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ABSTRACT

Recently there has been strong interest in developing
models of steganography based on information theory. Pre-
vious work has considered under what conditions the secu-
rity of the stegosystem can be guaranteed and the number of
bits that can then be embedded in a cover Work. This work
implicitly assumes that the hidden message is uncorrelated
with the cover Work, the latter simply being used to conceal
the hidden message. Here, we consider the case in which
the cover Work is chosen such that it is correlated with the
covert message. In this situation, the number of bits needed
to encode the hidden message can be considerably reduced.
We discuss the information that can then be transmitted and
show that it is substantially greater than simply the num-
ber of embedded bits. We also note that the security of
the system as defined by Cachin need not be compromised.
However, the Shannon security may be compromised, but
it remains unclear to what extent. Experimental results are
presented that demonstrate the fundamental concepts.

1. INTRODUCTION

The history of steganography can be traced back thousands
of years, examples of which are described in [3]. Stega-
nography seeks to provide a covert communication channel
between two parties. In [1] the problem is framed as one in
which two prisoners, Alice and Bob, are permitted to com-
municate between one another, while under the surveillance
of a Warden. The Warden will prevent communication be-
tween Alice and Bob if any communications between them
is determined to contain a hidden message.

In steganography, we have a hidden message that Alice
wishes to transmit to Bob. This message is hidden in a cover
Work, which might be an image, video, audio or text mes-
sage, for example. The combination of cover Work and hid-
den message is refered to as the stegowork, or more specif-
ically, the stegotext, stegoimage, etc depending on the par-
ticular instance of the cover Work. It is assumed that Alice
and Bob share a secret key and a public function that takes
as input the key and the stegowork and outputs the secret
message. Alice sends Bob a transmitted Work which may
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either be a cover Work, i.e. there is no hidden message, or
a stegoWork, i.e. there is a hidden message. The Warden,
Eve, is free to examine all transmitted Works between Al-
ice and Bob and must decide whether such transmissions
include a hidden message.

Steganography differs from cryptography. Cryptography
attempts to prevent a message between Alice and Bob being
decoded by a third party who has intercepted the message.
That is, in the latter case, it is known that Alice and Bob
are conducting a private communication, but interception of
the encrypted message hopefully does not allow the adver-
sary to interpret the message. However, cryptography does
not prevent the adversary from disrupting or destroying the
communication channel between Alice and Bob, thereby
preventing any further communication. Steganography at-
tempts to hide the very fact that Alice and Bob are conduct-
ing a private communication. An adversary may know that
the two parties are communicating, but this communication
appears to the Warden to be a benign communication with
no covert subtext.

Steganography differs from watermarking. In stegano-
graphy, the cover Work is not considered to be of value to
the two communicators, Alice and Bob. Thus, it is perfectly
acceptable for example, for an image of a person in a grey
suit to be altered to an image of a person in a blue suit,
provided, of course, that such alteration does not raise the
suspicion of the Warden. In contrast, in digital watermark-
ing, the cover Work is considered to be valuable to at least
one of the communicators and the fidelity of the cover Work
must be preserved.

The adversary in a stegosystem can be assumed to be ei-
ther active or passive. In the active case, the Warden is free
to alter the Work transmitted by Alice, before delivering it
to Bob. That is, the Warden is free to attempt to remove any
possible hidden message from the stegowork before pass-
ing it on the Bob. In the passive case, the Warden is not
permitted to alter the transmitted Work. Rather, the adver-
sary must decide whether the transmitted Work contains a
hidden message and if so, is then free to prevent receipt of
the transmission to Bob. For the purposes of this paper, we
assume a passive adversary.

Shannon [4] first considered secrecy systems from the
viewpoint of information theory. Shannon identified three
types of secret communication which he described as (i)



“concealment systems, including such methods as invisible
ink, concealing a message in an innocent text, or in a fake
covering cryptogram, or other methods in which the exis-
tence of the message is concealed from the enemy”, (ii) pri-
vacy sytems and (iii) cryptographic systems. On conceal-
ment systems, i.e. steganography, Shannon stated that such
“systems are primarily a psychological problem” and did
not consider them further.

