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Abstract— Audio fingerprinting is an emerging research field
in which a song must be recognized by matching an extracted
“fingerprint” to a database of known fingerprints. Audio fin-
gerprinting must solve the two key problems of representation
and search. In this paper, we are given an 8192-bit binary
representation of each five second interval of a song and therefore
focus our attention on the problem of high-dimensional nearest
neighbor search. High dimensional nearest neighbor search is
known to suffer from the curse of dimensionality, i.e. as the
dimension increases, the computational or memory costs increase
exponentially. However, recently, there has been significant work
on efficient, approximate, search algorithms. We build on this
work and describe preliminary results of a probabilistic search
algorithm. We describe the data structures and search algorithm
used and then present experimental results for a database of
1,000 songs containing 12,217,111 fingerprints.

I. INTRODUCTION

Audio fingerprinting seeks to recognize a song by extracting
a compact representation from an arbitrary, say 5 second,
interval and comparing this fingerprint to a database of known
fingerprints. There are two primary applications of such tech-
nology; usage monitoring to determine broadcast usage fees
and media linking in which, for example, a consumer is able to
transmit a fingerprint using his or her cell phone to a database
and receive back identification information as well as a web
site where the song can be purchased.

Audio fingerprinting falls within the domain of classical
pattern recognition and must therefore solve both the rep-
resentation and matching problems. The problem is more
tractable than many pattern recognition problems (e.g. three
dimensional face recognition) in that the range of distortions
is relatively small. Nevertheless, the problem is still difficult
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because, for the applications we envision, the database must
be very large, perhaps one million songs. If we assume
approximately 10,000 unique fingerprints per song, this means
we may wish to search through about 10 billion fingerprints.

Ideally, the fingerprint should be a compact representation
that is invariant to a variety of common distortions, including
additive noise, low pass filtering, subsampling, lossy compres-
sion and small offsets in the origin of the fingerprint. Distor-
tions to a song will introduce distortions in the corresponding
fingerprint. Obviously, the less the fingerprint is distorted, the
easier the subsequent search will be.

In this paper, we assume a representation developed by
Haitsma et al [6] in which each 5 second interval is represented
by an 8192-bit fingerprint. Other representations are possible.
See for example, [1], [3], [4].

Haitsma et al’s fingerprint is the concatenation of 256 32-bit
words. Each word is derived by taking the Fourier transform of
5/256 second overlapping intervals, thresholding these values
and subsequently computing a 32-bit hash value. Although
the words are non-overlapping in time, the concatenated
fingerprints have substantial temporal overlap. Assuming that
the duration of the average song is 3 minutes, the number of
fingerprints per song is �������	��
�����
�������
������������������ .

Given this 8192-bit representation, the focus of our work has
been to develop an efficient search algorithm. Previous work
in the context of audio search is either linear in the size of the
database [3] or has assumed that there exists a subset of the
fingerprint that can be matched perfectly. There are efficient
methods for exact matching, and these techniques can be used
to idenitify candidate songs which are then tested against the
entire fingerprint [9], [10], [5]. For large databases of songs,
sublinear search complexity is required. Empirically, it appears
that the assumption of an exact match between a subset of the
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query and database fingerprints is good. However, the search
method described next does not require this condition to be
met.

Our objective is to find the bit-sequence in the database with
the smallest hamming distance, or bit error rate (hamming
distance / 8192), from a given query. This search can be
characterized as a nearest-neighbor search in a very high
(8192) dimensional space. Of course, this assumes that the
nearest fingerprint in the database to the query is the correct
match. However, under some distortions, this assumption may
not be valid. Interestingly, it is less important to correctly
match the query to its corresponding fingerprint as it is to
match the fingerprint to its corresponding song. Since a song is
composed of many fingerprints, incorrectly matching a query
to a fingerprint does not necessarily lead to a song recognition
error. This issue is discussed in more detail in the experimental
evaluation of Section III.

Multi-dimensional nearest-neighbor search is a well-studied
problem. Proposed solutions generally create a tree structure,
the leaf nodes representing the data (fingerprints), and search-
ing becomes a traversal of the tree. Specific algorithms differ
in how this tree is constructed and traversed. Two related data
structures, �� -trees and vantage point or vp-trees, have been
extensively studied. However, both data structures succumb
to a problem known as “the curse of dimensionality”: as
dimensionality increases, an increasing percentage of the tree
must be searched in order to locate the nearest neighbor to a
query. If the data has much more than 30 or so dimensions,
most algorithms end up searching essentially all of the tree.

