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Abstract—Many electronic watermarks for still images and
video content are sensitive to geometric distortions. For example,
simple rotation, scaling, and/or translation (RST) of an image can
prevent blind detection of a public watermark. In this paper, we
propose a watermarking algorithm that is robust to RST distor-
tions. The watermark is embedded into a one-dimensional (1-D)
signal obtained by taking the Fourier transform of the image,
resampling the Fourier magnitudes into log-polar coordinates,
and then summing a function of those magnitudes along the
log-radius axis. Rotation of the image results in a cyclical shift of
the extracted signal. Scaling of the image results in amplification
of the extracted signal. And translation of the image has no effect
on the extracted signal. We can therefore compensate for rotation
with a simple search, and compensate for scaling by using the
correlation coefficient as the detection measure.

False positive results on a database of 10 000 images are
reported. Robustness results on a database of 2000 images are
described. It is shown that the watermark is robust to rotation,
scale, and translation. In addition, we describe tests examining the
watermarks resistance to cropping and JPEG compression.

Index Terms—Fourier–Mellin, rotation, RST, scale, translation,
watermarking.

I. INTRODUCTION

T HERE has been much emphasis on the robustness of wa-
termarks to common signal processing operations such as

compression and signal filtering. However, recently it has be-
come clear that even very small geometric distortions can pre-
vent the detection of a watermark [1], [2]. This problem is most
pronounced when the original unwatermarked image is unavail-
able to the detector. Conversely, if the original image is avail-
able to the detector, then the watermarked image can often be
registered to the original and the geometric distortion thereby
inverted.1 Blind detection requires that detection of the wa-
termark be performed without access to the original unwater-
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marked image. As such, it is not possible to invert the geometric
distortion based on registration of the watermarked and original
images.

Before proceeding further, it is important to define what we
mean by the geometric distortions of rotation, scale, and trans-
lation. Specifically, we are interested in the situation in which
a watermarked image undergoes anunknownrotation, scale,
and/or translation prior to the detection of the watermark. The
detector should detect the watermark if it is present. This defini-
tion is somewhat obvious, so it may be more useful to describe
what we are not interested in. In particular, some watermark al-
gorithms claim robustness to scale changes by first embedding
a watermark at a canonical scale, then changing the size of the
image, and finally, at the detector, scaling the image back to the
canonical size prior to correlation. In our opinion, that detector
does not see a scale change. Rather, the process is more closely
approximated by a low pass filtering operation that occurs when
the image is reduced in size. In the scaling degradation with
which we are concerned, the detector is unaware of the scaling
and cannot rescale or pad to the original size. Similarly, tests that
rotate an image by some number of degrees and subsequently
rotate the image by the same amount in the opposite direction
are not adequate tests of robustness to rotation. The same is true
for translation. The common situation we are concerned with
occurs when a watermarked image is printed and then cropped
or padded and scanned back into the digital domain. In these cir-
cumstances, the image dimensions have changed both because
of cropping and possibly scaling. There is also likely to be an as-
sociated translational shift. We assume that the detector is not in-
formed of the rotation, scale, and translation parameters. In this
example, scaling to a canonical size does not undo the scaling.
Rather, if the cropping is not symmetric in both the rows and
columns, then scaling to a canonical size will result in a change
in the image’s aspect ratio. Changes in aspect ratio are not ad-
dressed in this paper. Application of the current watermarking
method to the print and scan process is discussed elsewhere [5].

One strategy for detecting watermarks after geometric dis-
tortion is to try to identify what the distortions were, and invert
them before applying the watermark detector. This can be ac-
complished by embedding a registration pattern along with the
watermark [6], [7].

One problem with this solution is that, because it requires the
insertion of a registration watermark in addition to the data-car-
rying watermark, this approach is likely to reduce the image fi-
delity. A second problem arises because all images watermarked
with this method will share a common registration watermark.
This fact may improve collusion attempts to discern the regis-
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tration pattern and, once found, the registration pattern could be
removed from all watermarked images thus restricting the in-
vertibility of any geometric distortions.

Another way to implement the above strategy is to give the
watermark a recognizable structure. For example, as suggested
in [8]–[10], the watermark might be embedded multiple times
in the image at different spatial locations. The autocorrelation
function of a watermarked image will then yield a pattern of
peaks corresponding to the embedded locations. Changes in this
pattern of peaks can be used to describe any affine distortions to
which the watermarked image has been subjected. This method
has significant potential, but, similar to the above methods, has
two failure modes. For successful detection both the identifica-
tion of the geometric distortion and the detection of the water-
mark after inversion of that distortion must be successful. Both
of these processes must be robust and resistant to tampering.

Yet another approach to address geometric distortions is the
“normalization” of the image prior to watermark embedding.
After embedding, the image is restored to its original geometric
state prior to distribution. Upon receipt, the image is again nor-
malized prior to detection. Unlike scaling to a canonical size, the
normalization must be invariant to the expected geometric dis-
tortions. For example, in [11], images are normalized by their
geometric moments.

Our proposal employs an alternative strategy based on devel-
oping a watermark that is invariant to geometric distortions, thus
eliminating the need to identify and invert them. In particular,
we are concerned with distortions due to rotation, scale, and/or
translation (RST). While these geometric distortions have re-
cently become of interest to the watermarking community, they
have long been of interest to the pattern recognition community.
A comprehensive discussion of the pattern recognition literature
is outside the scope of this paper. Hu [12] described the use of
moment invariants for visual pattern recognition of planar geo-
metric figures. It has been shown [13] that these classic moment
invariants are equivalent to the radial moments of circular-har-
monic functions (CHF’s) that arise from a Mellin transform
of the log-polar representation of an image when the complex
Mellin radial frequency , is a real integer .