Anderson and Petitcolas [5, 3] revisited the question
of steganography from an information theoretic viewpoint,
suggesting that indeed information theory could also be
used to describe such systems. They considered the ideal
scenario of perfect source encoding, say for music. In this
case, a source decoder would decompress any random bit
string into an acceptable musically piece. Thus, Alice could
take an encrypted hidden message and then pass this mes-
sage through the ideal source decoder to produce a stego-
text that would appear to the Warden, Eve, as an acceptable
cover Work. Eve would not be able to determine that such
a stegotext contained a hidden message. On receipt, Bob
would input the stegotext into the source encoder to again
produce the encrypted hidden message which is then de-
crypted. This thought experiment reveals that under certain
circumstances steganography may be impossible to detect.

In fact, we do not even need perfect compression in order
to ensure that steganography is undetectable. Very low bit
rate steganography is indeed impossible to detect (at least
from a statistical perspective). For example, if Alice and
Bob share a secret key, then a public hash function can be
used to map a string of bits plus the key into an n-bit hash.
Then for n < 20, say, it is perfectly feasible for Alice to
search through a collection of approximately 1 million im-
ages and identify the image which hashes to the desired n-
bit string. Since the image has not been altered in any way,
it is not possible for the Warden to determine that the com-
munication of the image contains a covert message.

Unfortunately, for n > 20, the size of the database
quickly becomes prohibitive. For example, for n = 40,
we must search a database of approximately one trillion
items. The continuing increase in storage and computa-
tional power does not significantly help - to send an extra
20 bits, e.g. n = 60, requires a million-fold increase in ca-
pacity. Thus, to send messages of greater length will require
sending multiple partial messages. For example, for n = 20
and a message size of 100k bits, Alice must send over 5,000
stegoWorks to Bob. This may well raise the suspicion of
the Warden. Ideally, Alice would like to hide as much in-
formation as possible in a coverWork while maintaining the
security of the system. Thus, a key question in steganogra-
phy is how many bits can be safely embedded in a cover
Work without raising the risk of detection by the Warden
above some small probability.

Cachin [6] examined this problem from an information

theoretic view point. Cachin assumes a passive adversary
whose decision is based on a statistical hypothesis test as to
whether the stegowork is drawn from the distribution of al-
lowable benign communications, i.e. coverWorks, or other-
wise. Under these conditions, Cachin defines conditions for
both a perfectly secure and an ε-secure stegosystem. Sec-
tion 2 summarizes this contribution. Cachin defines the con-
ditions under which the probability is either zero or negli-
gible that an adversary will detect the existence of a covert
communication. However, this work does not indicate how
many bits can be embedded. Sallee [7] provided an answer
to this question, the results of which are discussed in Sec-
tion 2.1.

One might now conclude that the question of how much
information can be transmitted between Alice and Bob is
answered. And if it is assumed that the hidden message and
the cover Work are statistically independent, then this is in-
deed the case. However, what if the covert message and
the cover Work are correlated? That is, the mutual infor-
mation between the hidden message and the cover Work is
non-zero? Clearly, if the cover Work has non-zero mutual
information with the message, then there is leakage of infor-
mation to the Warden. However, we argue that in many cir-
cumstances, this leakage may not be sufficient for the War-
den to learn anything significant. For example, consider the
case where Alice wishes to transmit a covert image to Bob.
Given the covert image, Alice selects a cover Work (im-
age) from a database such that the mutual information be-
tween the cover Work and covert image is non-zero. Thus,
the number of bits needed to encode the covert image will
be (much) less than would otherwise be needed. The War-
den may learn that the class of covert messages is an image.
However, it may not be possible to determine what that mes-
sage is. And more importantly, if the number of bits needed
to encode the covert image is less than the upper bound pro-
vided by Sallee, then the Warden will not be able to deter-
mine that a covert message is even present. However, the
amount of information received by Bob is much greater that
the number of bits needed to encode the hidden message!
This is because the cover Work provides more than a cover.
Rather, it defines a probability distribution which permits a
very efficient source coding of the hidden message.

In this paper, we consider the situation in which the hid-
den message and the cover Work are correlated. In this case,
the number of bit needed to communicate the hidden mes-
sage may be much less than for the case where the cover
Work is statistically independent. Source coding of corre-
lated information sources has been studied [8] and these re-
sults are discussed in Section 3.1.