Recent work [8], [7], [2], [11] appears to acknowledge
the fact that a perfect search that guarantees to find the
nearest neighbor in a high dimensional space is not feasible.
However, the curse of dimensionality can be removed if the
search is approximate. For example, Yianilos [11] describes
an algorithm that, with probability, ! , will find a neighbor
within a Euclidean distance " of the query when the datum
are uniformly distributed within an n-dimensional hypercube.
Unfortunately, this work has not been extended to the binary
case and Hamming rather than Euclidean distance.

In this paper, we develop an approximate search algorithm
for high dimensional binary vectors. Section II first describes
the algorithm. Section III then presents experimental results on
a database of 1000 songs and 12,217,111 fingerprints. Finally,
Section IV summarizes our results and discusses possible
avenues of future work.

II. ALGORITHM

In the following subsections, we describe an approximate
search algorithm for binary vectors in a high dimension space.

Given the set of known fingerprints, we first construct a 256-
ary tree. Each 8192-bit fingerprint is represented as 1024 8-bit
bytes. The value of each consecutive byte in the fingerprint
determines which of the 256 possible children to descend. A
path from the root node to a leaf defines a fingerprint.

As the depth of the tree increases, it is common to find
nodes with only a single child. This is because the number

of actual fingerprints is very much less than the total possible
number. For efficiency purposes, we compress such sequences
of nodes with only one child into a single node that represents
multiple bytes. We consider the level, # , of a node to be the
number of bytes represented by the path from the root to that
node.

Our search algorithm is guided by a table, $ , indexed by
a node level, # , and a number of errors, % . During a search,
when we visit any node &('*) + , at level # in the tree, we will have
examined ,-��.�# bits of the vector and seen % errors between
the first , -bits of the query and the first , -bits represented
by the path to node & '*) + . The probability, ! , of observing /
errors in , -bits with a bit error rate (BER) of " is a binomial
distribution, i.e.!102/43 ,5��"768� 9 ,/;: "5<=0>�@?A"76CBCD=< (1)

assuming that the bit errors are uniformly distributed over the
entire fingerprint.

The probability that we will observe at least E errors
in , -bits is simple one minus the cumulative probability of!F0G/13 ,5�C"76 , i.e.

!F0H%5I�JKEL3 ,5�C"768�M�@?ONP�Q !F0G/13 ,5�C"76C �/FR (2)

Having observed % errors in , -bits, we can use Equation 2
to calculate the bit error rate "�S , between the query and the
closest fingerprint under the node, such that the probability of
observing at least % errors is greater than a threshold ! S . That
is, " S is such that !F0G%7IUTV%�3 ,W�C" S 68�X! S .

If we increase the probability, ! S , of observing at least %
errors, then the calulated bit error rate " S will increase. That is,
the higher the bit error rate, the more likely it is to observe at
least % errors. Thus, in order to provide a conservative estimate
of the bit error rate, we set the probability threshold, ! S ���YR Z .
This means we can be reasonably certain that, if we were to
find the closest fingerprint under this node, its overall bit error
rate would be greater than " S .

In order to prune the search, we estimate the bit error rate
at each node we traverse based on the number of bits, , , and
errors, % , we have observed in descending from the root to the
node. If this estimated bit error rate, "�S is greater that the bit
error rate of the best candidate fingerprint we have found so
far, then we can be confident that we will not find a closer
fingerprint below this node.

In order to determine the estimated bit error rate, "�S , for a
particular node in the tree, we pre-compute a table of "5S values
for a given probability threshold, !=S . The table is indexed by, (rows) and % (columns, where the first column represents 0
errors encountered). Part of such a table is given in Table I
for ! S �[��R Z and a range of , and % .

Given the tree and associated table, we now describe the
search algorithm.



0.00 0.06 0.17 0.28 0.40 0.52 0.61 0.61 0.61
0.00 0.03 0.08 0.14 0.20 0.26 0.32 0.38 0.44
0.00 0.02 0.06 0.09 0.13 0.17 0.21 0.25 0.29
0.00 0.02 0.04 0.07 0.10 0.13 0.16 0.19 0.22
0.00 0.01 0.03 0.06 0.08 0.10 0.13 0.15 0.17
0.00 0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15
0.00 0.01 0.02 0.04 0.06 0.07 0.09 0.11 0.12
0.00 0.01 0.02 0.04 0.05 0.06 0.08 0.09 0.11

TABLE I

TABLE OF \�] VALUES.

