
Published in the IEEE Multimedia Signal Processing Workshop 2002, St. Thomas, US Virgin Islands

Audio Fingerprinting:
Nearest Neighbor Search in High Dimensional

Binary Spaces
Matthew L. Miller

NEC Research Institute
4 Independence Way
Princeton, NJ 08540

Email: mlm@research.nj.nec.com

Manuel Acevedo Rodriguez
EPFL

1015 Lausanne, Switzerland
and

Eurecom Institute
BP 193-06904, Sophia-Antipolis, France
Email: manuel.acevedorodriguez@epfl.ch

Ingemar J. Cox
NEC Research Institute

4 Independence Way
Princeton, NJ 08540

Email: ingemar@ieee.org

Abstract— Audio fingerprinting is an emerging research field
in which a song must be recognized by matching an extracted
“fingerprint” to a database of known fingerprints. Audio fin-
gerprinting must solve the two key problems of representation
and search. In this paper, we are given a 8192-bit binary
representation of each five second interval of a song and therefore
focus our attention on the problem of high-dimensional nearest
neighbor search. High dimensional nearest neighbor search is
known to suffer from the curse of dimensionality, i.e. as the
dimension increases, the computational or memory costs increase
exponentially. However, recently, there has been significant work
on efficient, approximate, search algorithms. We build on this
work and describe preliminary results of a probabilistic search
algorithm. We describe the data structures and search algorithm
used and then present experimental results for a database of
1,000 songs containing 12,217,111 fingerprints.

I. INTRODUCTION

Audio fingerprinting seeks to recognize a song by extracting
a compact representation from an arbitrary, say 5 second,
interval and comparing this fingerprint to a database of known
fingerprints. There are two primary applications of such tech-
nology; usage monitoring to determine broadcast usage fees
and media linking in which, for example, a consumer is able to
transmit a fingerprint using his or her cell phone to a database
and receive back identification information as well as a web
site where the song can be purchased.

Audio fingerprinting falls within the domain of classical
pattern recognition and must therefore solve both the represen-
tation and matching problems. The problem is more tractable
than many pattern recognition problems, e.g. three dimensional
face recognition, in that the range of distortions is relatively
small. Nevertheless, such systems should be scalable to at least
one million songs or about 10 billion fingerprints, assuming
approximately 10,000 unique fingerprints per song.

Ideally, the fingerprint should be a compact representation
that is invariant to a variety common distortions, including
additive noise, low pass filtering, subsampling, lossy compres-
sion and small offsets in the origin of the fingerprint. Practi-
cally, distortions to a song will introduce distortions in the

corresponding fingerprint. Obviously, the less the fingerprint
is distorted, the easier the subsequent search will be.

In this paper, we assume a representation developed by
Philips [1] in which each 5 second interval is represented
by an 8192-dimensional binary vector. This vector is the
concactenation of 256 32-bit subvectors. Each subvector is
derived by taking the Fourier transform of 5/256 second none-
overlapping intervals, thresholding these values and subse-
quently computing a 32-bit hash value. Although each sub-
vector is non-overlapping, the concatenated fingerprints have
substantial overlap. Assuming that the duration of the average
song is 3 minutes, then the number of fingerprints per song is
3� 60� 256=5 = 9216 � 10; 000.

Given this 8192-dimensional representation, the focus of our
work has been to develop an efficient search algorithm. This
search can be characterized as a nearest neighbor search in a
very high dimensional space. Of course, this assumes that the
nearest fingerprint in the database to the query is the correct
match. However, under some distortions, this assumption may
not be valid. Interestingly, it is less important to correctly
match the query to its corresponding fingerprint as it is to
match the fingerprint to its corresponding song. Since a song is
composed of many fingerprints, incorrectly matching a query
to a fingerprint does not necessarily lead to a song recognition
error. This issue is discussed in more detail in the experimental
evaluation of Section III.

