IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 5, MAY 2001 767

Rotation, Scale, and Translation Resilient
Watermarking for Images

Ching-Yung Lin Member, IEEEMin Wu, Student Member, IEEBeffrey A. Bloom Member, IEEE
Ingemar J. CoxSenior Member, IEEBViatt L. Miller, and Yui Man Lui Member, IEEE

Abstract—Many electronic watermarks for still images and marked image. As such, itis not possible to invert the geometric
video content are sensitive to geometric distortions. For example, distortion based on registration of the watermarked and original
simple rotation, scaling, and/or translation (RST) of an image can images.

prevent blind detection of a public watermark. In this paper, we . o .

propose a watermarking algorithm that is robust to RST distor- Before proceeding further, 'F IS |mp0rtar!t to define what we
tions. The watermark is embedded into a one-dimensional (1-D) Mean by the geometric distortions of rotation, scale, and trans-
signal obtained by taking the Fourier transform of the image, lation. Specifically, we are interested in the situation in which
resampling the Fourier magnitudes into log-polar coordinates, a watermarked image undergoes @amknownrotation, scale,
and then summing a function of those magnitudes along the 5nq/0r transiation prior to the detection of the watermark. The
log-radius axis. Rotation of the image results in a cyclical shift of P . -
the extracted signal. Scaling of the image results in amplification Qeteptor should detec_t the Wat.ermark ifitis present. This def|.n|-
of the extracted signal. And translation of the image has no effect tion is somewhat obvious, so it may be more useful to describe
on the extracted signal. We can therefore compensate for rotation what we are not interested in. In particular, some watermark al-
with a simple search, and compensate for scaling by using the gorithms claim robustness to scale changes by first embedding

correlation coefficient as the detection measure. _ a watermark at a canonical scale, then changing the size of the
False positive results on a database of 10000 images are

reported. Robustness results on a database of 2000 images arémage., and.finally, atthe detecFor, scaling th.e .image back to the
described. It is shown that the watermark is robust to rotation, canonical size prior to correlation. In our opinion, that detector

scale, and translation. In addition, we describe tests examining the does not see a scale change. Rather, the process is more closely

watermarks resistance to cropping and JPEG compression. approximated by a low pass filtering operation that occurs when
Index Terms—Fourier—Mellin, rotation, RST, scale, translation, ~the image is reduced in size. In the scaling degradation with
watermarking. which we are concerned, the detector is unaware of the scaling

and cannot rescale or pad to the original size. Similarly, tests that
rotate an image by some number of degrees and subsequently

I. INTRODUCTION : ; oo
) rotate the image by the same amount in the opposite direction
T HERE has been much emphasis on the robustness of Was ot adequate tests of robustness to rotation. The same is true

termarks to common signal processing operations suchggs yransjation. The common situation we are concerned with
compression and signal filtering. However, recently it has bgzq s when a watermarked image is printed and then cropped
come clear that even very small geometric distortions can pgg-added and scanned back into the digital domain. In these cir-
vent the detection of a watermark [1], [2]. This problem is mOgl, mstances, the image dimensions have changed both because
pronounced when the original unwatermarked image is unavajtcronning and possibly scaling. There is also likely to be an as-
able to the detector. Conversely, if the original image is avalycjated translational shift. We assume that the detector is not in-
able to the detector, then the watermarked image can oftentfneq of the rotation, scale, and translation parameters. In this
registered to the original and the geometric distortion thereRy, e, scaling to a canonical size does not undo the scaling.
inverted! Blind detectlor_l requires that detectu_)n. of the WaRather, if the cropping is not symmetric in both the rows and
termark be performed without access to the original unwatfs| mns; then scaling to a canonical size will result in a change

in the image’s aspect ratio. Changes in aspect ratio are not ad-
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tration pattern and, once found, the registration pattern couldthat of position, orientation, or scale is preserved. This may
removed from all watermarked images thus restricting the ibe important for recognition tasks, especially if the library of
vertibility of any geometric distortions. objects is large. Ferraro and Caelli [20] discuss this issue in

