. The 1000 cover images are in 
descending order of improvement. The dashed line excludes 
the bits needed to encode the block index, and the solid line 
includes the block index. In each of the 1000 covers, the 
hidden image, Lena, is recovered at a PSNR of 31 dB, i.e. 
with the same distortion as for JPEG compression. 

It is evident that the choice of the cover image can 
have a very significant impact on the compression 
achievable. In the best case, the cover for which is shown in 
Figure 3, we see an improvement of almost 30% (excluding 
the overhead of the block index) and 18% with the overhead. 
Table 1 summarizes the results for the best case. 

 

 
 

Figure 3. Best cover image for Lena: 768×512 pixels 
 

Our conditional entropy coding (bits/pixel) 
Error matrix EB(j),j Block index B(j) Total

JPEG 
(bits/pixel)

1.1826 0.2031 1.3857 1.6816 
 

Table 1. Bits per pixel for the best case in which 
the Lena image is embedded in the cover image of Figure 3. 

 

In contrast, in the worst case, there is no saving and the 
number of bits needed to compress the image is actually 
about 64% worse than for JPEG. Interestingly, for the Lena 
image, only about 200 of the 1000 cover images result in 
improved compression. 

This experiment demonstrates that significant savings 
in message length can be achieved using correlated 
steganography, provided a sufficiently correlated image 
exists in the cover database. It also highlights the overhead 
due to the need to code the index of the most similar block. 

 

   
 

Figure 4. Sequential image 1         Figure 5. Sequential image 2 
256×256 pixels                              256×256 pixels 

 

To see just how much can be saved, we also examine 
the case in which the hidden image and cover image are 
very similar, by using two sequential images from the USC-
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SIPI image database. Here, we use the image illustrated in 
Figure 4 as the cover and in Figure 5 as the hidden. The 
result is tabulated in Table 2, where we see that the bit 
saving over JPEG compression is 68%. In both cases, the 
PSNR of the recovered hidden image is 43 dB. Notice that 
the overhead in coding the block index is 38%. 
 

Our conditional entropy coding (bits/pixel) 
Error matrix EB(j),j Block index B(j) Total 

JPEG 
(bits/pixel)

0.2533 0.1563 0.4096 1.2946 
 

Table 2. Relative coding costs in bits per pixel 
when the cover and hidden images are very similar. 

 

In the limit, we can embed a hidden image in an 
identical copy of itself. Table 3 enumerates the results for 
the image of Figure 5. The PSNR of the recovered hidden 
image is also kept as 43 dB. Even though the AC 
coefficients of the error matrix EB(j),j are all zero, we still 
incur a cost due to the DPCM coding of DC coefficient. In 
addition, the overhead of the block index remains the same. 
Ideally, the compression would be much less, illustrating 
limitations of our current algorithm. 
 

Our conditional entropy coding (bits/pixel) 
Error matrix EB(j),j Block index B(j) Total 

JPEG 
(bits/pixel)

0.1228 0.1563 0.2791 1.2946 
 

Table 3. Relative coding costs in bits per pixel 
when the cover and hidden images are identical. 

 
4. CONCLUSION 

 
It is well-known that the fewer bits that are embedded in a 
cover image, the more difficult it is to detect the hidden 
message. To reduce the source coding of the hidden 
message, correlated steganography chooses a cover Work 
that is correlated with the hidden message. In so doing, the 
number of bits needed to encode the message can be 
considerably reduced. Doing so, does not compromise 
security in the Cachin sense. In fact, the goal is to improve it. 
However, there is information leakage in the Shannon sense. 
It remains unclear to what extent. This is a problem and is a 
possible direction for future work. 

To demonstrate the feasibility of this approach, we 
propose a compression method based on [8, 10]. 
Experimental results show that for a 128×128 hidden image 
of Lena, the best cover image chosen from a database of 
1000 possible cover images reduces the number of bits 
needed to code the image by about 18%. Much greater 
savings can be achieved if a more similar cover image is 
available. 

There are a number of future directions for this current 
work. At an algorithmic level, it would be interesting to 
examine more efficient coding methods to reduce the 

overhead of encoding the block index. A preliminary 
investigation of the use of relative offset, rather than an 
absolute index, followed by Huffman encoding, looks 
promising. 

More generally, the problem of correlated stegano-
graphy can be posed as, for a covert message, m, select a 
cover text, c, that is correlated with m, code m given c and 
embed the code in c to produce a stegotext s, such that the 
Kullback-Leibler distance between the probability 
distribution functions of c and s is less than , and such that, 
at the decoder, the message, m, can be recovered exactly 
given only the stegotext s. The problem statement is similar 
to that of watermarking with side information and has been 
studied by [9]. However, to the best of the authors' 
knowledge, no algorithm analogous to, say quantization 
index modulation, is known. 
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