The Fourier–Mellin transform is closely related to the
algorithm described in this paper. There are a variety of related
ideas from pattern recognition. First, Casasent and Psaltis
[14], [15] note that the signal-to-noise ratio of the correlation
peak between two images decreases from 30 dB to 3 dB with
either a 2% scale change or a 3.5rotation. Their proposal
is essentially a hybrid opto-electronic implementation of the
Fourier–Mellin transform. Altmann and Reitbock [16] and
Altmann [17] discuss implementation issues related to the
discrete Fourier–Mellin transform. These include interpolation,
aliasing, and spectral border effects, which are discussed in
detail in Section III of this paper. Wechsler and Zimmerman
[18] describe a conformal-log mapping that is very closely
related to the Fourier–Mellin transform. Also, Lin and Brandt
[19] discuss the use of the Fourier–Mellin and other transforms
for pattern recognition. They describe a number ofabsolute
or strong invariants based on the phase of the Fourier or
Fourier–Mellin spectrums. The terms “absolute” and “strong”
refer to the fact that all information about an image except

that of position, orientation, or scale is preserved. This may
be important for recognition tasks, especially if the library of
objects is large. Ferraro and Caelli [20] discuss this issue in
more detail.

While strong invariance might be required in an object recog-
nition application, we do not believe that this property is neces-
sary for watermarking applications. From a strongly invariant
representation, an image can be fully reconstructed modulo ro-
tation, scale, and translation. However, distinguishing between
watermarks can be accomplished in a much lower dimensional
space than can distinguishing between images. Therefore we
can consider invariant transformations that may be lossy as the
image is projected into a lower dimensional space. The reasons
we can distinguish between watermarks in fewer dimensions are
two-fold. First, the set of watermarks for which a detector might
search is relatively small compared to a typical object recog-
nition database. Second, a watermark is not a naturally occur-
ring object but is artificially inserted into an image. As such,
the watermark can be designed to be easily represented. In par-
ticular, it is often advantageous to represent the watermark as a
one-dimensional (1-D) projection of the image space. If prop-
erly designed, this has the benefit of reducing a two-dimensional
(2-D) search to one dimension, thereby significantly reducing
the computational cost.

O’Ruanaidh and Pun [21] first suggested a watermarking
method based on the Fourier–Mellin transform. However, they
note very severe implementation difficulties which we suspect
have hampered further work in this area. They choose to use
a transformation that is strongly invariant claiming that “it
is more convenient to use strong invariants because the last
stage of embedding a mark involves inverting the invariant
representation to obtain the watermarked image.” We believe
that invertibility is not essential. Following the formulation
in [22], suppose we have a noninvertible extraction function,

, that maps a Work, , into an extracted signal. Such
a function would be used as part of a detection strategy. An
example extraction function found in the literature [23] is

(1)

where are disjoint subsets of elements of the Work,. We
can often define an embedding function, , which finds
a new Work, , such that

(2)

and is perceptually similar to . In other words, the wa-
termarked image looks like the original and the vector extracted
during detectionlooks likethe watermark vector. This function
is sufficient for use in a watermark embedder.

There have been a number of other recent watermarking algo-
rithms designed to deal with geometric distortions. Of particular
note is the recent work of Baset al. [24]. They describe an al-
gorithm based on the detection of salient features in an image
and the insertion of signals relative to these salient features. Ex-
perimental results indicate that the method is robust to mirror
reflection and rotation. However, surprisingly, the system fails
to survive other geometric distortions. A somewhat related set
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of methods is described by Maes and van Overveld [25] and
Rongenet al. [26]. These methods are based on geometrically
warping local regions of an image onto a set of random lines.
However, currently, these methods are not robust to geometric
distortions, but rather, allow for a rapid, but exhaustive search
through the possible set of geometric distortions.

In Section II we describe our algorithm. It differs from that
of [21] in two important ways. First, we choose to watermark a
projection of the transform space. Second, the watermark em-
bedding is based on the principle of communication with side in-
formation [22]. This is described in more detail in Section III, in-
cluding the iterative procedure for dealing with the one-to-many
mapping from watermark space to image space. Our solutions
to a number of implementation issues are also discussed in Sec-
tion III. Section IV describes the results of experiments on a
large database.

II. A LGORITHM

Consider an image and a rotated, scaled, and translated
version of this image, . Then we can write

(3)

where the RST parameters are, , and respectively.
The Fourier transform of is , the magnitude

of which is given by

(4)

Equation (4) is independent of the translational parameters,
. This is the well known translation property of the

Fourier transform [27].
If we now rewrite (4) using log-polar coordinates, i.e.,

(5)

(6)

then the magnitude of the Fourier spectrum can be written as

(7)

(8)

or

(9)

Equation (9) demonstrates that the amplitude of the log-polar
spectrum is scaled by , that image scaling results in a trans-
lational shift of along the axis, and that image rotation
results in a cyclical shift of along the axis.

We need not be concerned with the amplitude scaling of the
spectrum, since we intend to perform watermark detection using
the correlation coefficient, which is invariant to this scaling. See
Section II-A for more details.

Next, we define to be a 1-D projection of such
that

(10)

The reason for summation of the values rather than the mag-
nitudes themselves is discussed in Section III-D. Due to the
symmetry of the spectra of real images

(11)

we only compute for .
We find it convenient to add the two halves of together,

obtaining

(12)

with . The reasons for this are discussed in
Section III-F.