High dimensional nearest neighbor search is a very well
studied problem. Proposed solutions generally create a tree
structure, the leaf nodes representing the known datum (finger-
prints) and searching becomes a traversal of the tree. Specific
algorithms differ in how this tree is constructed and traversed.
Two related data structures, kd-trees and vantage point or
vp-trees, have been extensively studied. However, both data
structures succumb to the curse of dimensionality, that is, as
the dimension of the datum increases, an increasing percentage
of the tree must be searched in order to locate the nearest
neighbor to a query.

1



Recent work [2], [3], [4], [5] appears to acknowledge
the fact that a perfect search that guarantees to find the
nearest neighbor in a high dimensional space is not feasible.
However, the curse of dimensionality can be removed if the
search is approximate. For example, Yianilos [5] describes
an algorithm that, with probability, p, will find a neighbor
within a Euclidean distance r of the query when the datum
are uniformly distributed within an n-dimensional hypercube.
Unfortunately, this work has not been extended to the binary
case and Hamming rather than Euclidean distance.

In this paper, we develop an approximate search algorithm
for high dimensional binary vectors. Section II first describes
the algorithm. Section III then presents experimental results on
a database of 1000 songs and 12,217,111 fingerprints. Finally,
Section IV summarizes our results and discusses possible
avenues of future work.

II. ALGORITHM

In the following subsections, we describe an approximate
search algorithm for binary vectors in a high dimension space.

Given the set of known fingerprints, we first construct a 256-
ary tree. Each 8192-bit fingerprint is represented as 1024 8-bit
bytes. The value of each consecutive byte in the fingerprint
determines which of the 256 possible children to descend. A
path from the root node to a leaf defines a fingerprint.

As the depth of the tree increases, in is common to find
nodes with only a single child. This is because the number
of actual fingerprints is very much less than the total possible
number. For efficiency purposes, we compress suchsequences
of nodes with only one child into a single node that represents
multiple bytes.

For each level, l, of the tree we then associate a table, T ,
that will be used to guide our approximate search algorithm.
This table is precomputed based on the following theory.

At any node nl;i, at level l in the tree, we will have examined
b bits of the vector and seen e errors between the first b-bits of
the query and the first b-bits represented by the path to node
nl;i. Then, the probability, p, of observing e errors in b-bits
with a bit error rate (BER) of r is a binomial distribution, i.e.

p(ejb; r) =

�
b
e

�
erb(1�r) (1)

assuming that the bit errors are uniformly distributed over the
entire fingerprint.

The probability that we will observe at least E errors
in b-bits is simple one minus the cumulative probability of
p(ejb; r), i.e.

p(eo � Ejb; r) = 1�

Z E

0

p(ejb; r)de: (2)

Having observed e errors in b-bits, we can use Equation 2
to calculate the bit error rate rt, between the query and the
closest fingerprint under the node, such that the probability
of observing at least e errors is greater than a threshold p t.
That is, rt is such that p(eo � E = ejb; rt) = pt. This means
that if we have observed e errors in b-bits, we are reasonably

certain that the eventual overall bit error rate will be greater
than rt. Thus, if we have already visited a leaf with an error
rate below rt, then we need not search children of this node.

For a given probability threshold, pt, we can construct a
table for rt indexed by b and e. Such a table is given in Table I
for pt = 0:05 and a range of b and e.

0 506 1377 2302 3255 4231 5000 5000 5000
0 257 696 1160 1634 2116 2603 3095 3591
0 172 466 775 1091 1412 1735 2061 2389
0 129 350 582 819 1059 1301 1545 1791
0 103 280 466 656 848 1041 1236 1432
0 86 233 388 546 706 868 1030 1193
0 74 200 333 468 606 744 883 1023
0 65 175 291 410 530 651 772 895

TABLE I

TABLE OF rt VALUES. THE ROWS ARE THE NUMBER OF BYTES INSPECTED

THE COLUMNS ARE THE NUMBER OF ERRORS E. FIRST COLUMN IS FOR 0

ERRORS ENCOUNTERED

Given the tree and associated table, we now describe the
search algorithm.