Section 3 describes our proposed steganography system
and provides an estimate of the information that can be
communicated between the two communicating parties. It
is different from Cachin’s and Sallee’s results in that the



question we ask is not how many bits can safely be em-
bedded in a cover Work, but rather, how much information
can the receiving party learn. Section 4 then illustrates the
steganographic principle with a demonstration of embed-
ding a covert image within a cover image. Finally, Section 5
concludes with a summary and directions for future work.

2. AN INFORMATION-THEORETIC MODEL OF
STEGANOGRAPHY

In order to discuss information theoretic models of stega-
nography, we first provide a brief summary of some basic
results in information theory.

Consider an ensemble X = (x,AX , PX ), where the out-
come x is the value of a random variable. The values of
x are drawn from an alphabet AX = (a1, a2, · · · al) with
probabilities PX = (P1, P2, · · ·Pl) such that

P (x = ai) = Pi, Pi ≥ 0 and
∑

ai∈AX

P (x = ai) = 1 (1)

The Shannon information content of an outcome x is

h(x) = log2
1

P (x)
(2)

and the entropy of the ensemble X is

H(X ) =
∑

x∈AX

P (x)log2
1

P (x)
(3)

The entropy provides a lower bound on the number of
bits that are needed to encode x, for infintely long, indepen-
dent, identically distributed (iid) sequences. The entropy
H(X ) ≥ 0 and is only zero if P (xi) = 1, i.e. the signal is
entirely deterministic.

The joint entropy between X and Y is defined as

H(X ,Y) =
∑

x,y∈AX AY

P (x, y)log
1

P (x, y)
(4)

where P (x, y) is the joint probability of the outcomes x and
y occuring.

H(X ,Y) = H(X ) + H(Y) iff P (x, y) = P (x)P (y) (5)

i.e. x and y are independent of one another.
The conditional entropy of X given y = bk, is the entropy

of the probabilty distribution P (x|y = bk) and is given by

H(X|y = bk) =
∑

x∈AX

P (x|y = bk)log
1

P (x|y = bk)
(6)

The conditional entropy of X given Y is the average over
y of the conditional entropy of X given y, i.e.

H(X|Y) =
∑

x,y∈AX ,AY

P (x, y)log
1

P (x|y)
(7)

The conditional entropy measures the uncertainty in x given
knowledge of y. Thus, to code x, given y, we only need
H(X|Y) bits rather than H(X ).

A related measure is the mutual information between X
and Y and is given by

I(X ;Y) = H(X ) + H(Y) − H(X|Y) (8)

The mutual information is always greater than or equal to
zero and measures the average reduction in uncertainty of x
given y.

The relative entropy or Kullback-Leibler divergence be-
tween two distributions P (x) and Q(x) that are defined over
the same alphabet AX is

DKL(P ‖ Q) =
∑

x

P (x)log
P (x)
Q(x)

(9)

The relative entropy can be thought of as the difference
between Huffman coding a source with pdf P using a
table determined by P and an alternative Q (suboptimal
choice of codeword lengths). Note that the relative entropy,
DKL(P ‖ Q) ≥ 0 with equality iff P = Q.

2.1. Steganography, Steganalysis and Information The-
ory

In a stegosystem, Alice sends Bob an innocent looking mes-
sage, the cover Work, inside of which may be hidden a se-
cret message. Communication is over a public channel that
allows the adversary, Eve, to inspect the message.

Alice may send either a cover Work with no hidden mes-
sage or a cover Work with a hidden message. Eve must
decide whether Alice and Bob are communicating covertly.

Let c denote the cover Work, which is drawn from a dis-
tribution, PC , that is known to Eve. Let s denote the stego-
text, and PS its distribution. If Eve’s decision is based on
comparing the known distribution of the cover Works, PC ,
with the suspected stegotext, then clearly if

DKL(PC ‖ PS) = 0 (10)

then PC = PS and Cachin defines this as perfectly secure,
i.e. it is impossible for Eve to distinguish between cover
Works that contain or do not contain a hidden message.

If DKL(PC ‖ PS) ≤ ε, then the system is said to be
ε-secure.