Clearly, , is invariant to both translation and scaling.
However, rotations result in a (circular) shift of the values of

. If is quantized to the nearest degree, then there are only
90 discrete shifts, and we handle this by an exhaustive search.

A. Watermark Detection Process

In principle, detectors may be built that can handle water-
marks encoding several bits [41]. However, the present detector
determines only whether or not a given watermark has been em-
bedded in a given image. It takes as input, an image and a water-
mark and the output is a single bit indicating whether the image
contains the watermark.

The watermark is expressed as a vector of length. To de-
termine whether the watermark is present, an “extracted signal”

is computed from the image, for values of evenly
spaced between and . The extracted signal is then com-
pared to the watermark using the correlation coefficient. If the
correlation coefficient is above a detection threshold, then the
image is judged to contain the watermark.2 .

Thus, the basic algorithm for watermark detection proceeds
as follows.

1) Compute a discrete log-polar Fourier transform of the
input image as described in Section III-A. This can be
thought of as an array of rows by columns, in which
each row corresponds to a value of, and each column
corresponds to a value of.

2) Sum the logs of all the values in each column, and add
the result of summing columnto the result of summing
column ( ) to obtain an
invariant descriptor , in which

(13)

where is the angle that corresponds to columnin the
discrete log-polar Fourier transform matrix.

2The use of correlation coefficient as a detection measure is recommended
in [22] One benefit of this metric is its independence to scaling of the signal
amplitudes.
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3) Compute the correlation coefficient, between and the
input watermark vector , as

(14)

4) If is greater than a threshold, then indicate that the
watermark is present. Otherwise, indicate that it is absent.

B. Watermark Embedding Process

Once a method for detecting watermarks has been defined, we
can construct a watermark embedding algorithm according to
the methodology described in [22]. In that paper, watermarking
is cast as a case of communications with side information at the
transmitter, which is a configuration studied by Shannon [28].
The difference between this view of watermarking, and a more
common view, is as follows.

Most public watermarking methods found in the literature use
blind embedding in that the original image is considered to be
noise. The embedder adds a small-amplitude signal to this noise,
and the detector must be sensitive enough to work with the small
signal-to-noise ratio that results.

However, this common approach ignores the fact that the em-
bedder has complete knowledge of the “noise” caused by the
original image. If we view the embedder as a transmitter and the
cover image as a communications channel, then this knowledge
amounts to side-information about the behavior of that channel.
When the transmitter knows ahead of time what noise will be
added to the signal, its optimal strategy is to subtract that noise
from the signal before transmission. The noise then gets added
back by the communications channel, and the receiver receives
a perfect reconstruction of the intended signal.

In the case of watermarking, it is unacceptable for the em-
bedder to subtract the original image from the watermark be-
fore embedding the watermark, because it would result in unac-
ceptable fidelity loss. In fact, if the watermark is expressed as
a pattern that is the same size as the image, then this strategy
simply replaces the image with the watermark pattern, which is
clearly too drastic. However, when the watermark is expressed
as a signal in a lower-dimensional space, as is the case with the
present system, the results need not be so drastic, since a wide
variety of full-resolution images project into the same extracted
signal and the embedder may choose the one that most resem-
bles the original. But even in the case of lower-dimensional wa-
termarks, it is not always possible to completely replace the ex-
tracted signal with the watermark signal while maintaining ac-
ceptable fidelity.

To make maximal use of the side-information at the em-
bedder, while maintaining acceptable fidelity, [22] introduces
the idea of a “mixing function,” . This takes an extracted
signal , and a watermark vector, as input, and the output is
a signal , which is perceptually similar to, and has a high
correlation with . Since is something between and , it
is referred to as the “mixed signal.” It is this mixed signal that
the embedder transmits, by modifying the image so that the
extraction process in the detector will produce.

The basic approach for embedding described in [22] consists
of three steps:

1) Apply the same signal-extraction process to the unwa-
termarked image as will be applied by the detector, thus
obtaining an extracted vector,. In our case, this means
computing .

2) Use the mixing function, , to obtain a mix-
ture between and the desired watermark vector,. At
present, our mixing function simply computes a weighted
average of and , which is a highly sub-optimal ap-
proach. More sophisticated mixing methods, for example
those examined in [29], may be used.

3) Modify the original image so that, when the signal-extrac-
tion process is applied to it, the result will beinstead of
. This process is implemented as follows:

a) Modify all the values in column of the log-polar
Fourier transform so that their logs sum to in-
stead of . This could be done, for example, by
adding to each of the values in
column . Care must be taken to preserve the sym-
metry of DFT coefficients.

b) Invert the log-polar resampling of the Fourier
magnitudes, thus obtaining a modified, Cartesian
Fourier magnitude.

c) The complex terms of the original Fourier transform
are scaled to have the new magnitudes found in the
modified Fourier transform.

d) The inverse Fourier transform is applied to obtain
the watermarked image.

Unfortunately, there is inherent instability in inverting the
log-polar resampling of the Fourier magnitude (Step 3b). We
therefore approximate this step with an iterative method in
which a local inversion of the interpolation function is used for
the resampling. The method is described in Section III-B.

III. I MPLEMENTATION PROBLEMS AND SOLUTIONS

There are a number of problems that arise when imple-
menting the algorithm of Section II. Several of these are
addressed below.

A. Rectilinear Tiling Implied by DFT

The log-polar Fourier transform of an image can be computed
by resampling the image DFT with a log-polar grid. Some in-
terpolation method must be used during the resampling, since
the log-polar sample points do not generally coincide with the
Cartesian sample points in the DFT.

