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ABSTRACT 
There is a growing interest in estimating the effectiveness of 
search. Two approaches are typically considered: examining the 
search queries and examining the retrieved document sets. In 
this paper, we take the latter approach. We use four measures to 
characterize the retrieved document sets and estimate the quality 
of search. These measures are (i) the clustering tendency as 
measured by the Cox-Lewis statistic, (ii) the sensitivity to 
document perturbation, (iii) the sensitivity to query perturbation 
and (iv) the local intrinsic dimensionality. We present 
experimental results for the task of ranking 200 queries 
according to the search effectiveness over the TREC (discs 4 
and 5) dataset. Our ranking of queries is compared with the 
ranking based on the average precision using the Kendall τ 
statistic. The best individual estimator is the sensitivity to 
document perturbation and yields Kendall τ of 0.521. When 
combined with the clustering tendency based on the Cox-Lewis 
statistic and the query perturbation measure, it results in Kendall 
τ of 0.562 which to our knowledge is the highest correlation 
with the average precision reported to date. 
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1. INTRODUCTION 
There is a considerable interest within the Information Retrieval 
community in estimating the effectiveness of search. Having 
such a measure would be useful for a variety of purposes 
identified in [1] and include (i) providing feedback to the user, 
(ii) providing feedback to the search engine, (iii) providing 
feedback to the database creators, and (iv) optimizing 
information fusion for meta-search engines. 
A number of strategies have recently been proposed for 
estimating search effectiveness. They can be broadly categorized 
into two classes. The first class is based on an analysis of the 

query. Cronen-Townsend et al [2] define a clarity score that 
depends on a language model. Queries which fit the language 
model of the entire document collection are considered too 
general, leading to a low clarity score. In contrast, a query that 
identifies only a subset of the collection has a high specificity 
and thus a high clarity score.  
Amati et al [3], on the other hand, propose a “divergence from 
randomness” framework that uses an information theoretic 
function to predict the average precision for a given query. This 
quantity is then used to apply query expansion selectively. He 
and Ounis [4] describe a method for predicting query 
effectiveness based on the query length and the distribution of 
the inverse document frequency values for each of the 
constituent terms. Unfortunately, these methods were able to 
achieve only limited success, indicating the difficulty of the task 
and the need for more elaborate methodologies. 
The second class of algorithms is based on an analysis of the 
retrieved document set. Yom-Tov et al [1] propose a method 
that uses a variety of heuristic features, including the overlap of 
retrieval sets obtained using the query and each of its sub-
queries. It is assumed that the larger the agreement across 
retrieval sets, the more likely it is that a suitable set of 
documents has been retrieved. Other features include the score 
of the highest ranking document and the number of words in the 
query. The features are linearly combined using weights that are 
estimated from a learning phase that requires a set of ranked 
query/response data as a training set. After training, the 
experimental results reported in [1] demonstrated the best 
performance to date, with a Kendall τ statistic of 0.439 using the 
same dataset as we used in the work reported here. 
In this paper, we propose four measures for estimating query 
performance that focus on the geometry of the retrieved 
document set: (i) the clustering tendency as measured by the 
Cox-Lewis statistic, (ii) the sensitivity to document perturbation, 
(iii) the sensitivity to query perturbation, and (iv) the local 
intrinsic dimensionality. Sections 2-5 provide a detailed 
description of each. Our previous work reported the use of the 
clustering tendency alone to estimate search effectiveness. Here 
we extend that work and significantly improve the performance 
of our predictor. Section 6 reports experimental results for 
ranking 200 queries based on their search effectiveness over the 
TREC discs 4 and 5 dataset. The relevant documents for these 
queries are known and used to calculate the average precision 
for each query. The precision statistics provides the ground-truth 
ranking of queries that is then used for comparison with other 
methods and calculating the corresponding Kendall τ statistic. 
Section 7 provides a summary and discussion. 
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2. MEASURING THE CLUSTERING 
TENDENCY 
The “cluster hypothesis” [5] states that documents relevant to a 
given query are likely to be similar to each other. Thus, 
documents relevant to a query are expected to form a group that 
is distinct from non-relevant documents. In practice, we attempt 
to exploit this hypothesis in its equivalent form: we expect the 
lack of clusters in the retrieved data sets to imply that the set 
does not contain relevant documents, provided that the set is 
large enough, i.e., larger than the expected number of relevant 
documents for the query.  In other words, detecting a high level 
of ‘randomness’ in the retrieved set implies the absence of 
relevant documents and thus low precision for the given query.  
We find a considerable body of literature in pattern learning that 
covers the clustering tendency of a set of points. A good 
introduction to useful techniques can be found in [6]. For our 
purposes we use a modified version of the Cox-Lewis statistic 
defined in [7]. 