A. Search algorithm

Prior to finding an initial candidate fingerprint for our query,
we assume an expected maximum tolerable error rate and
assign this to a variable, best err rate, which represents
the best error rate seen so far. For our experiments, this value
was 4500.

The search begins by comparing the first byte of the query
with the children of the root node. For each child node we
calculate the cumulative number of bit errors seen so far.
This is simply the sum of the parent errors and the Hamming
distance between the 8-bit value represented by the child and
the corresponding 8-bit value in the query. Then, in order of
increasing error, a test is applied to each child to determine
whether to search the child. If the best error rate is
greater than the rt threshold determined by our table, then
the child is searched. This is because the table indicates that
we expect the bit error rate under the child to be less than
the best rate seen so far. Conversely, if the corresponding r t

threshold is greater than the best error rate seen so far, then
we will not search this or subsequent children of the parent
node.

The search continues recursively and when a leaf node is
reached, the error rate associated with the retrieved fingerprint
is compared to the best error rate seen so far. If it is less, then
we update the best error rate to this new value and assign this
fingerprint as our best candidate nearest neighbor so far.

Pseudo-code for this algorithm is given below.

query = signature obtained from input
best_fingerprint = none found
best_err_rate = max err rate tolerable
root.errs = 0
search(root)



search(node)
{

if node is leaf
{
err_rate = node.errs /

(num bits in query)
if err_rate < best_err_rate
{

best_fingerprint = fingerprint
for this node

best_err_rate = err_rate
}

}
else
{
for each child of node

child.errs = node.errs +
hamming distance
between child.bits and
corresponding bits of query

for each child of node, in increasing
order of child.errs
if best_err_rate >

thresh_table[child.level][child.errs]
search(child)

else
return

}
}

Note that by defining the table appropriately, we can per-
form actually perform an exact search that is guaranteed to
find the nearest neighbor. Specifically, if for any level, l, of the
tree, we set rt = e=8192, then we are assuming that we expect
no further error in subsequent levels of the tree. Thus, when
a candidate fingerprint is retrieved, all nodes that have fewer
errors than the best candidate so far will still be searched.

III. EXPERIMENTAL RESULTS

Prior to investigating our search algorithm, we first tested
whether fingerprints from one song exhibited any correlation
with fingerprints from other songs. Figure 1 illustrates a typical
histogram of bit error rates. and clearly shows that inter-song
correlation is random, the average bit error rate being 0.5.

We next examined the correlation between fingerprints from
the same song. Figure 2 shows that there is a strong temporal
correlation in the vicinity of the fingerprint. The duration of
this correlation is approximately 0.33 seconds. Fortunately
however, even if we match a fingerprint to one of its temporal
neighbors, we will still corrcetly identify the song. In fact,
the more intra-song correlation that exists, the easier the
idenitification becomes.

In order to evaluate our search algorithm, we digitized 1,000
songs and computed 12,217,111 corresponding fingerprints.

0.4 0.45 0.5 0.55 0.6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

BER

F
re

qu
en

cy

Fig. 1. Histogram of bit error rates between a fingerprint from one song and
the fingerprints of all other songs.

5800 5850 5900 5950 6000 6050 6100 6150 6200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Index of Fingerprints

B
E

R

Fig. 2. Computed Hamming distance between a fingerprint from one song
and all the fingerprints from the same song.

4913 queries were generated by randomly selecting 5 second
portions from the song database and playing them through
inexpensive speakers attached to a PC. These song snippets
were then digitized using an inexpensive microphone.

For each query, an exhaustive search of the database was
performed in order to determine the closest fingerprint in
the database. This provided ground truth data with which to
compare with our approximate search results. The distribution
of distances is shown in Figure 3. We see that the Hamming
distance between the majority of queries and their nearest
neighbors is approximately 1065, which is equivalent to a bit
error rate of 13%. However, the range of Hamming distances
is between 423 and 3532 with corresponding bit error rates of
5% and 43% respectively.