The DFT is conventionally assumed to represent a tiled ver-
sion of an image, as illustrated in Fig. 1(a). Stoneet al.[30] have
noted that this tiling pattern represents an inherent problem for
any algorithm that relies on the rotational properties of Fourier
transforms, since, when the content of an image is rotated, the
rectilinear tiling grid is not rotated along with it. Thus, the DFT
of a rotated image is not the rotated DFT of that image. The
problem is illustrated in Fig. 1(b) and (c).

One possible solution is to compute the log-polar Fourier
transform directly, without using the Cartesian DFT as an inter-
mediate step. In the continuous Fourier domain, each point has
a value determined by correlating the image with a complex,
planar sinusoid. If we wish to obtain a value for a point between
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Fig. 1. Rectilinear tiling and image rotation.

those that would be sampled in a DFT, we can find the corre-
sponding sinusoid and directly compute its correlation with the
image. This amounts to assuming that all the pixel values out-
side the bounds of the image are black, rather than assuming
they are tiled copies of the image. The same result can be ob-
tained by applying a sinc interpolation to the Cartesian DFT co-
efficients in order to determine the values on the log-polar grid.

The direct approach described above does not take advantage
of efficient methods available for computing DFTs. Both this
and the sinc interpolation approach are thus likely to be prohibi-
tively expensive.3 Instead, we approximate the log-polar Fourier
transform by using an inexpensive interpolation preceded by
zero-padding as follows.

1) Pad the image with black to obtain a larger image.
2) Take the DFT of the padded image. This yields a more

finely sampled version of the continuous Fourier trans-
form.

3) Resample in a log-polar grid, using an inexpensive inter-
polation technique. The technique we use is linear inter-
polation of the magnitudes of the coefficients.

The zero-padding has the effect of adding separation between
the implicit tiles in the spatial domain, thus reducing the dis-
tortions shown in Fig. 1. Viewed another way, by padding with
black we obtain a denser sampling of the Fourier transform, thus
reducing the distances between the DFT’s sample points and the
log-polar sample points and reducing the error introduced by in-
expensive interpolation.

B. Difficulty of Inverting Log-Polar Mapping

Each element of the log-polar Fourier magnitude array is a
weighted average of up to four elements of the Cartesian Fourier
magnitude array. Thus, we can write

(15)

where
column vector containing all the elements of the log-
polar array;
column vector containing the elements of the Cartesian
array;

3Alliney [31] presents a technique for the efficient direct computation of the
polar Fourier transform of an image.

contains the weights used to perform interpolation.
If we wish to modify the log-polar array so that it contains the
watermark, and then find the corresponding Cartesian array, we
have to find the inverse of . Unfortunately, is ill-condi-
tioned and it is not practical to perform this inversion precisely.

Instead, we use an iterative process to perform an approxi-
mate inversion. Let be the modified version of (the re-
sults of Step 3a in Section II-B). We begin by observing that
the four nonzero values in each row of sum to 1. Thus, if
we add to each of the elements , where

are nonzero, then the resulting Cartesian array
will yield in its log-polar mapping.

Unfortunately, if we try to apply this method to change all the
elements of , we’ll have conflicting changes in the various ele-
ments of . For example, both and might be nonzero,
so that we’d need to change both when changing to
and when changing to . The desired changes are unlikely
to be the same. We resolve this problem by using a weighted
average of all the desired changes to each element of. So, in
the above example, we would change the value ofby

(16)

(assuming that and are the only nonzero elements of
column ).

The above method results in a rough approximation to the
desired inversion. Thus, even with no subsequent image distor-
tions, the detector will not extract, but rather an approximation,

. If this vector is not similar enough to the watermark,
(as measured by the correlation coefficient), to result in a detec-
tion, the embedder can be applied again. After each application
of the embedder, the extracted vector,, moves closer to and
the detection value increases. We have found that three or four
iterations usually suffice to produce an approximation that can
be robustly detected.

C. Orientation of Image Boundaries

It is well known that the rectangular boundary of an image
usually causes a “cross” artifact in the image’s energy spectrum
(see Fig. 2). This happens because there is usually a large dis-
continuity at each edge of the image due to the implicit tiling.
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Fig. 2. An image and its DFT.

Fig. 3. DFT effects of rotation.

Fig. 4. DFT effects of rotation and cropping.

The DFT magnitude of such vertical and horizontal discontinu-
ities has large energy in all the vertically and horizontally ori-
ented frequencies, which results in the cross artifact.

If the image is rotated, but padded with black so that no image
content is cropped, then the cross in the DFT magnitude will
also rotate (Fig. 3). If, on the other hand, the rotated image is
cropped, so that no black is added, then the new image bound-
aries cause a horizontal and vertical cross similar to that found in
the original image, even though the rest of the DFT magnitude
is rotated (Fig. 4). Since the cross has so much energy, it tends
to cause two large bumps in the extracted watermark vector,
which substantially reduce the correlation coefficient with the
embedded watermark.

Our present solution to this problem is to simply ignore
the bumps in the extracted signal by ignoring a neighborhood
around each of the two highest-valued elements. Alternative
solutions that appear in the literature include multiplication
of the image by a circularly symmetric window [32] and
blurring of the image edges [33]. These solutions are probably
more general than the one employed here, but would require

Fig. 5. Image with dominant vertical structure and its DFT.

modification to the watermark embedder, and have been left
for future work.

D. Dynamic Range of Frequency Magnitudes

The magnitude of low frequencies can be very much larger
than the magnitude of mid and high frequencies. In these cir-
cumstances, the low frequencies can become overwhelming. To
reduce this problem, we sum the logs of the magnitudes of the
frequencies along the columns of the log-polar Fourier trans-
form, rather than summing the magnitudes themselves.