The Cox-Lewis statistic is based on the ratio of two distances: 
(i) the distance from a randomly generated sampling point to its 
nearest neighbor in the dataset, called the marked point and (ii) 
the distance between the marked point and its nearest neighbor. 
A rigorous calculation of this statistic requires that we define a 
spatial point process which models the generation of the data 
and provides the initial random points. We apply a much 
simplified version where instead of using a spatial random 
process, we pick points from within the dataset and replace their 
weights by random values chosen from within a sampling 
window and these serve as our random origins. This is explained 
in more detail in Section 2.1 below. 

When the data contains inherent clusters, the distance Drand 
between the random sampling point and its marked point, i.e., 
the closest neighbor in the dataset, is likely to be much larger 
than the distance Dnn between the marked point and its nearest 
neighbor. This quantity Drand/Dnn should therefore reflect the 
presence or absence of inherent groupings present in the data. 

2.1 Approximation of the Cox-Lewis statistic 
As has been noted in previous literature [6], the definition of the 
sampling window, a region in the data representation space from 
which the ‘random’ points are picked, is an important factor for 
the Cox-Lewis statistic. We are trying to measure a property that 
is internal to the data and thus the random points from the data 
set need to be chosen with care. In our case we define the 
sampling window to be the smallest hyper-rectangle that 
contains all the documents in the retrieved set. Since the size of 
this hyper-rectangle can vary significantly between queries, we 
normalize the computed Cox-Lewis ratio by the average length 
of the sides of the hyper-rectangle. 

Once the sampling window has been identified, we generate 
each random point by starting with a point randomly selected 
from the retrieved set of documents. We replace each non-zero 
term weight with a value chosen uniformly from the range that 
corresponds to the side of the hyper-rectangle in that dimension. 
The points from the dataset are thus used only to determine 
which components to assign a random value to. 

The clustering tendency of a given set of points, in our case the 
retrieved documents, is dependant on their sparsity, i.e., the 
proportion of non-zero values in the matrix representation of the 

points. The sampling points serve as pseudo-data points and 
therefore replacing only the non-zero components by randomly 
chosen values maintains the dependency on the sparsity while 
eliminating the need for defining a generative model of the data. 

Having obtained a random sample point, we determine its 
nearest neighbor within the retrieved set, the marked point, and 
compute the distance between them. We then calculate the 
distance between the marked point and its nearest neighbor.  The 
ratio of these two distances gives us an estimate of the 
randomness present within the retrieved set of documents. 

When working with text documents we compute a cosine 
similarity between pairs of documents or a document and a 
query. For the purpose of query performance prediction, we 
further tailor this approach using Tombros and van Rijsbergen 
query-dependant extension of the dot-product. Amongst the 
alternatives suggested by Tombros and van Rijsbergen in [8], we 
calculate the similarity between two documents as the product of 
their cosine dot product and the query-dependant component: 
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where di and dj are the two documents, T is the number of 
unique terms in the collection, q is the query (with weight qk for 
term k) and c is the vector of terms common to both di and dj 
with weights ck being the average of dik and djk. 

Thus, pairs of documents are close to each other if they share 
terms among themselves and with the query. Therefore, their 
distance is not an absolute value but relative to the search 
context, i.e., the query. If two documents do not contain query 
terms their query-dependant similarity will be 0 regardless of 
how close they may be with regards to the cosine similarity. We 
use this measure to determine both the marked points and their 
nearest neighbors in the dataset and thus obtain a query specific 
Cox-Lewis statistic. A higher clustering tendency is thus 
implicated by a larger value of the ratio: 
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where q is the query, psp is the sampling point, dmp is the marked 
point, i.e., the document with largest similarity with the 
sampling point, and dnn is the nearest neighbor of the marked 
point. Here xi represents the maximum and yi the minimum 
weight for a term i across the retrieved set. Both xi and yi are 
calculated when defining the sampling window. The quantity 
given in the above equation is taken to be proportional to the 
average precision of this query. 