A. Search algorithm

Prior to finding an initial candidate fingerprint for our query,
we decide on a maximum tolerable error rate and assign this to
a variable, best err rate, which represents the best error
rate seen so far. In essence, we lie to the algorithm, telling it
we have already found a fingerprint that is this close to the
query. This limits the search, so that if the algorithm finds it
is unlikely to find a closer fingerprint, it will fail, rather than
searching more of the tree. For our experiments, this value
was 0.55, which is probably larger than what we would use
in a real application.

The search begins by comparing the first byte of the query
with the children of the root node. For each child node we
calculate the cumulative number of bit errors seen so far.
This is simply the sum of the parent errors and the Hamming
distance between the 8-bit value represented by the child and
the corresponding 8-bit value in the query. Then a test is
applied to each child, in order of increasing error, to determine
whether to search that child. If the best error rate is
greater than the " S threshold determined by our table, then the
child is searched. This is because the table indicates that we
expect the bit error rate under the child to be less than the best
rate seen so far. Conversely, if the corresponding " S threshold
is greater than the best error rate seen so far, then we will not
search this or subsequent children of the parent node.

The search continues recursively and when a leaf node is
reached, the error rate associated with the retrieved fingerprint
is compared to the best error rate seen so far. If it is less, then
we update the best error rate to this new value and assign this
fingerprint as our best candidate nearest neighbor so far.

This is illustrated in Figure 1 where we have shown a tree
of depth 4.

Pseudo-code for this algorithm is given below.

query = signature obtained from input
best_fingerprint = none found
best_err_rate = max err rate tolerable
root.errs = 0
search( root )

search( node ) {
if node is leaf {
err_rate = node.errs /

(num bits in query)

^2_a` bdc e fhgd_ji kji e f
t so c lji m no_ala`qpdi

ed bit _ji i
or r
lhb _

, rt, is 0.01

r2bqs�tC_vuql wq_yxazq`q_di w
ed b=8 zde b `am ljfh{}| _hb2ph`olq`h`qpd~o_�t>_uqlhw _�xazq`q_ji w _q{v_d�d��_ji ixji `am

 �Guq_ fj� c i
om T
lazj| _�� � b ua__q`�b e | lhb _a{vzde bj_ji i

or r
lhb _

 is 
rt=0.11Q

P

Fig. 1. A simple tree illustrating how the tree is pruned. The child node �
represents the best fingerprint found so far. The bit error rate at this node is
0.01. When we examine node � , we have observed 8 bits and 8 errors. Using
Table I we determine that the estimated bit error rate is \�]��������v� . Since this
is larger than for � , we can prune this node.

if err_rate < best_err_rate {
best_fingerprint = fingerprint

for this node
best_err_rate = err_rate }}

else {
for each child of node

child.errs = node.errs +
hamming distance
between child.bits and
corresponding bits of
query

for each child of node, in increasing
order of child.errs
if best_err_rate >

T[ child.level ][ child.errs ]
search( child )

else
return }}

Note that the above algorithm can be used to implement
a variety of different searching behaviors by defining the
threshold table in a variety of different ways. In particular,
we can obtain an exact search, which is guaranteed to find the
closest neighbor, by letting $�� #2�y� %�����%7
W.Y����
 for each level,# . This is the error rate we will obtain if there are no further
errors in the bytes below this node, and hence the minimum
possible error rate obtainable after observing % errors. The
algorithm would then search every node that has even the
slightest possibility of yielding a fingerprint closer than the
closest found so far, and is thus guaranteed to find the closest.

III. EXPERIMENTAL RESULTS

Prior to investigating our search algorithm, we first tested
whether fingerprints from one song exhibited any correlation
with fingerprints from other songs. Figure 2 illustrates a
typical histogram of bit error rates. and shows that inter-song
correlation appears fairly random, the average bit error rate
being 0.5.

We next examined the correlation between fingerprints from
the same song. Figure 3 shows that there is a strong temporal
correlation in the vicinity of a fingerprint. The duration of
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Fig. 2. Histogram of bit error rates between a fingerprint from one song and
the fingerprints of all other songs.
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Fig. 3. Computed Hamming distance between a fingerprint from one song
and all the fingerprints from the same song.

this correlation is approximately 0.33 seconds. Fortunately
however, even if we match a fingerprint to one of its temporal
neighbors, we will still correctly identify the song. In fact,
the more intra-song correlation that exists, the easier the
identification becomes.