A beneficial side-effect of this is that a desired change in a
given frequency is expressed as a fraction of the frequency’s
current magnitude rather than as an absolute value. This is better
from a fidelity perspective.

E. Unreliability of Extreme Frequencies

It is well known that the lowest and highest frequencies
in an image are usually unreliable for watermarking. The
low frequencies are unreliable because they are difficult to
modify without making visible changes in the image. The high
frequencies are unreliable because they can be easily modified
by common processes such as compression, printing, and
analog transmission. Our solution is to neglect these unreliable
frequencies when extracting the watermark.

A better solution would be to use a perceptual model to esti-
mate the maximum amount of change that can be applied to each
frequency and a model of specific attacks to estimate the de-
gree of robustness. The amount of watermark energy embedded
into each frequency would then be proportional to this percep-
tual significance and robustness. Such an approach is discussed
in [3], [34]–[36]. Application of this idea to the present water-
marking method is a topic for future research.

F. Images are Rotationally Asymmetric

The energy in an image is seldom evenly distributed in an-
gular frequency. Images frequently have a large amount of en-
ergy in one group of directions, while having much lower en-
ergy in an orthogonal group of directions. For example, images
containing buildings and trees have significant vertical structure
yielding more energy in the horizontal frequencies than in the
vertical (Fig. 5), while seascapes or sunsets are strongly oriented
in the horizontal direction yielding higher vertical frequencies
(Fig. 6).

Spectra such as those of Figs. 5 and 6 suggest an uneven
masking ability in orthogonal directions. As a consequence, it
may be much easier, from a fidelity perspective, to embed some
portions of the watermark than others. For example, when wa-
termarking the image of tall buildings, we can more easily hide
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Fig. 6. Image with dominant horizontal structure and its DFT.

noise with a strong vertical component than noise with a strong
horizontal component. This can be a problem if the difficult-to-
modify portions of the watermark are critical in differentiating
it from other watermarks.

To reduce this problem, we divide the extracted signal into
two halves, and add the two halves together. Thus, rather than
using of (10), we use of (12).

If we want to modify an element of , we can do so by
hiding noise that’s oriented along either angleor angle .
This increases the likelihood that each element of the watermark
can be embedded within the fidelity constraints.

G. High Correlation between Elements of Extracted
Watermark

For natural images, is likely to vary smoothly as a func-
tion of . In other words, the extracted signal will have more
low-frequency content than high-frequency content. This re-
duces the effectiveness of the correlation coefficient as a detec-
tion measure.

We improve the detection measure by applying a whitening
filter to both the extracted signal and the watermark being tested
for before computing the correlation coefficient. Note that the
whitening filter is employed only in the watermark detector; the
embedder is unchanged. The whitening filter was designed to
decorrelate the elements of signals extracted from natural im-
ages, and was derived from signals extracted from 10 000 im-
ages from [37]. These images were not used in any of the sub-
sequent experiments reported in Section IV.

The idea of using a whitening filter to improve watermark
detection in this way has been discussed in [38].

H. Interrelation between Changes made in Watermark
Elements

During watermark embedding, it is difficult to change the
value of one element of the extracted watermark, without
changing the values of its neighbors. This results primarily
from the fact that any one frequency in the DFT can effect
several values of , so changing that frequency can effect
several elements of the watermark. Because of this, it is difficult
to embed a watermark that varies wildly from one element to
the next.

We reduce this problem by replicating elements of the de-
sired watermark to obtain a lower-frequency watermark. For ex-
ample, if the watermarks are extracted by computing 74 samples
of (after removing the samples that contain the “bumps”
discussed in Section III-C), then we would define our desired
watermark as a vector of 37 values, and duplicate each of its 37
values to obtain a length 74 vector.

IV. EXPERIMENTAL RESULTS

The following results were obtained by extracting a length
90 vector from the image and neglecting the 16 samples sur-
rounding the peak (assumed to correspond to the DFT cross ar-
tifact). This leaves a descriptor that is 74 samples in length. The
detection process involves a comparison of the watermark with
all 90 cyclic rotations of the extracted descriptor. In this section
we examine the false positive behavior, effectiveness, and ro-
bustness of the proposed scheme. False positive measurements
were collected on 10 000 unwatermarked images,4 and effec-
tiveness and robustness measurements were collected on 2000
watermarked images.

A. Probability of False Positive

We begin our evaluation of the new watermarking method by
finding the relationship between the threshold and the proba-
bility of false positive. A false positive or false detection occurs
when the detector incorrectly concludes that an unwatermarked
image contains a given watermark. Thus, the probability of false
positive is defined as

(17)

where is a detection value obtained by running the de-
tector on a randomly selected, unwatermarked image andis
the detection threshold. The subscript max specifies the max-
imum detection value from all of the cyclical shifts examined.

This probability is estimated empirically by applying the de-
tector to 10 000 unwatermarked images from [37], testing for
10 different binary watermarks in each. The ten resulting his-
tograms are shown in Fig. 7(a) superimposed on one another.
The probability of false positive is then plotted in Fig. 8(b) as a
function of threshold. Again, each trace corresponds to one of
the ten watermarks.

Fig. 7(a) indicates that most detection values from unwater-
marked images fall between 0.2 and 0.4. This might seem sur-
prising, since we might expect unwatermarked images to yield
detection values closer to zero. The reason the values are so high
is that each one is the maximum of 90 different correlation coef-
ficients, computed during the cyclical search (see Section II-A,
step 3). This means that

or or (18)

where are the 90 correlation coefficients computed
during the search. Each of is drawn from a distribu-
tion that is centered around zero, as shown in Fig. 7(b), which

4The images used in this test were all different from, but from the same data-
base as the 10 000 images that were used to generate the whitening filter.
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(a) (b)

Fig. 7. Detection value distributions for ten watermarks in 10 000 unwatermarked images: (a) maximum detection value for each watermark/image pair and
(b) all 90 detection values for each watermark/image pair.