Another way to implement the above strategy is to give threore detail.
watermark a recognizable structure. For example, as suggested/hile strong invariance might be required in an object recog-
in [8]-[10], the watermark might be embedded multiple timesition application, we do not believe that this property is neces-
in the image at different spatial locations. The autocorrelatigary for watermarking applications. From a strongly invariant
function of a watermarked image will then yield a pattern ofepresentation, an image can be fully reconstructed modulo ro-
peaks corresponding to the embedded locations. Changes inthii®n, scale, and translation. However, distinguishing between
pattern of peaks can be used to describe any affine distortionsvaiermarks can be accomplished in a much lower dimensional
which the watermarked image has been subjected. This metispace than can distinguishing between images. Therefore we
has significant potential, but, similar to the above methods, hean consider invariant transformations that may be lossy as the
two failure modes. For successful detection both the identificeage is projected into a lower dimensional space. The reasons
tion of the geometric distortion and the detection of the watewe can distinguish between watermarks in fewer dimensions are
mark after inversion of that distortion must be successful. Botivo-fold. First, the set of watermarks for which a detector might
of these processes must be robust and resistant to tamperingearch is relatively small compared to a typical object recog-

Yet another approach to address geometric distortions is thiton database. Second, a watermark is not a naturally occur-
“normalization” of the image prior to watermark embeddinging object but is artificially inserted into an image. As such,
After embedding, the image is restored to its original geomettice watermark can be designed to be easily represented. In par-
state prior to distribution. Upon receipt, the image is again ndicular, it is often advantageous to represent the watermark as a
malized prior to detection. Unlike scaling to a canonical size, tle-dimensional (1-D) projection of the image space. If prop-
normalization must be invariant to the expected geometric dgrly designed, this has the benefit of reducing a two-dimensional
tortions. For example, in [11], images are normalized by thei2-D) search to one dimension, thereby significantly reducing
geometric moments. the computational cost.

Our proposal employs an alternative strategy based on develO’Ruanaidh and Pun [21] first suggested a watermarking
oping a watermark that s invariant to geometric distortions, thiethod based on the Fourier—Mellin transform. However, they
eliminating the need to identify and invert them. In particulafnote very severe implementation difficulties which we suspect
we are concerned with distortions due to rotation, scale, andigive hampered further work in this area. They choose to use
translation (RST). While these geometric distortions have ra-transformation that is strongly invariant claiming that “it
cently become of interest to the watermarking community, thé§ more convenient to use strong invariants because the last
have long been of interest to the pattern recognition communigjage of embedding a mark involves inverting the invariant
A comprehensive discussion of the pattern recognition literatuigpresentation to obtain the watermarked image.” We believe
is outside the scope of this paper. Hu [12] described the usetld®t invertibility is not essential. Following the formulation
moment invariants for visual pattern recognition of planar get® [22], suppose we have a noninvertible extraction function,
metric figures. It has been shown [13] that these classic momehtC), that maps a Work(, into an extracted signal. Such
invariants are equivalent to the radial moments of circular-ha-function would be used as part of a detection strategy. An
monic functions (CHF’s) that arise from a Mellin transfornmexample extraction function found in the literature [23] is
of the log-polar representation of an image when the complex
Mellin radial frequency, is a real integes > 1. X(C)=> C(j) 1<i<N 1)

The Fourier—Mellin transform is closely related to the JER;

algorithm described in this paper. There are a variety of relatggh 1o r. are disjoint subsets of elements of the Wafk, We

ideas from pattern recognition. First, Casasent and Psalli§, often define an embedding functidf(w, C), which finds
[14], [15] note that the signal-to-noise ratio of the correlatioq now Work .. — Y (w, C,), such that

peak between two images decreases from 30 dB to 3 dB with

either a 2% scale change or a 3.ftation. Their proposal X(Cy) = X(Y(w,C,)) = w 2)

is essentially a hybrid opto-electronic implementation of the

Fourier—Mellin transform. Altmann and Reitbock [16] andand C,, is perceptually similar t&,. In other words, the wa-
Altmann [17] discuss implementation issues related to thermarked image looks like the original and the vector extracted
discrete Fourier—Mellin transform. These include interpolatioduring detectioriooks likethe watermark vector. This function
aliasing, and spectral border effects, which are discussedidrsufficient for use in a watermark embedder.