In order to evaluate our search algorithm, we digitized 1,000
songs and computed 12,217,111 corresponding fingerprints.
4913 queries were generated by randomly selecting 5 second
portions from the song database and playing them through
inexpensive speakers attached to a PC. These song snippets
were then digitized using an inexpensive microphone.

For each query, an exhaustive search of the database was
performed in order to determine the closest fingerprint in
the database. This provided ground truth data with which to
compare with our approximate search results. The distribution
of distances is shown in Figure 4. We see that the Hamming
distance between the majority of queries and their nearest
neighbors is approximately 1065, which is equivalent to a bit
error rate of 13%. However, the range of Hamming distances
is between 423 and 3532 with corresponding bit error rates of
5% and 43% respectively.
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Fig. 4. Distribution of distances between queries and their closest fingerprints
in the database.

Since we know which song each query is derived from, we
were also able to determine the validity of our assumption that
the nearest neighbor identifies the correct song. In 53 cases,
the nearest neighbor did not correctly identify the song. This
is approximately a 1% error rate. However, as we are here
concerned only with the performance of our search, and not
with the performance of the signature, we regard the search as
finding the “correct” song if it finds the song that contains the
closest signature, regardless of whether this is the song that
generated the query.

A. Search results

Different thresholds for !�S and corresponding tables for "�S
will produce different search statistics. Typically, the smaller
the threshold ! S , the closer our approximation will be to an
exact search, but this comes at the expense of searching more
nodes in the tree. Clearly, we seek to find a compromise
threshold in which acceptable retrieval accuracy is obtained
while searching as little of the tree as possible.

Here, we describe results in which ! S ���YR Z�� . The tree
contains 12,217,111 fingerprints. This is rather large, given
that the tree only contains 1,000 songs. However, there is
considerable redundancy in the tree since every overlapping
fingerprint is represented.

With the queries drawn from the distribution of Figure 4,
we search an average of 419,380 nodes, which is 2.53% of
the nodes in the tree.

On average, 85% of the correct nearest neighbors are found.
However, the erroneous song rate is only 1%. We attribute this
discrepancy to the significant temporal correlation between
fingerprints in a song.

Clearly, the distribution of queries can have a very signif-
icant effect on the overall search performance. To investigate
this effect, we tabulated the number of nodes examined as
a function of the distance between the query and its nearest
neighbor. Figure 5 shows that for queries with nearest neigh-
bors less than a Hamming distance of 2000, the percentage
of nodes visited is much less than 10%. However, as the
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Fig. 5. Number of nodes examined as a function of the known distance
between a query and its nearest neighbor in the database.

Hamming distance increases from 2000 to 3500 a much greater
fraction of the database must be searched.

If only queries with a Hamming distance of 2900 or less
are considered, then the erroneous song detection drops to
0.3% and the average number of nodes visited is 346,770 or
2.09%. The number of correctly identified fingerprints does
not improve significantly and is 86%. However, as previously
noted, it is the song detection rate that is important.

IV. DISCUSSION

We described preliminary results for an approximate search
algorithm which can be used to identify songs based on 5
second samples. These samples are represented as a 8192-bit
vector and we proceeded to develop an approximate search
algorithm for high-dimensional nearest neighbor search.

This search algorithm constructs a 256-ary tree and an
associated table that is constructed assuming that the errors
between a query and its nearest neighbor are uniformly dis-
tributed. Branches of the tree are pruned by comparing the bit
error rate of the current best candidate with the likely bit error
rate we expect from the nearest neighbor below a node in the
tree.

For a database of 1000 songs and 12,217,111 fingerprints,
we demonstrated a song recognition rate of 99% while on
average only searching 2.53% of the nodes in the tree. Queries
can be more or less noisy and the distribution of queries
can significantly affect the search. If only queries with a
Hamming distance of less than 2900 to their nearest neighbor
are considered, then we are able to achieve a song recognition
rate of 99.7% while only visiting an average of 2.09% of the
tree.

Significant future work is possible. This includes studying
the effect of the threshold probability, !=S on the song recogni-
tion rate and investigating how the performance scales with the
size of the song database. We also believe that a more accurate
Bayesian model of the search process might be formulated,
leading to a better table, $ , and further reducing the number of
nodes searched for the same probability of finding the closest
fingerprint.
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