(a) (b)

Fig. 8. False positive rates measured with 10 000 unwatermarked images: (a) individual correlation coefficients and (b) final detection value. Eachsolid trace
corresponds to one of ten different watermark vectors. The dotted line represents theoretical estimates.

shows ten superimposed histograms of the 90 000 correlation
coefficients computed for each of the 10 watermarks during the
experiment. The maximum of 90 values drawn from a distribu-
tion like that in Fig. 7(b) is likely to be higher than zero.

During the experiment with unwatermarked images, the
highest detection value obtained was 0.55. Thus, we have no
data to estimate for . To estimate this, we must
employ a theoretical model, such as the one described in [39].
This model says that, if is the correlation coefficient between
a preselected -dimensional watermark vector and a random
vector drawn from a radially-symmetric distribution, then

(19)

The whitening filter employed in our detector makes the dis-
tribution roughly spherical, so this model is expected to apply

to the present system, with . The resulting false positive
prediction is shown as a dotted line in Fig. 8(a). The model pre-
dicts the probability that one correlation coefficient is greater
than the threshold, not the probability that the maximum of sev-
eral coefficients is greater. Thus, it predicts

, rather than . Fig. 8(a) indicates how
well the model predicted in our experiment.

We obtain an estimated upper bound on by
observing that

or or (20)

When corresponds to the event , and , we
obtain

(21)

This prediction is shown in Fig. 8(b) as a dotted line.
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Fig. 9. Signal-to-noise ratio.

Fig. 10. Watermarking with little impact on fidelity.

B. Fidelity

The tradeoff between fidelity and robustness is controlled by
adjusting the relative weighting used in the mixing of the wa-
termark signal and the signal extracted from the original image
(see Section II-B). As the relative weight assigned to the water-
mark signal is increased, the strength of the embedded water-
mark is increased at the expense of lower fidelity. Once chosen,
the mixing weights were held constant over all experiments de-
scribed in this section. These weights were empirically selected
to yield an average signal-to-noise ratio of about 40 dB.5 Fig. 9
shows a histogram of the ratios obtained. Fig. 10 shows an ex-
ample of a watermarked image with little impact on fidelity.

It must be noted, however, that signal-to-noise ratio is not a
very effective predictor of perceptual quality. The fidelity of the
image depends to a large degree on the perceptual relationship
between the image and the noise. In general, noise that matches
the underlying textures in an image is less perceptible than noise
that is very different from the image, even at the same signal-to-
noise ratios.

The present system generates watermark patterns by making
small percentage adjustments to the powers of frequencies in
the image’s spectrum, so the resulting noise pattern is usually

5Here the “signal” is the image, and the “noise” is the watermark pattern.

Fig. 11. Character of the watermark noise when the strength is too high. The
watermark strength in this figure was increased so that the problem should be
visible after printing in this TRANSACTIONS.

similar to the textures in the image. Thus, when we watermark
an image that contains a homogeneous texture, the watermark is
well-hidden. But when we mark an image that contains widely
varying textures, the mark can become visible. Fig. 11 illus-
trates the problem. The watermark strength in this figure was
increased so that the problem should be visible after printing in
this TRANSACTIONS.

Solving the fidelity problem in nonhomogeneous images
would require a modification to the algorithm that attenuates or
shapes the watermark according to local texture characteristics.
This has been left for future work.

C. Effectiveness

The effectiveness of a watermarking scheme is measured as
the probability that the output of the watermark embedder will
contain the watermark, subject to constraints on the fidelity of
the marked image and the detection threshold or probability of
false detection. In other words, effectiveness is the probability
of true detection when the marked image is not subjected to
any distortions after embedding. The effectiveness of the current
scheme is measured and plotted as the dashed ROC curves6 in
each of Figs. 13–20.

D. Robustness

In a practical setting, RST distortions are usually accompa-
nied by cropping. Fig. 12(f), (g), and (i) show respectively rota-
tion, scaling, and translation with the associated cropping. With
the current algorithm, cropping can be viewed as distortion of
the extracted signal by additive noise. As such, we expect crop-
ping to degrade the detection value.

In this section, seven geometric distortion attacks are exam-
ined: rotation with and without cropping, scaling up with and
without cropping, translation with and without cropping, and
scaling down. Note that scaling down does not imply cropping.

6A receiver-operating-characteristic (ROC) curve is a plot of the probability
of true detection as a function of the probability of false detection. For details
see [40].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 12. Examples of geometric attacks: (e) and (a) are the original and padded original respectively; (b)–(d) attacks without cropping; and (f)–(i)attacks with
cropping.

(a) (b)

Fig. 13. Rotation without cropping,4 , 8 , 30 , and45 . (a) Histogram and (b) ROC (dashed line represents the detection values prior to attack).

In order to isolate the effects of rotation, scaling up, and trans-
lation from cropping, the images have been padded with gray
as shown in Fig. 12(a). The embedder has been applied to these
expanded images and then the gray padding replaced with unwa-

termarked gray padding prior to detection or attack. The amount
of padding is such that none of the rotation, scaling up, and
translation experiments cause image data to be cropped. The
only data that is cropped is unwatermarked padding. Thus, the



LIN et al.: ROTATION, SCALE, AND TRANSLATION RESILIENT WATERMARKING 777

(a) (b)

Fig. 14. Rotation with cropping,4 , 8 , 30 , and45 . (a) Histogram and (b) ROC (dashed line represents the detection values prior to attack).