Cachin analysed Eve’s detection performance using the
theory of hypothesis testing [9]. Eve must decide between
the two hypotheses, H0, representing the hypothesis that the
transmission does not contain a hidden message and H1,
representing the hypothesis that the transmission does con-
tain a hidden message. Given the observation space, C,
there are two probability distributions, P0 and P1, such that
if H0 is true then the observed message, C, was generated



according to P0. Conversely, if H1 is true, then C was gen-
erated from the distribution P1.

Eve can make two forms of error. First, accepting H1

when H0 was true, often referred to as a false positive, and
second, accepting H0 when H1 is true, often referred to as a
false negative. Let α and β denote the probabilities of type 1
and type 2 errors, respectively. The binary relative entropy,
d(α, β), is given by

d(α, β) = αlog
α

(1 − β)
+ (1 − α)log

(1 − α)
β

(11)

and

d(α, β) ≤ D(P0 ‖ P1) (12)

This inequality can be used to determine a lower bound
on the probability of type 2 errors, β, given a desired upper
bound on the probability of a type 1 error, α. In particular,
Cachin shows that if the probability of a type 1 error is α =
0, i.e. Eve is not permitted to accuse Alice of transmitting a
covert message when in fact she has not, then the probability
of a type 2 error, β, i.e. of missing a covert communication
is

β ≥ 2−ε (13)

That is, the probability of not detecting a covert communi-
cation is very high.

Sallee [7] extended the work of Cachin to ask what is the
maximum message length that can be securely hidden.

Given an instance of cover text, c, drawn from a distri-
bution, PC , Sallee seperates it into two distinct parts, ca,
which remains unchanged after embedding, and cb, which
is replaced by c′b, to encode the hidden message. For exam-
ple, cb, may be the least significant bit of each pixel and ca

the remaining higher order bits.
These two parts are assumed to be drawn from two dis-

tributions, Ca and Cb. Given the distribution of PC , or a
model thereof, we can estimate the conditional distribu-
tion, PCb|Ca

(Cb|Ca = ca). Then, if C′
b is chosen to obey

this conditional distribution, then the resulting stegotext,
C′ = (ca, c′b) will have the same distribution, PC , as the
cover work.

Sallee suggested using an arithmetic entropy en-
code/decoder [10]to accomplish this. Arithmetic coding is
a method for very efficient compression of strings given a
model of their distribution. However, if a random bit string
(read hidden message) is fed into an arithmetic decoder, the
output bit sequence will have the same distribution as the
model distribution. This is a practical means for generating
the distributions required by Cachin to ensure perfect secu-
rity. Note the similarity between this and the ideas of An-
derson and Petitcolas [3] regarding ideal compresison that
were described earlier.

Sallee’s method has a capacity equal to the entropy of the
conditional probability distribution, PCb|Ca

H(Cb|Ca = ca) = −
∑

cb

PCb|Ca
(cb|ca)logPCb|Ca

(cb|ca)

(14)
Essentially, Cb is an open communications channel without
any restriction. Note that this capacity is independent of the
distribution of the message to be hidden.

3. INFORMATION TRANSMISSION WITH
CORRELATION BETWEEN COVER AND COVERT

WORKS

Consider a message m drawn from a distribution, PM and
a cover Work c drawn from a distribution, PC . If m is in-
dependent of c, then the minimum number of bits needed
to encode the message is the message’s entropy, H(m).
However, if m and c are correlated, then the number of
bits needed to encode m given c is the conditional entropy,
H(m|c). The conditional entropy, H(m|c), may be much
less than the entropy of the message, H(m).

What if m = c, or more usefully, m is a deterministic
function of the cover Work, c? Then, the conditional en-
tropy is zero and there is no need to embed a secret mes-
sage. At first sight, this would not appear to offer any form
of covert channel. However, if Alice and Bob share a secret
key, then even if the deterministic function is known pub-
licly, this offers a perfectly secure channel, since the distri-
bution of c is unchanged. This form of steganography was
discussed in the introduction using a one-way hash function,
though any receiver function will suffice.

