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ABSTRACT
Quantization index modulation (QIM) is a computation-

ally efficient method of informed watermarking. However,
the original method is particularly sensitive to variations in the
amplitude of the signal. Previously, we proposed using a mod-
ification of Watson’s perceptual model to adaptively adjust the
quantization index step size. This simultaneously improved
both the robustness and fidelity of the watermarked image and,
most importantly, provided invariance (to a large degree) to
valumetric scaling. Contemporaneously, rational dither mod-
ulation was proposed as an alternative QIM with valumetric
invariance. In this paper, we combine the two methods and
compare the performance of the new algorithm with our pre-
vious results. Experimental results demonstrate that the new
algorithm outperforms the previous algorithms over the en-
tire range of valumetric scale factors, albeit at the expense
of a small decrease in fidelity. However all algorithms have
a superior performance and improved fidelity compared with
QIM.

1. INTRODUCTION
Quantization index modulation is a method to perform wa-

termarking that was originally proposed by Chen and Wor-
nell [1]. It is a form of watermarking with side information
[2, 3, 4] in which the cover Work, e.g. image, video, audio, is
quantized by two sets of quantizers, one encoding a 1-bit and
the other encoding a 0-bit. The resulting lattice codes exhibit
very high capacity and computational simplicity. As a result,
QIM has received significant attention within the watermark-
ing community.

A significant limitation of the original algorithm is its ex-
treme sensitivity to changes in the amplitude of the cover sig-
nal, e.g. volume changes to audio or brightness changes to
images or video. This valumetric scaling is a very common
occurrence and there has therefore been considerable work ad-
dressing this issue. Two different approaches have been pur-
sued.

In the first approach, researchers have attempted to de-
termine the valumetric scaling and then compensate for it.
This approach was initially pioneered by Eggers et al [5] who
proposed to estimate the valumetric scaling by “securely em-
bedd[ing] SCS pilot watermark”. However the need for a cal-
ibration signal may lead to security weaknesses. Lee et al [6]
proposed estimating the global scaling factor using an EM al-
gorithm, which does not need a pilot watermark. However,
they note that the “complexity could be impractical”.

In the second approach, researchers proposed to adaptively
modify the quantization step size, which was originally fixed.
Oostveen et al [7] uses a simple perceptual model based on
Weber’s law. In [8] we proposed basing the quantization step
size on the perceptual “slack”, i.e. the amount a sample could
be altered before introducing a just noticeable distortion (JND).
The slack was determined using a modification of Watson’s
perceptual model [9]. The modification, described in Sec-
tion 4 permits the slacks to scale linearly with valumetric scal-
ing, thereby providing valumetric invariance. The embedding
is performed in the Discrete Cosine Transform (DCT) domain,
and the slacks are computed from the 8×8 DCT blocks. These
blocks are modified during the watermark embedding proce-
dure. However, the detector uses these modified DCT blocks
to compute the slacks needed for detection. It is implicitly
assumed that the slacks calculated during detection are un-
affected by the embedding stage. Section 5 provides more
detail.

Perez et al [10] proposed an alternative QIM method in
which the quantization step size at time, k, is a function of
the watermarked samples at earlier times. This algorithm is
described in Section 3.

In this paper, we propose to calculate the slacks for the
current block, k, based on the previous watermarked block. In
so doing, we guarantee that the slacks used during detection
are unaffected by embedding. This is described in Section 6.

Section 2 and 3 provide an introduction to quantization in-
dex modulation and rational dither modulation. Section 7 pro-
vides an experimental comparison between the new algorithm
and our previous proposal. We also implement a version of ra-
tional dither modulation in the DCT domain (RDM-DCT) for
comparison purposes. Experimental results show that the new
algorithm has a superior bit error rate over the entire range of
valumetric scale factors. This is achieved at the expense of
a small decrease in fidelity Section 8 summarizes our results
and discusses future work.

2. QUANTIZATION INDEX MODULATION
A quantizer maps a value to the nearest point belonging

to a class of pre-defined discontinuous points. The standard
quantization operation with step size ∆ is defined as Q(x, ∆) =
round( x

∆ )∆ where round(.) denotes rounding a value to the
nearest integer.