(a) (b)

Fig. 15. Scaling up without cropping, 5%, 10%, 15%, and 20%. (a) Histogram and (b) ROC (dashed line represents the detection values prior to attack).

(a) (b)

Fig. 16. Scaling up with cropping, 5%, 10%, 15%, and 20%. (a) Histogram and (b) ROC (dashed line represents the detection values prior to attack).

differences between the detection values prior to rotation and
those after rotation can be attributed solely to the rotation as the

associated cropping of unwatermarked padding does not effect
the detection value.
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(a) (b)

Fig. 17. Scaling down, 5%, 10%, 15%, and 20%. (a) Histogram and (b) ROC (dashed line represents the detection values prior to attack).

(a) (b)

Fig. 18. Translation without cropping, 5%, 10%, and 15%. (a) Histogram and (b) ROC (dashed line represents the detection values prior to attack).

(a) (b)

Fig. 19. Translation with cropping, 5%, 10%, and 15%. (a) Histogram and (b) ROC (dashed line represents the detection values prior to attack).

The detection value prior to attack is used to measure the ef-
fectiveness of the watermarking scheme. This effectiveness is
likely to be reduced in the padded examples since a portion

of the watermarked image (the watermarked gray padding) has
been replaced with nonwatermarked padding. However, the pur-
pose of the experiments based on these padded geometric at-
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(a) (b)

Fig. 20. JPEG compression,QF = 90; 80; and70. (a) Histogram and (b) ROC (dashed line represents the detection values prior to attack).

tacks, shown in Fig. 12(b)–(d), is to isolate the effects due to
geometric distortions from those due to cropping.

1) Rotation: Two experiments were performed to test the
watermark’s robustness against rotation. The first experiment
was designed to isolate the effects of rotation from all other
types of attack. The second was a more realistic test of the ef-
fects of rotation with cropping.

Each trial of the first test comprised the following steps.

1) Pad an image with neutral gray, increasing its size. The
amount of padding was chosen to allow rotation without
any part of the original image going outside of the image
boundaries [Fig. 12(a)].

2) Embed a randomly-selected watermark in the padded
image.

3) Replace the padding with neutral gray again. This re-
moves any watermark information from the neutral gray
area.

4) Run the watermark detector on the image to obtain a de-
tection value before rotation.

5) Rotate the image by a predetermined angle, and crop to
the original size. Fig. 12(b) shows what an image looks
like after this step. Note that only the padding is cropped,
so we do not crop off any of the watermark pattern.

6) Run the watermark detector on the image to obtain a de-
tection value after rotation.

Since the padding that’s cropped off during rotation contains
no watermark pattern, any difference between the “before”
value obtained in step 4 and the “after” value obtained in step 6
can only result from the effects of rotation.

This experiment was performed on 2000 images with rota-
tions of , , , and . We limited this test to a maximum
rotation of because rotations beyond are equivalent to
smaller rotations after a rotation of . An image that has been
rotated yields exactly the same extracted vector as an unro-
tated image, so a rotation of greater than should behave the
same as a smaller rotation.

As indicated in Fig. 13(a), the different rotations yielded es-
sentially the same results. Fig. 13(b) shows ROC curves before
and after rotation. For each of the ROC curves, the false-positive

probabilities were estimated using the method described in Sec-
tion IV-A. In the two plots of Fig. 13, the dashed lines represent
the detection values prior to attack, i.e., the effectiveness of the
embedding. The deviations of the solid traces from the dashed
represent the effects of the attack.

In the second experiment, we watermarked the original image
without padding, and allowed part of the watermark pattern to
be cropped off after rotation. Fig. 12(f) shows an example of
what an image looked like after the rotation. This experiment
was performed on 2000 images with rotations of, , ,
and . Fig. 14 shows the results.

Three immediate observations based on the ROC curve of
Fig. 13(b) are that the effects of these four rotations are all
similar, for a fixed false positive probability, , (independent
axis) rotation decreases the likelihood of detection (difference
between the dashed and solid lines), and the effect of rotation on
the probability of detection is dependent on the or equiva-
lently the threshold. For relatively high , for example
or one in a thousand, the current method is extremely robust
to rotation. At smaller values of , for example , rota-
tion degrades the detection value more significantly. Fig. 14(b)
further shows that the cropping that accompanies rotation has
a significant, negative impact on detection [downward shift of
the solid lines in Fig. 14(b) from those in Fig. 13(b)], and the
deterioration of the detection value is more dependent on ro-
tation angle (different rotations result in different amounts of
cropping).

These ROC curves emphasize the importance of the baseline
measurement (dashed lines), which serves as an upper bound
on robustness. They also show that each of the two experiments
begin from a different baseline. In the second experiment, the
rotation attack is applied to images that have been much more
effectively watermarked. The lower effectiveness of the first ex-
periment represents the cropping of watermarked data that oc-
curs when the watermarked gray padding is replaced with un-
watermarked gray padding. Recall that these somewhat artifi-
cial embedding conditions are in place to isolate the effects of
rotation from any further degradation that may occur due to the
cropping that normally accompanies rotation.



780 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 5, MAY 2001

These results demonstrate that the current watermark, de-
signed to be invariant to rotations, does exhibit a resilience to ro-
tation. This watermark has not been explicitly designed to with-
stand cropping and the results highlight this fact.

2) Scale: To test robustness to scaling, we performed three
experiments. The first and second test the effect of scaling up,
with and without cropping. The third tests the effect of scaling
down, with padding.