3. DOCUMENT PERTURBATION 
Given a set of retrieved documents, consider the situation in 
which a document is randomly selected from the retrieved set 
and used as a pseudo-query over the retrieved data set. We 
expect the new result list to have that very document ranked 
first. Now let us examine what effect adding noise to the 
representation of such document would have. We issue a 
perturbed version of the document as a pseudo-query and record 
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the new rank that the original document assumes with respect to 
the search with the modified pseudo-query.  
We perform this analysis for all of the documents in the 
retrieved set and calculate the rate at which the average rank 
changes depending on the noise. More precisely, we plot the 
increase in the document rank, (as the original document falls 
down the list), averaged over all the documents, against the level 
of introduced noise. We use the slope of the corresponding 
curve to estimate the retrieval performance for a query. 
Specifically, consider a document di from the retrieved set 
containing N results for a query. Let S be the matrix that 
comprises N columns corresponding to the vectors of retrieved 
documents. When using the cosine dot product for similarities 
between documents, sim(di, di) = di . di

T = 1 where XT denotes 
the transpose, we find that the ith entry in the vector <di.ST> is 1 
and represents the maximum similarity value in the resulting 
vector, assuming that the retrieved set does not contain duplicate 
documents. We add noise to the document vector di as follows. 
Every non-zero term-weight dij of this document is altered by 
adding to it a random value drawn from a Gaussian with 0-mean 
and variance α*vj. The value vj is the variance for term j seen 
across S. Increasing α increases the magnitude of the noise. 
The perturbed document di' differs from di and therefore it will 
not have a similarity of 1 when compared with the unperturbed 
version di. We count the number of elements in <di'.ST> that are 
larger than the product di'.di

T to determine the new rank of the 
original document. As α increases, the amount of noise 
increases and the rank continues to fall before stabilizing at N/2, 
which is essentially a random ranking. 
It has to be noted that if a fixed amount of noise is added to a 
random set of points and a clustered set of points, respectively, 
the clustered set is likely to be more prone to a fast change in 
rank since the points are tightly grouped. However, in our case, 

the noise added is data dependant. For a given value of α, the 
magnitude of introduced noise is dependant on the variance 
observed in the given data set. Between a random and a 
clustered set of points, the random set is likely to have a larger 
variance and therefore have a larger noise added for the same α. 
This, in turns, leads to a larger change in rank of the original 
document when the perturbed document is used as a query. It is, 
therefore reasonable to expect that the inverse of the rate of 
change of document ranks with log(α) will be related to the 
clustering properties and, consequently, to the average precision 
of the query. 

In our experiments, we selected the range of α through 
experimentation, aiming at the amount of noise that is sufficient 
to induce a regular and monotonic behavior but not too high to 
causes erratic behavior. Since the perturbation process involves 
an element of randomness, we resort to multiple samples 
averaging to ensure the stability of the observed measure. The 
rank of a document at a given level of noise(α) is calculated as 
an average over ten samples. The pseudo-code for this process is 
given in Figure 1. 

4. QUERY PERTURBATION 
For a specific query and a retrieval model, the terms within the 
query are given particular weights. Altering these weights by a 
controlled addition of noise produces a perturbed, “noisy”, 
query. If the retrieval algorithm is a nearest neighbor search, the 
set of documents retrieved by the original query will most likely 
be different from the set retrieved by the perturbed query. Here, 
we attempt to measure how distant the original retrieved set is 
from the documents in the collection that would be retrieved as a 
result of small perturbations in the query.  
Our rationale is that if the originally retrieved set of documents 
forms a tight cluster that is significantly distant from other 
topical clusters in the collection, and if the magnitude of the 

     For each query 
     { 

 Issue query to dataset 
 Collect 100 results 
 Calculate the variance along each dimension from amongst documents that contain this term 
 For each document di in this set 
 { 
  For alpha = 0.01, 0.1, 1, 10 
  { 
   For s = 1 : 10 
   { 
       For each term j present in this document 
             Weight = Original_weight + Gaussian(0, alpha* vj) 
       Find similarity of the noisy doc with all 100 original documents 
       Find rank of di in the list of similarities  
   } 
   Find average rank over multiple samples for doc di and this alpha 
  }  
 } 
 Find average rank across all 100 documents for each given alpha 
 Plot average rank Vs alpha for the range of alphas 
 Find slope of the line for this query 