Quantization index modulation embeds a message by quan-
tizing the host signal with the associated quantizer, which is
selected based on the value of the message bit to be encoded.



Let ∆ be the quantization step size, N represent the length
of the host signal x and m represent the message (we em-
bed one bit per sample). If dithering is used, then we choose
d[n, 0] pseudo-randomly with a uniform distribution over
[−∆/2, ∆/2]. and

d[n, 1] =
{

d[n, 0] + ∆/2, d[n, 0] < 0.
d[n, 0]−∆/2, d[n, 0] > 0.

n = 1, 2, . . . , N.

(1)
Here d[n, 0] or d[n, 1] is used for embedding message bit

“0” or “1” respectively. The watermarked signal is given by:

yn(xn, mn) = Q(xn + d[n,mn],∆)− d[n,mn] (2)

2.1. Soft detection with QIM
The above description embedded one bit per sample. In

practice, we usually spread one message bit into a sequence
of P samples. One way to achieve this is to use a rate 1/P
repetition encoding. In the detector we can accumulate the
two Euclidean distances for P samples and then determine
the detected message bit, i.e.,

m̂n = argmin︸ ︷︷ ︸
l∈0,1

∑nP
h=(n−1)P+1(rh − Sh(rh, l))2,

n = 1, 2, . . . , N/P.

(3)

where r is the received signal and rh denotes the h-th sample
of r. Sh(rh, 0) and Sh(rh, 1) are generated by embedding ”0”
and ”1” into the received signal r separately. That is, during
detection, the detector calculates two signals Sh(rh, 0) and
Sh(rh, 1) by embedding ”0” and ”1” into the received signal
r separately, in the same manner as Equation (2).

The quantization step size for QIM is usually fixed. How-
ever, by adaptively selecting the step size based on a local
neighbourhood of the content, it is possible to both improve
fidelity and robustness, and provide invariance to valumetric
scaling. Two adaptive methods are described in Sections 3
and 4.

3. RATIONAL DITHER MODULATION
Rational dither modulation (RDM) was first proposed by

[10] and is intended to provide valumetric invariance to QIM.
Given a host signal, x = (x1 . . . xN ) and a watermarked sig-
nal, y = (y1 . . . yN ), then the k-th bit of a watermark mes-
sage, m = (m1 . . .mM ), is embedded as

yk = g
(
yk−1

k−L

)
Qmk

(
xk

g(yk−1
k−L)

)
(4)

where yk−1
k−L denotes the set of past signals, (yk−L . . . yk−1

and the function, g() maps its L-dimensional input vector to a
real value and has the property that for any valumetric scaling
factor ρ > 0,

g(ρy) = ρg(y) (5)

This definition of RDM is intrinsically invariant to valu-
metric scaling. The function g() can be chosen from a very

large set of possible functions, including the lp-norms, i.e.

g
(
yk−1

k−L

)
=

(
1
L

L∑

i=1

|yk−i|p
)p

(6)

However, it is well-known that lp-norms poorly model the hu-
man perceptual system. Thus, it is interesting to consider a
function g() that models properties of perception and satisfies
the constraint of Equation (5). Such a function is described
next.

4. A MODIFIED WATSON PERCEPTUAL MODEL
Watson’s perceptual model [9] is a popular perceptual model

that estimates the perceptibility to changes in individual terms
of an image’s block DCT. It is commonly used in digital wa-
termarking.

For a given k-th block of the cover Work, c, Watson’s
model can be used to determine how much each of the DCT
coefficients, C[i, j, k], 0 ≤ i, j ≤ 7, can be altered without
introducing perceptible artifacts.