Since we know which song each query is derived from, we
were also able to determine the validity of our assumption that
the nearest neighbor identifies the correct song. In 53 cases,
the nearest neighbor did not correctly identify the song. This



0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

50

100

150

200

250

300

350

400

450

500

BER of closest Neighbor

Fig. 3. Distribution of distances between queries and their closest fingerprints
in the database.

is approximately a 1% error rate.

A. Search results

Different thresholds for pt and corersponding tables for rt
will produce different search statistics. Typically, the smaller
the threshold pt, the closer our approximation will be to an
exact search, but this comes at the expense of searching more
nodes in the tree. Clearly, we seek to find a compromise
threshold in which acceptable retrieval accuracy is obtained
while searching as little of the tree as possible.

Here, we describes results in which pt = 0:40. With the
queries drawn from the distribution of Figure 3, we search an
average of 211,620 nodes, which is 4.85% of the nodes in the
tree. On average, only 55% of the correct nearest neighbors
are found. However, the erroneous song rate is only 3%. We
attribute this discrepancy to the significant temporal correlation
between fingerprints in a song.

Clearly, the distribution of queries can have a very signif-
icant effect on the overall search performance. To investigate
this effect, we tabulated the number of nodes examined as
a function of the distance between the query and its nearest
neighbor. Figure 4 shows that for queries with nearest neigh-
bors less than a Hamming distance of 2000, the percentage
of nodes visited is much less than 10%. However, as the
Hamming distance increases from 2000 to 3500 a much greater
fraction of the database must be searched.

If only queries with a Hamming distance of 2900 or less are
considered, then the erroneous song detection drops to 1% and
the average number of nodes visited is 157,960 or 3.62%. The
number of correctly identified fingerprints does not improve
significantly and is 56%. However, as previously noted, it is
the song detection rate that is important.

IV. DISCUSSION

We described preliminary results for an approximate search
algorithm which can be used to identify songs based on 5
second samples. These samples are represented as a 8192-bit

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hamming Distance Between Query and Nearest Neighbor

P
er

ce
nt

ag
e 

of
 N

od
es

 V
is

ite
d

Fig. 4. Number of nodes examined as a function of the known distance
between a query and its nearest neighbor in the database.

vector and we proceeded to develop an approximate search
algorithm for high-dimensional nearest neighbor search.

This search algorithm constructs a 256-ary tree and an
associated table that is constructed assuming that the errors
between a query and its nearest neighbor are uniformly dis-
tributed. Branches of the tree are pruned by comparing the bit
error rate of the current best candidate with the likely bit error
rate we expect from the nearest neighbor below a node in the
tree.

For a database of 1000 songs and 12,217,111 fingerprints,
we demonstrated a song recognition rate of 97% while on
average only searching 4.85% of the nodes in the tree. Queries
can be more or less noisy and the distribution of queries
can significantly affect the search. If only queries with a
Hamming distance of less than 2867 to their nearest neighbor
are considered, then we are able to achieve a song recognition
rate of 99% while only visiting and average of 3.62% of the
tree.

Significant future work is possible. This includes studying
the effect of the threshold probability, p t on the song recogni-
tion rate and investigating how the performace scales with the
size of the song database. We also believe that a more accurate
bayesian model of the search process might be formulated that
would provide significant performance increases.

REFERENCES

[1] T. Kalker, “Personal communication,” 2002.
[2] J. M. Kleinberg, “Two algorithms for nearest-neighbor search in high

dimensions,” in Proc. of the 29th annual ACM Symp. on Theory of
Computing, 1997, pp. 599–608.

[3] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in Proc. of the 30th annual ACM
Symp. on Theory of Computing, 1998, pp. 604–613.

[4] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An
optimal algorithm for approximate nearest neighbor searching in fixed
dimensions,” J. of the ACM, vol. 45, no. 6, pp. 891–923, 1998.

[5] P. N. Yianilos, “Locally lifting the curse of dimensionality for nearest
neighbor search,” in Proc. of the 11th annual ACM-SIAM Symp. on
Discrete Algorithms, 2000, pp. 361–370.