detail in Section Il of this paper. Wechsler and Zimmerman There have been a number of other recent watermarking algo-
[18] describe a conformal-log mapping that is very closelgthms designed to deal with geometric distortions. Of particular
related to the Fourier—Mellin transform. Also, Lin and Brandhote is the recent work of Bat al. [24]. They describe an al-
[19] discuss the use of the Fourier—Mellin and other transforngerithm based on the detection of salient features in an image
for pattern recognition. They describe a nhumberabBolute and the insertion of signals relative to these salient features. Ex-
or strong invariants based on the phase of the Fourier @erimental results indicate that the method is robust to mirror
Fourier—Mellin spectrums. The terms “absolute” and “strong&flection and rotation. However, surprisingly, the system fails
refer to the fact that all information about an image excepd survive other geometric distortions. A somewhat related set
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of methods is described by Maes and van Overveld [25] andNext, we defingy(¢) to be a 1-D projection off (p, 6)| such
Rongenet al. [26]. These methods are based on geometricaliiyat

warping local regions of an image onto a set of random lines.

However, currently, these methods are not robust to geometric g(8) = Z log(|Z(p;,0)]). (20)
distortions, but rather, allow for a rapid, but exhaustive search J

through the possible set of geometric distortions. )

In Section Il we describe our algorithm. It differs from that' "€ reason for summation of thes values rather than the mag-
of [21] in two important ways. First, we choose to watermark gitudes themselves is dlscusse.d in Section IlI-D. Due to the
projection of the transform space. Second, the watermark efymmetry of the spectra of real images
bedding is based on the principle of communication with side in-
formation [22]. This is described in more detail in Section 11, in- |F(z,y)| = [F(—z,—y)| (11)
cluding the iterative procedure for dealing with the one-to-many
mapping from watermark space to image space. Our solutidf{§ Only computgy(é) for 6 € [0°- - 180°).
to a number of implementation issues are also discussed in Sec//é find it convenient to add the two halvesgip) together,
tion I1l. Section IV describes the results of experiments on 2Ptaining
large database.

91(6") = g(¢') + g(¢' + 90°) (12)

[I. ALGORITHM . . : .
with ¢’ € [0°---90°). The reasons for this are discussed in

Consider animagé:, %) and arotated, scaled, and translatedection I11-E.
version of this imagei/(x, y). Then we can write Clearly, g1(6), is invariant to both translation and scaling.
However, rotations result in a (circular) shift of the values of
g1(6). If 6 is quantized to the nearest degree, then there are only
o(—xsina+ ycos o) — yo) (3) 90 discrete shifts, and we handle this by an exhaustive search.

i'(z,y) =i(o(z cos a + ysin a) — zo,

where the RST parameters areo, and(zo, yo) respectively. o \natermark Detection Process
The Fourier transform of (=, v) isI'( f., f,)), the magnitude

of which is given by In principle, detectors may be built that can handle water-

marks encoding several bits [41]. However, the present detector
' (fey fu)l = |O—|—2|](0——1(fw cosa + f, sin a), determines only whether or not a given watermark has been em-
o~ (— fosina + f, cos )] 4) bedded in a given image. It takes as input, an image and a water-

* Y ' mark and the output is a single bit indicating whether the image

Equation (4) is independent of the translational parametef@ntains the watermark.
(z0,70). This is the well known translation property of the The watermark is expressed as a vector of ledgthTo de-