The key question then is how much information can Alice
transmit to Bob without being detected by Eve. Assuming
that we split the covertext into two parts, then from [7], we
know that given a covertext, c, the maximum size of the
hidden message is given by Equation 14. Thus, if the hid-
den message is uncorrelated with the cover Work, then the
maximium information transmitted is simply this number
of bits. However, the information transmitted to Bob in-
cludes both the message and the cover Work. Traditionally,
the cover Work has been ignored. It is simply a means by
which to conceal the hidden message. However, this need
not be the case.

Given a message m and cover Work, c with conditional
entropy, H(m|c), then we only need to encode H(m|c) bits
of information in c in order to encode m. For explanatory
purposes, let’s assume that the encoding procedure splits the
covertext into two parts. Then, the information received by
Bob is

H(c,m) = H(ca) + H(cb) = H(ca) + H(m|c) = H(c)
(15)

which is potentially much greater than simply H(m).



Thus, given a hidden message, we choose a cover Work
from a set of cover Works, such that the correlation between
the two permits a very efficient source coding of the hidden
message.1 We believe that the search for a correlated cov-
erWork is significantly easier than finding a coverWork that
hashes to a desired n-bit value. In the latter case, for large
n, this is almost impossible. However, most images, for
example, exhibit correlation with one another.

If the cover Work is highly correlated with the message,
m, then the number of embedded bits needed will be very
low. What does this imply regarding the secrecy of the
covert channel?

First, Eve cannot distinguish between a cover text with no
hidden message and a stegotext provided we ensure that the
number of embedded bits is less than that given by Equa-
tion 14. Thus, provided this condition is met, then there is
no reduction in security as defined by Chachin.

Shannon [4] defines perfect security as “a system that af-
ter a cryptogram is intercepted by the enemy, the a poste-
riori probabilities of this cryptogram representing various
messages be identically the same as the a priori probabil-
ities of the same messages before the interception”. Thus,
a system that exploits the mutual information between the
hidden message and the cover Work would not appear to be
perfectly secure, as defined by Shannon.

From the sender’s perspective, the cover Work defines a
probability distribution that permits a very efficient source
coding of the hidden message. Without this, Alice would
need at least H(m) bits to encode the message, m. With the
cover Work, Alice only needs H(m|c), bits. A judicious
choice of the cover Work, c, will then permit a very signifi-
cant reduction in the number of bits that need to be embed-
ded. These bits can then be encrypted using the secret key
shared by Alice and Bob. The encryption does not increase
the number of bits, but prevents the Warden from decoding
the message, assuming it is detected. This pseudo-random
encrypted bit sequence is then embedded into the cover
Work. This can be accomplished using Sallee’s method.

If Eve suspects that Alice is exploiting the conditional
entropy between the cover Work and message, then what
can Eve learn from examining the cover Work? Certainly,
upon interception of the stegowork, the adversary, Eve, has
learned something about the hidden message. For exam-
ple, if the cover Work is an image, the adversary may con-
fidently conclude that the hidden message is also an image.

1There is a similarity between this and digital watermarking, where,
given a cover Work, it is common to choose a watermark from a set of
watermarks such that the watermark is easy to embed. Such techniques are
based on the modeling watermarking as communication with side infor-
mation [11, 12, 13] and the watermarks are often referred to as dirty paper
codes [14, 15]. However, digital watermarking does not use the correla-
tion between the message and the cover work to reduce the number of bits
needed to encode the message. Rather, the purpose is to reduce or elimi-
nate the “noise” due to the cover Work and thereby improve the robustness
and/or fidelity.

However, our earlier example demonstrated that even if the
conditional entropy is zero, Eve may still not be able to learn
anything about the message, since she does not have knowl-
edge of the key shared between Alice and Bob. In fact, the
cover Work informs the Warden of the probability distrib-
ution used by Alice to perform the source encoding. How-
ever, this is not sufficient to decode the message.

We do not claim that steganography based on coding that
exploits the conditional entropy between the hidden mes-
sage and the cover Work is perfectly secure in the Shannon
sense. However, it can certainly be perfectly secure of ε-
secure in the Chachin sense.

3.1. Encoding of correlated sources

The encoding of correlated sources has been well studied.
Interestingly, Slepian and Wolf [8] showed that efficient
noiseless coding of two correlated sources X and Y could
be achieved even if the two source encoders do not have ac-
cess to the other signal, provided both signals are available
to the decoder.