  } 

Figure 1: Pseudo-code for the document perturbation measure 
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added noise is small compared with the distance between 
clusters, then a noisy query will still retrieve most, if not all the 
documents from the original set. As the noise magnitude 
increases, the query is increasingly likely to retrieve other 
documents. The rate at which this occurs is used as an 
approximate measure of the inter-cluster distance.  
This approach is similar to the document perturbation approach 
described in the preceding Section 3.  However, there we were 
attempting to analyze the structure of the retrieved set while here 
we analyze the structure of the document collection in the 
vicinity of the query.  
This measure is also related to the one described by Yom-Tov et 
al [1] where the authors examine the overlap between the 
retrieved set due to the query and the retrieved sets 
corresponding to each sub-query. Sub-queries are obtained from 
a given query by forcing the weights of certain terms to be zero. 
In our method the weights are perturbed by a relatively small 
amount. In either case, a larger degree of overlap between the 
results of a query and its variants indicates a more stable query 
whose performance is then predicted as being good. 

Let S be a set of N documents retrieved in response to the query 
q. We then perturb every non-zero weight qk in q by adding 
noise from a Gaussian of 0-mean and variance α*vk to generate 
a new query q’. The variance term vk is calculated from the 
entire collection of documents. This perturbed query is then 
issued against the collection retrieving a set S’of N documents. 
The number of elements common to S and S’ is an indicator of 
the query sensitivity. We calculate that statistics across a range 
of α, i.e., noise magnitudes. 
The effect of perturbing the query is reflected in the difference 
between the retrieved sets for the original and the noisy query. A 
comparison between these two sets can be performed using a 
number of measures, the simplest of which are set-overlap 
statistics like intersection, Jaccard's distance, etc. Since we are 

interested in document rankings produced by queries we also 
need to account for situations where the retrieved sets are the 
same but the documents are in differing orders. To measure such 
differences, we use the edit or Levenshtein distance. The 
Levenshtein distance between two strings is the number of 
operations such as insertions, deletions, and substitutions, 
required to turn one string into the other. We use this distance to 
measure the sensitivity of the retrieved set to the perturbations of 
the query.  
More precisely, we observe the slope of the graphs that 
represent the increase in the Levenshtein distance as a function 
of log(α) as α increases. We expect this slope to be inversely 
proportional to the average precision. Again, we use multiple 
samples (ten) to average possible irregular effects. The pseudo-
code for the query perturbation procedure is given in Figure 2. 

5. LOCAL INTRINSIC 
DIMENSIONALITY 
In the vector space model, documents are considered points in a 
high dimensional space with coordinates corresponding to the 
distinct terms in the collection. However, any given document 
contains only a small fraction of all the terms. Therefore, while 
the dimensionality of the entire set of documents is high, the 
dimensionality of a subspace that a sub-collection of documents 
occupies can be much smaller. The number of parameters 
required to represent a set of N points in a D dimensional space 
is called the intrinsic dimensionality and will always be less than 
min(N, D). 
There is a considerable literature dealing with the calculation of 
intrinsic dimensionality of a set of points. Fukunaga and Olsen 
[9] describe a method based on the eigenvalues of local regions 
in the space occupied by the points. This technique requires the 
definition of a threshold for significance of eigenvalues. Rather 
than arbitrarily fixing this threshold, we apply Bayesian model 

     For each query 
     { 

 Issue query to dataset 
 Collect 100 results – called the original_set 
 Calculate the variance along each dimension from amongst documents that contain this term 
 For alpha = 0.01, 0.1, 1, 10 
 { 
  For s = 1 : 10 
  { 
      For each term k present in this query 
           Weight = Original_weight + Gaussian(0, alpha* vk) 
     Issue query to the entire dataset 
    Collect 100 results – called the noisy_set 
     Find the Levenshtein distance between original_set and noisy_set   

  } 
  Find average distance over multiple samples for this alpha 

 } 
 Find average distance for each given alpha 
 Plot average distance Vs alpha for the range of alphas 
 Find slope of the line for this query 