Fourier transform [27]. termine whether the watermark is present, an “extracted signal”
If we now rewrite (4) using log-polar coordinates, i.e., v = 91(¢) is computed from the image, for values off evenly
spaced betweed and90°. The extracted signal is then com-
fr=¢€"cost (5) pared to the watermark using the correlation coefficient. If the
fy =c’sinf (6) correlation coefficient is above a detection threstibjthen the

image is judged to contain the watermark.
then the magnitude of the Fourier spectrum can be written as Thus, the basic algorithm for watermark detection proceeds

as follows.
[T’ (fes f) 1) Compute a discrete log-polar Fourier transform of the
= |o| 2| I(c7 e cos(8 — a),0 tef sin(f — )| (7) input image as described in Section IlI-A. This can be
= |o| 72| 1(P708 ) cos(f — ), ePIE D sin(6 — ) thought of as an array df rows by/V columns, in which

each row corresponds to a valuegfand each column

(8) corresponds to a value 6f
or 2) Sum the logs of all the values in each column, and add
the result of summing columnto the result of summing
|T'(p,0)| = |o|2|1(p —log 0,6 — ). (9) columnj + N/2 (j = 0---((n/2) — 1)) to obtain an

invariant descriptop, in which
Equation (9) demonstrates that the amplitude of the log-polar

spectrum is scaled By|~2, thatimage scaling results in a trans- v; = g1(6;) (13)
lational shift oflog o along thep axis, and that image rotation
results in a cyclical shift ofr along thef axis. wheref); is the angle that corresponds to colughim the

We need not be concerned with the amplitude scaling of the  discrete log-polar Fourier transform matrix.
spectrum, since we intend to perform watermark detection usingT _ . _ _
h |ati fficient. which is invariant to this scaling. S he use of correlation coefficient as a detection measure is recommended
the correlation coetficient, which is invari I ING. SER [22] One benefit of this metric is its independence to scaling of the signal
Section II-A for more details. amplitudes.
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3) Compute the correlation coefficiebt, between; and the 1) Apply the same signal-extraction process to the unwa-

input watermark vectow, as termarked image as will be applied by the detector, thus
obtaining an extracted vectar, In our case, this means
D—__%wv (14) computingg, (4).
(w-w)(v-v) 2) Use the mixing functions = f(v,w), to obtain a mix-
_ o ture between and the desired watermark vectar, At
4) If D is greater than a threshald, then indicate that the present, our mixing function simply computes a weighted

watermark is present. Otherwise, indicate that it is absent. average ofw and v, which is a highly sub-optimal ap-
proach. More sophisticated mixing methods, for example
B. Watermark Embedding Process those examined in [29], may be used.
Once a method for detecting watermarks has been defined, we3) Modify the originalimage so that, when the signal-extrac-
can construct a watermark embedding algorithm according to  tion process is applied to it, the result will bénstead of
the methodology described in [22]. In that paper, watermarking ~ v. This process is implemented as follows:

is cast as a case of communications with side information at the a) Modify all the values in column of the log-polar
transmitter, which is a configuration studied by Shannon [28]. Fourier transform so that their logs sum4pin-
The difference between this view of watermarking, and a more stead ofv;. This could be done, for example, by
common view, is as follows. adding(s; — v;)/K to each of theK values in

Most public watermarking methods found in the literature use columnjy. Care must be taken to preserve the sym-
blind embedding in that the original image is considered to be metry of DFT coefficients.
noise. The embedder adds a small-amplitude signal to this noise, b) Invert the log-polar resampling of the Fourier
and the detector must be sensitive enough to work with the small magnitudes, thus obtaining a modified, Cartesian
signal-to-noise ratio that results. Fourier magnitude.

However, this common approach ignores the fact that the em- ¢) The complexterms of the original Fourier transform
bedder has complete knowledge of the “noise” caused by the are scaled to have the new magnitudes found in the
original image. If we view the embedder as a transmitter and the modified Fourier transform.
cover image as a communications channel, then this knowledge d) The inverse Fourier transform is applied to obtain
amounts to side-information about the behavior of that channel. the watermarked image.