In the first scaling test, the steps performed for each trial were
the same as those for the first rotation step, with the excep-
tion that instead of rotating the image we scaled the image up.
Fig. 12(c) shows an example of an image that has been scaled
up after padding and watermarking. The test was performed on
2000 images at scales 5%, 10%, 15%, and 20% larger than the
original. The results are shown in Fig. 15.

The second test was the same as the first except without
padding the images before scaling, so part of the image was
cropped off after scaling. Fig. 12(g) illustrates the attack. The
test was performed on 947 images at scales of 5%, 10%, 15%,
and 20% larger than the original. The results are shown in
Fig. 16.

For the test of reduced scaling, we do not have to be concerned
with cropping. After watermarking and scaling, the image is
padded back to its original size. This padding is part of the
scaling attack, not an operation performed by the detector. Since
cropping is not an issue here, the image need not be padded
with gray before watermarking and we performed only one ver-
sion of the experiment. The scale-down attack is illustrated in
Fig. 12(h). The test was performed on 2000 images at scales
5%, 10%, 15%, and 20% smaller than the original. The results
are shown in Fig. 17.

As with rotation, the results show that scaling up, in general,
degrades the probability of detection as a function of. For
the relatively high , scaling has very little effect on
the likelihood of detection while at the effect is
more significant. We also observe that the results differ slightly
for different scale factors at these lower false positive rates.

The differences between the ROC curves in Figs. 15 and 16
clearly show the severe degradation due to the cropping that
normally accompanies scaling. As expected, the effect of this
cropping increases with the scale factor because higher scale
factors imply more cropping.

Fig. 17 shows that a decrease in scale has virtually no effect
for or so and for lower the degradation is only
slight.

The current watermark was designed to be invariant to
changes in scale and these results demonstrate an excellent
resilience to a decrease in scale and good resilience to an
increase in scale. Again, these results highlight the negative
impact of cropping.

3) Translation: We expect translation alone to have no ef-
fect on the watermark, since the watermark is computed from
the magnitudes of the Fourier coefficients. To test this, we per-
formed two experiments.

The first experiment was similar to the first rotation and
scaling experiments, in that the image was padded before wa-
termarking and the padding was replaced after watermarking.

We then translated the image by cropping gray off the bottom
and right, and padding gray onto the top and left. Fig. 12(d)
shows an example of such a translated image. The experiment
was performed on 2000 images at translations of 5%, 10%, and
15% of the image size. The results are shown in Fig. 18.

The second translation test was performed without padding
the image before translation, so that part of the watermark pat-
tern is cropped during translation. Fig. 12(i) shows an example
of this attack. Again, the experiment was performed on 2000
images at translations of 5%, 10%, and 15% of the image size.
The results are shown in Fig. 19.

The results of the first experiment show that translation has
negligible effect on probability of detection. This means that the
second test is more a test of robustness to cropping than to trans-
lation, and we see the same sort of pattern that was observed in
the second rotation and scaling experiments.

E. JPEG Compression

While the purpose of the present watermark design is to sur-
vive RST transformations, it may be important that the water-
marks also survive other common types of image processing.
We therefore conducted a test of robustness to JPEG compres-
sion.

After watermarking, images were JPEG compressed at
quality factors of 90, 80, and 70 using Equilibrium Debabelizer
Pro. The test was performed on 2000 images. Fig. 20 shows
the results.

The results show that the likelihood of detection decreases
with the amount of compression noise introduced and that this
decrease is dependent on the . For relatively high

, the current method is extremely robust to JPEG com-
pression at the qualities tested. At more restrictive false positive
probabilities, for example , JPEG at still yields
a respectable robustness of about 88%.

V. CONCLUSION

Geometric distortions continue to be a major weakness for
many watermarking methods. We described a solution to the
common problems of rotation, scale, and translation. This so-
lution is related to earlier proposals in the pattern recognition
literature regarding invariants of the Fourier–Mellin transform.
However, unlike those proposals, we do not explicitly derive an
invariance relationship.

Instead of creating a truly RST invariant signal, we create a
signal that changes in a trivial manner as a result of rotation,
scale, or translation. The calculation of this projection is per-
formed by taking the Fourier transform of the image, performing
a log-polar resampling, and then integrating along the radial di-
mension. We note that an alternative implementation can be per-
formed using the Radon transform [27]. We have investigated
this implementation but do not report it here.

The 1-D watermark has a many-to-one mapping to the 2-D
image space. This is advantageous, especially when the em-
bedder is based on the principle of communications with side
information. Our implementation is a very simple example of
this principle and we believe that future work can lead to signif-
icant improvements.
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Experimental results on a database of over 2000 images
demonstrate that the method is resilient to either rotations, scale
changes, or translations. In addition, the technique is resilient
to mild JPEG compression. The degree of resilience changes as
a function of the probability of false positive. The results also
demonstrate the weakness of this method to cropping, an attack
against which no steps have been taken in the design.

Future work will focus on more effective embedding and RST
resilient watermarking designed to survive cropping and com-
pression. Improvements in effectiveness are possible in the ap-
proximate inversion of the log-polar resampling and in the dis-
tribution of the difference signal to the log-polar coefficients.
Methods based on gradient descent will be investigated. Also,
the current technique of uniform distribution does not fully ex-
ploit the visual properties of the host image.

We will examine techniques for building crop resistant wa-
termarks that rely on first subdividing the image into a number
of possibly overlapping, tiles. The RST resilient watermark is
then embedded in each of these tiles. The detection algorithm
is applied to each tile and the results averaged together. With
appropriate constraints on the tiling and the symmetry of the
watermark this technique may provide the desired resilience to
cropping.
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