Watson’s model consists of a sensitivity function, two mask-
ing components based on luminance and contrast masking,
and a pooling component.
Sensitivity

The model defines a frequency sensitivity table, t. Each
table entry, t[i, j], is approximately the smallest magnitude
of the corresponding DCT coefficient in a block that is dis-
cernible in the absence of any masking noise. The resulting
frequency sensitivity table is provided in [11]. Note that it is
a constant value table.
Luminance Masking

Luminance masking refers to the fact that a DCT coeffi-
cient can be changed by a larger amount if the average inten-
sity of the 8 × 8 block is brighter. The luminance-masked
threshold, tL[i, j, k], is given by

tL[i, j, k] = t[i, j](Co[0, 0, k]/C0,0)αT (7)

where αT is a constant with a suggested value of 0.649,
Co[0, 0, k] is the DC coefficient of the kth block in the orig-
inal image, and C0,0 is the average of the DC coefficient in
the image. Alternatively, C0,0 may be set to a constant value
representing the expected intensity of images.
Contrast Masking

Contrast masking refers to the reduction in visibility of a
change in a frequency due to the energy present in that fre-
quency. This results in a masking threshold, s[i, j, k], given
by

s[i, j, k] = max (tL[i, j, k], |Co[i, j, k]|0.7tL[i, j, k]0.3) (8)

The final threshold,s[i, j, k], estimates the amounts by which
individual terms of the block DCT may be changed before
resulting in one JND. We refer to these thresholds as slack.

The slacks do not scale linearly with amplitude scaling
of the image intensities. Thus, Watson’s original perceptual
model cannot be used to provide for valumetric invariance. In



[8] we proposed a modification to Watson’s model in order to
maintain a linear relationship between the perceptual slacks
and valumetric scaling. In particular, we modified the lumi-
nance masking of Equation (7) to be tML , given as:

tML [i, j, k] = tL[i, j, k](C0,0/128)
= t[i, j](Co[0, 0, k]/C0,0)αT (C0,0/128) (9)

C0,0 is the average of DC components of the image, we
have chosen it to be divided by 128 (the mean pixel bright-
ness).

The modified slack is then given by:

sM [i, j, k] = max (tML [i, j, k], |Co[i, j, k]|0.7tML [i, j, k]0.3)
(10)

Thus after the modification, when the image is amplitude scaled
by factor of ρ, the luminance masking and slack scale linearly
with ρ.

5. QIM WITH MODIFIED WATSON DISTANCE
In [8], we used this modified slack to adaptively set the

quantization step size and thereby provide robustness to val-
umetric scaling. Figure 1. is a block diagram of the system.
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Fig. 1. Adaptive QIM watermarking system based on modi-
fied Watson model.

Notice that the quantization step size is determined by a
local neighbourhood around the host sample, xk, and that this
neighborhood is altered during the embedding of the water-
mark. Thus, during detection, we must rely on the fact that
these alterations are small, and hope that the slacks based on
the modified local neighborhood are the same as those deter-
mined during embedding. While this is often true, rational
dither modulation suggests an alternative approach, in which
the perceptual slack at time k is based on a nearby neighbor-
hood of previously watermarked samples. Clearly, there may
be some degradation in perceptual quality since a perceptual
estimate made in a nearby neighborhood, is not guaranteed to
be perceptually relevant. We denote this earlier algorithm as
QIM-MW.

In the next section, we briefly describe an implementation
of RDM using the modified Watson model. The new algo-
rithm is denoted RDM-MW. Experimental results in Section 7
examine the perceptual impact.

6. IMPLEMENTATION
Before describing the implementation of rational dither

modulation with a modified Watson perceptual model, we first
describe an implementation of RDM in the DCT-domain. This
algorithm, denoted RDM-DCT is used for comparison.

Our implementation of RDM-DCT quantizes the 62 DCT
coefficients of each 8×8 block (excluding the DC and highest
frequency terms). We use the DC coefficient from the previ-
ous 8× 8 block to determine the quantization step size. Thus,
the window size is 64. And the function g() is equivalent to
the average intensity of the block, i.e. we use an L1-norm in
Equation (6). All quantization step sizes are scaled by a global
constant that is chosen so that the document-to-watermark ra-
tio (DWR) averaged over all watermarked images equals a de-
sired value.

We embed one bit in 31 DCT coefficients. These coeffi-
cients are randomized as described below.