More recently, Pradhan and Ramchandran [16, 17] ex-
tended these results to provide a constructive procedure for
distributed source coding based on syndrome codes.

Together with Chou, they also recognized the duality be-
tween distributed source coding and data hiding [12]. How-
ever, while this paper demonstrated how to embed a hid-
den message in a cover Work using syndrome coding, it
did not consider exploiting the mutual information between
the cover Work and the hidden message. Rather, it can
be considered an efficient implementation of results due to
Costa [18] in which it was shown that the channel capac-
ity of system with two noise sources, the first of which is
entirely known to the transmitter, but neither of which is
known to the receiver, is equivalent to the channel capacity
of a system in which the known first noise source is absent.
From a data hiding perspective, the first noise source rep-
resents the cover Work while the second noise source rep-
resents the distortion in the stegoWork prior to its receipt.
This forms the foundation for considerable work on model-
ing watermarking as communication with side information
[11, 12, 13].

Chou et al [12] also observed the similarity between dis-
tributive source coding, digital watermarking and that of
writing on defective memories [19]. More recently, Fridrich
et al [20] have applied these ideas to steganography. Their
“wet paper” codes assume a cover Work consisting of n
samples, k of which are “dry” and can be modified while
the remaining (n−k) bits are “wet” and must not be altered.
They show that it is possible to embed k-bits of information
into a cover Work without the decoder knowing which of
the k samples have been modified. Once again, correlation
between the hidden message and the cover Work is not con-
sidered and the capacity of the system is considered to be



k-bits.

4. EXPERIMENTAL RESULTS

To demonstrate the concepts discussed in the previous sec-
tion, we modified a steganographic method due to Chan et
al [21]. They describe a procedure for embedding a covert
image within a cover image. While their paper does not dis-
cuss relative entropy, relative entropy is exploited in order
to reduce the number of bits needed to encode the covert
image. In this example, we did not search for a cover image
with high correlation with the hidden image, but rather, re-
lied on the correlation that is present between 8 × 8 blocks
across all images. It should be noted that this example is for
illustrative purposes only and does not represent the most
efficient means to implement our proposal.

The embedding procedure consists of:

1. Partition the cover image and covert image into 8 × 8
blocks, denoted ci and mj respectively

2. For all i and j, compute the error-matrix, EMi,j and
the normalized error-matrix, NEMi,j defined as:

EMi,j = mi − cj (16)

and
NEMi,j = EMi,j − min(EMi,j) (17)

3. The range of errors, is refered to as the distance degree
(DD) and is defined as

DDi,j = max(EMi,j) − min(EMi,j) (18)

where the min and max operations are over the 8 × 8
elements of the blocks.

4. For each hidden image block mj , find the cover image
block ci such that DDi,j is a minimum. The location
of the cover image block is referred to as the reference-
block-index RBI(j) = i.

5. Given DDRBI(j),j , the quantization error matrix is se-
lected according to Table 1

6. Quantize the NEMRBI(j),j

7. Embed the extra information of (i) the referenced block
number, (ii) the quantization error matrix and (iii) the
minimum element in the error matrix.

8. Embed this extra information in the LSB of the DCT
coefficients, according to the method of [7].

The extraction procedure follows:

1. Extract the RBI

DDci,mj
QEMci,mj

(3 - 4) 2
(5 - 6) 3
(7 - 8) 4
(9 - 11) 5

(12) 6

(13),(26 - 27), (52 - 55),
(104 - 111)

�NEM
7 � × 7 + 3

(14 - 15),(28 - 31),
(56 - 63), (112 - 127)

�NEM
8 � × 8 + 3

(16 - 17),(32 - 35),
(64 - 71), (128 - 143)

�NEM
9 � × 9 + 4

(18 - 19),(36 - 39),
(72 - 79), (144 - 159)

�NEM
10 � × 10 + 4

(20 - 21),(40 - 43),
(80 - 87), (160 - 175)

�NEM
11 � × 11 + 5

(22 - 23),(44 - 47),
(88 - 95), (176 - 191)

�NEM
12 � × 12 + 5

(24 - 25),(48 - 51), (96 -
103), (192 - 207)

�NEM
13 � × 13 + 6

(208 - 223) �NEM
14 � × 14 + 6

(224 - 239) �NEM
15 � × 15 + 7

(240 - 255) �NEM
16 � × 16 + 7

Table 1. Quantization error matrix.