   } 

Figure 2: Pseudo-code for the query perturbation measure 
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selection using the Laplace criterion by Minka[10] which 
suggests the optimal number of components to be used for 
principal component analysis (PCA). 
The number of dimensions required to model a given set of 
documents is an estimate of its “complexity”. If we calculate the 
Laplace criterion for the whole set of documents, it gives us an 
estimate of the global dimensionality. Inter-document 
relationships, on the other hand, lead to local groupings. 
Measuring the number of components needed for each such 
restricted group gives an estimate of the local dimensionality. 
Given the set of retrieved documents, for each point in this set, 
we identify its closest K neighbors within the retrieved set, 
where K ranges from 5 to 20 in steps of 5. The number of 
components suggested by the Laplace criterion for this set of 
K+1 data points, i.e., the point itself and its K neighbors, is the 
intrinsic dimensionality of that neighborhood.  
For a given K, we determine the intrinsic dimensionality of the 
K neighborhood of each point in the collection and calculate the 
average. As we increase K we can observe the rate of change in 
the intrinsic dimensionality. We use the slope of the increasing 
intrinsic dimensionality of the retrieved set to predict the search 
performance. The underlying assumption is that a high 
dimensional dataset can be decomposed into a lower 
dimensionality component and noise. If there is a large amount 
of noise in the data, the number of parameters required to model 
this essentially random set of points is small. Therefore, the 
higher the intrinsic dimensionality for a given set of results, the 
more likely it is that the query is effective. 

6. EXPERIMENTS AND RESULTS 
In our experiments we use the Lemur toolkit [11] to index and 
search over TREC disks 4 and 5 after removing standard 
stopwords. We use the tf-idf weighting where the weight dij for a 
term j in document di is given by log((N+1)/(nj+0.5))*tij. For 
each of the 200 TREC topics, 301-450 and 601-650, we use the 
description field to formulate a query and retrieve the top 100 
search results. We consider 100 results for each query with the 
knowledge that the average number of assessor-judged relevant 
documents for this set of queries is between 60 and 70. We 
calculate the average precision for each query from the available 
relevance judgments. This gives us a “ground truth” ranking of 
queries according to the search effectiveness as measured by the 
average precision.  
For each query we compute the value of four measures that we 
described in the previous sessions for the corresponding 
retrieved set. We rank all 200 queries according to each measure 
and compare this with the ground truth query ranking. The 
Kendall τ coefficient between two ranked lists provides a 
measure of the correlation between them. It estimates the 
number of pair-wise swaps required to turn one ranking into the 
other.   

Table 1: Correlation between each of the features and the 
Average Precision 

 Clustering 
Tendency 

Document 
Perturbation 

Query 
Perturbation Laplace

Kendall τ 0.441 0.521 0.174 0.268 
 

Table 1 provides the Kendall τ correlations between the 
predicted and actual ranking for each of four features. As can be 
seen, the document perturbation method provides the best 
performance with a Kendall τ of 0.521. This compares favorably 
with [1] which achieves a score of 0.439 on the same database. 
Moreover, unlike [1], we do not require any learning and assume 
only a monotonic relationship between our features and the 
average precision. The other three features also perform well 
when compared to methods used for the same purpose, such as 
the use of the standard deviation of IDF of query terms, score of 
top ranking documents, etc. [1, 2, 3] 

6.1 Combining predictive measures 
Since each of the four predictive measures captures different 
properties of the retrieved sets, we expect that combining them 
should yield a further improved predictive performance. We 
could construct a problem of learning this ranking over the set of 
queries by considering labeled examples of pair-wise ordering 
between queries. In order to avoid the cost of learning, we only 
consider a simple arithmetic mean of the four measures. 
However, since each measure has values from different 
numerical ranges, we normalize them before averaging.  

We experimented with three forms of normalization: 

1) The same mean normalization. Fix one of the measures 
(e.g., sensitivity to document perturbation) and alter the 
values of the other three measures so that they all have the 
same mean. If the measure Y is fixed, then all values x of 
the measure X are changed as x  (x · mean(Y)) / 
mean(X). 

2) Min-max normalization. Normalize each measure 
independently by mapping its value onto the [0, 1] interval. 
This can be achieved by the mapping: x  (x-min(X)) / 
(max(X)-min(X)), for all values x of the measure X. 

3) Inverse tan (arctan) normalization. Since three of our 
measures: the document and query perturbation and the 
change in intrinsic dimensionality represent slopes, we 
normalize their value by applying the inverse tan (arctan) 
function and dividing by π/2. This provides a mapping onto 
the [0, 1] interval. The values for the Cox-Lewis statistic 
are normalized using the min-max method in 2. 