We now describe a number of implementation issues re-
lated to the new algorithm, RDM-MW:

1. The DCT coefficients are randomized. In [8] this ran-
domization was over all the coefficients in the image.
Here, because we require access the neighboring block
in order to computer the slacks, we randomize the DCT
coefficients from 32 blocks. See below.

2. Each image is (i) divided into 32 disjoint regions, (ii)
a random block in each region is assigned as the start
block, (iii) blocks are indexed in a zig zag order in both
the positive and negative directions, as depicted in Fig-
ure 2. The perceptual slack at block k is computed from
its neighbouring block k − 1. The scan initially pre-
cedes in each partition from a random block 1 towards
the right. On reaching the end of the partition, the scan
then precedes in direction left of the initial block. At
any iteration k, the DCT coefficients from the 32 corre-
sponding blocks of the 32 partitions are randomized.
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Fig. 2. Order of Scaning Blocks for Embedding



To embed a bit mi, 31 random coefficients from the 32
blocks are assigned to the message bit and quantized as in
Equation ( 2). The quantization step size for each coefficient
is determined by the slack associated with the corresponding
coefficient from the previous block. These slacks are multi-
plied by a global constant that is chosen to provided a desired
DWR for the watermarked images.

7. EXPERIMENTAL RESULTS
We watermarked 1,000 images from the Corel database.

These images were normalized such that the minimum inten-
sity value was set to 20 and the maximum value did not exceed
235. This normalization was performed in order to effectively
eliminate the clipping noise which occurs after watermarking
the DCT coefficients and performing the inverse DCT. We ac-
knowledge that such a normalization may not be possible in
real-world applications. However, for the purposes of this ex-
periment we did not want to complicate the interpretation of
results by the addition of clipping noise.

We embedded 2 bits in each 8 × 8 block, i.e. 1 bit per 31
sample coefficients. In all experiments, the average document-
to-watermark ratio (DWR) was fixed at 35dB.

The bit error rates (BER) as a function of valumetric scal-
ing is shown in Figures 3. The average Watson distance of the
watermarked images for each of the three algorithms is 6.8 for
QIM-MW, 7.3 for RDM-MW and 11.2 for RDM-DCT.

The results clearly indicate that the new algorithm has the
lowest BER over the entire range of valumetric scale factors.
This is achieved at the expense of slightly reduced perceptual
quality. The RDM-MW has an average perceptual distance of
7.3, compared a perceptual distance of 6.8 for our earlier al-
gorithm (QIM-MW). The RDM-DCT algorithm has both the
worse perceptual distance and the worse perceptual distortion,
11.2. However, it should be noted that this perceptual distor-
tion is still better than that achieved with the original QIM
algorithm which has an average Watson distance of 28 [8].

8. CONCLUSION
We have described a new algorithm that incorporates a

perceptual model within the framework of rational dither mod-
ulation. The new algorithm provides approximate invariances
to valumetric scaling over the range of 0.5 to 1.5.

Comparison of this algorithm (RDM-MW) with an ear-
lier algorithm (QIM-MW) and an implementation of ratio-
nal dither modulation (RDM-DCT) revealed superior perfor-
mance over the entire range of valumetric scale factors. For a
scale factor of 0.5, RDM-MW is approximately 7 times better
than RDM-DCT and 3 times better than QIM-MW.

The is achieved at the cost of a small degradation in image
fidelity. The average Watson distance of the RDM-MW was
7.3, compared with 6.8 for QIM-MW. The RDM-DCT algo-
rithm had a perceptual distance of 11.2 which is still better
than the original QIM algorithm of 28.

In the future, we intend to determine whether we can im-
prove the fidelity further by determining whether the neigh-
boring block is sufficiently correlated to rely on its perceptual
estimate. We also intend to examine techniques to more real-
istically handle clipping issues.
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Fig. 3. Bit error rate as a function of valumetric scaling for
an embedding rate of one bit per 31 samples (two bits per
8 × 8 block). The average perceptual distance, as measured
by Watson’s model, is 6.8 for QIM-MW, 7.3 for RDM-MW
and 11.2 for RDM-DCT.
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