Fig. 1. Cover image

Fig. 2. Image to be hidden

2. extract the QEM

3. extract the minimum element

4. reconstruct the secret image as

Sj = H ′
i + QEM + min(EMi,j) (19)

Figure 1 shows an image used as a cover image. Figure 2
shows the image that is to be hidden in Figure 1.

Using the method outlined above, the number of bits
needed to encode the hidden image was 222144 or 0.8474
bits per pixel. This approach uses lossy compression and the
relative entropy of image 1 given image 2, may be higher.
Nevertheless, this example serves to illustrate the consider-
able reduction in the number of bits that must be embedded
when the cover Work is correlated with the hidden message.
Independent coding of the the hidden image would have re-
quired 8 bits per pixel.2

2For this example, a similar or smaller number of bits per pixel would

The number of bits that can safely be inserted in the cover
Work according Equation 14 is 223110 or 0.8511 bits per
pixel. Thus, the hidden message cane be embedded without
risk of detection from a Warden.

Note that the resulting stegoImage has a 50.57dB signal-
to-noise ratio compared with the original cover Work. Simi-
larly, the recovered hidden image has a 38.93 dB SNR com-
pared with the original hidden image, prior to embedding.

5. CONCLUSION

Previous work on modeling steganography using informa-
tion theory has assumed that the hidden message is uncorre-
lated with the cover Work. In this scenario, the cover Work
serves only to hide the covert message. However, it may of-
ten be the case that the sender of a stegotext, Alice, may be
able to chose a cover Work that is correlated with the hid-
den message. In this case, the cover Work not only serves to
hide the covert message, but also defines a probability dis-
tribution which permits a very efficient source coding of the
message.

It is well known that if a message, m has entropy H(m),
this entropy defines a lower bound on the number of bits
needed to reliably code the message. However, given a cov-
erWork, c, that is correlated with the message, then it is also
well-known that the message m requires only H(m|c) ad-
ditional bits, where H(m|c) is the conditional entropy be-
tween the message and coverWork. This may be very much
less than H(m).

The reduction in the number of bits needed to encode the
message is very beneficial, especially in ensuring security,
as defined by Cachin. However, more importantly, we point
out that the information received by Bob is much more than
simply the number of encoded bits. Rather, Bob receives in-
formation that it equivalent to the entropy of the coverWork.
This is much higher than previously thought possible.

We discussed the security issues related to steganography
using mutual information between cover work and covert
message. It is clear that from the perspective of detectabil-
ity, we can still ensure that the system is perfectly secure or
ε-secure as defined by Cachin. In fact, given that we need
far fewer bits to encode the secret message, it should be
easier to ensure such security. However, from the perpsec-
tive of perfect secrecy as defined by Shannon, the adversary
learns a probability distribution defined by the cover Work
which the hidden message is correlated with. Nevertheless,
it is unclear how useful this knowledge is to the Warden.

We provided experimental results that are intended to il-
lustrate that basic concepts of the method. Specifically,

be possible by simple lossy compression of the hidden image using say
JPEG compression. However, this need not be the case and we empha-
sise that the experimental results described here are purely for illustrative
purposes.



we discussed hiding an image within another cover image.
This example was purely illustrative and more sophisticated
techniques based on the approach proposed here are the sub-
ject of future work. We also note that this appraoch is ap-
plicable to many different kinds of cover Works and covert
messages, including text, audio, video, computer graphics,
maps, and electronic schematics.

There is clearly a deep connection between coding of
correlated sources, distributed source coding, digital water-
marking and steganography. We (and others) have identified
a number of these connections but a rigorous mathematical
model needs to be developed further. The basic problem can
be described as given a message m that we wish to hide, first
find a covertext, c, that is correlated with the message. We
than want to jointly encode m and c into a stegotext, s such
that s has the same source model as c and m should be re-
coverable from s up to some distortion (given some secret
shared between Alice and Bob). An optimum solution to
this problem remains a goal of future work.
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