Table 2: Combining four search effectiveness measures 

Normalization Average Best Achieved 

Same mean 0.561 
0.561  

(Average of all) 

Min – Max 0.457 
0.550 

(Clustering tendency + 
Document perturbation) 

Inverse tan 0.561 

0.562  
(Clustering tendency + 

Document perturbation + 
Query perturbation) 

 
Table 2 shows the performance of the combined estimator for 
each of the three described normalization approaches. It includes 
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the Kendall τ correlation between the query ranking based on the 
arithmetic mean, i.e., the average score of the four normalized 
measures, and the average precision ranking. Since we can use 
any subset of four measures for prediction, we also investigated 
the optimal combination and provided the Kendall τ for the best 
achieved correlation with the average precision ranking. The 
normalization does not affect the performance of the individual 
measures since all three normalization methods are monotonic 
transformations of the original scores. Thus, the performance of 
individual normalized measures is the same as shown in Table 1. 
As expected, a combination of the features is able to achieve 
better performance than any feature independently.  
If we consider the two lists, the actual and the predicted rankings 
of 200 entries independent, the Kendall τ can be approximated 
as a normal variable of zero mean and variance 0.0023. This 
means that our values for the correlation are significant even at 
the 99.9% confidence level. 

6.2 Characterizing queries 
One important application of methods for search performance 
prediction is to flag queries for which the system has not 
retrieved good search results, even before the results are 
presented to the user. We thus explore how reliably our methods 
can be used to distinguish successful from unsuccessful query 
searches. 
For our best performing estimator that uses the average 
normalized scores of the clustering tendency, document 
perturbation, and the query perturbation, we assess how well it 
can detect unsuccessful searches.  
We sort the 200 queries in ascending order of the corresponding 
average precision and consider the queries that fall into the 10%, 
20%, 30%, etc., of worst performing queries according to 
average precision. We rank the queries according to our search 
effectiveness measure and identify the bottom 10%, 20%, 30%, 
etc., performing queries according to our measures. We then 
compute the overlap between the sets of these queries to identify 
the agreement level. The results provided in Table 3 show that 
our method can identify unsuccessful searches with a success 
rate between 55% and 75%.  

Table 3: Effectiveness of identifying the poorly 
performing searches 

 20 worst 40 worst 60 worst 80 worst 

% correctly 
identified 55 65 68.33 73.75 

7. CONCLUSIONS 
In this paper we present methods for estimating search 
effectiveness by examining properties of the retrieved set and 
documents in its vicinity. We start with the hypothesis that an 
effective search will result in a retrieved set that exhibits a 
structure since relevant documents are likely to be similar and 
cluster together.  

We investigate four measures: the clustering tendency, the 
sensitivity to the document perturbation and the query 
perturbation, respectively, and the rate of change in the local 
intrinsic dimensionality. Three of these measures are focused on 
examining the original set of retrieved documents while the 

query perturbation sensitivity examines the structure of the 
document collection in the vicinity of the query.  

Experimental results with TREC disks 4 and 5 and topic sets 
301-450 and 601-650 show a significant improvement over the 
past attempts to predict search effectiveness. We demonstrate 
that by considering the sensitivity of the retrieved set to 
document perturbation we can achieve Kendall τ correlation of 
0.521 with the average precision ranking of queries. Combining 
this measure with the clustering tendency, based on the Cox-
Lewis statistic, and the query perturbation measure leads to 
further improvement. We obtain Kendall τ correlation of 0.562 
with the average precision ranking. Both of these results are 
higher than previously reported results for the same document 
and query collections. Also, our best performing method can 
correctly detect 65% of the worst 20% searches. This is 
achieved without a significant computational cost by 
considering only 100 documents per query.  

Our work has some relation to that of [1], particularly with 
respect to the query perturbation feature. However, an advantage 
of our method is that it does not require a learning phase. 
Perhaps more importantly, the Cox-Lewis and the document 
perturbation measures require computations based only on the 
retrieved document set.  

A pre-retrieval estimate of query effectiveness would be most 
desirable. However, in view of comparatively low performance 
of such techniques, we expect that an optimal approach will 
involve analyzing the retrieved set but with no involvement of 
the search engine in additional processing. This is particularly 
important in the case of meta-search engines where analyzing 
the returned results of each engine is much more feasible than 
repeated querying. Our measures based on document 
perturbation and measurement of clustering tendency offer such 
alternatives. Of course, they require some post-processing of the 
retrieved sets but the cost is small compared with the cost of 
new searches. 

The measures that we defined and explored are not restricted to 
estimating search effectiveness. They can be used for comparing 
the complexity of different document collections and the effects 
of different document representations on search.  In our future 
work we shall expand the application areas of the existing 
measures and work on additional ways of predicting the 
effectiveness of search systems. 
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