When the transmitter knows ahead of time what noise will be Unfortunately, there is inherent instability in inverting the

added to the signal, its optimal strategy is to subtract that nojgg-polar resampling of the Fourier magnitude (Step 3b). We
from the signal before transmission. The noise then gets addrérefore approximate this step with an iterative method in
back by the communications channel, and the receiver receiv@fich a local inversion of the interpolation function is used for

a perfect reconstruction of the intended signal. the resampling. The method is described in Section I1I-B.
In the case of watermarking, it is unacceptable for the em-
bedder to subtract the original image from the watermark be- ||| | MPLEMENTATION PROBLEMS AND SOLUTIONS

fore embedding the watermark, because it would result in unac- ) )
ceptable fidelity loss. In fact, if the watermark is expressed as 1€re are a number of problems that arise when imple-
a pattern that is the same size as the image, then this strafBgpting the algorithm of Section II. Several of these are
simply replaces the image with the watermark pattern, whichgddressed below.
clearly too drastic. However, when the watermark is expressed
as a signal in a lower-dimensional space, as is the case with fhe
present system, the results need not be so drastic, since a widehe log-polar Fourier transform of an image can be computed
variety of full-resolution images project into the same extractday resampling the image DFT with a log-polar grid. Some in-
signal and the embedder may choose the one that most reserpolation method must be used during the resampling, since
bles the original. But even in the case of lower-dimensional wthe log-polar sample points do not generally coincide with the
termarks, it is not always possible to completely replace the eartesian sample points in the DFT.
tracted signal with the watermark signal while maintaining ac- The DFT is conventionally assumed to represent a tiled ver-
ceptable fidelity. sion of animage, as illustrated in Fig. 1(a). Stenal.[30] have
To make maximal use of the side-information at the emmoted that this tiling pattern represents an inherent problem for
bedder, while maintaining acceptable fidelity, [22] introducesny algorithm that relies on the rotational properties of Fourier
the idea of a “mixing function,’f (v, w). This takes an extracted transforms, since, when the content of an image is rotated, the
signalv, and a watermark vectas, as input, and the output isrectilinear tiling grid is not rotated along with it. Thus, the DFT
a signals, which is perceptually similar t@, and has a high of a rotated image is not the rotated DFT of that image. The
correlation withw. Sinces is something between andw, it  problem is illustrated in Fig. 1(b) and (c).
is referred to as the “mixed signal.” It is this mixed signal that One possible solution is to compute the log-polar Fourier
the embedder transmits, by modifying the image so that ttransform directly, without using the Cartesian DFT as an inter-
extraction process in the detector will produce mediate step. In the continuous Fourier domain, each point has
The basic approach for embedding described in [22] consistvalue determined by correlating the image with a complex,
of three steps: planar sinusoid. If we wish to obtain a value for a point between

Rectilinear Tiling Implied by DFT
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\/Eotate after tiling /(
Rotate before tiling

Fig. 1. Rectilinear tiling and image rotation.

those that would be sampled in a DFT, we can find the corre-A4  contains the weights used to perform interpolation.
sponding sinusoid and directly compute its correlation with tHewe wish to modify the log-polar array so that it contains the
image. This amounts to assuming that all the pixel values owtatermark, and then find the corresponding Cartesian array, we
side the bounds of the image are black, rather than assumivaye to find the inverse ai/. Unfortunately,M is ill-condi-
they are tiled copies of the image. The same result can be tibned and it is not practical to perform this inversion precisely.
tained by applying a sinc interpolation to the Cartesian DFT co- Instead, we use an iterative process to perform an approxi-
efficients in order to determine the values on the log-polar grichate inversion. Le#” be the modified version of" (the re-
The direct approach described above does not take advantsigles of Step 3a in Section II-B). We begin by observing that
of efficient methods available for computing DFTs. Both thithe four nonzero values in each row &f sum to 1. Thus, if
and the sinc interpolation approach are thus likely to be prohibe addf} — F; to each of the elements;, ---C;,, where
tively expensive.Instead, we approximate the log-polar Fouried; 4, - - - M; ;, are nonzero, then the resulting Cartesian array
transform by using an inexpensive interpolation preceded il yield F! in its log-polar mapping.
zero-padding as follows. Unfortunately, if we try to apply this method to change all the
1) Pad the image with black to obtain a larger image. elements of', we'll have conflicting changes in the various ele-
2) Take the DFT of the padded image. This yields a mofgents ofC. For example, bot®/; ; and ;. ; might be nonzero,
finely sampled version of the continuous Fourier trang0 that we'd need to changg; both when changing’; to
form. and when changing to Fj.. The desired changes are unlikely
3) Resample in a log-polar grid, using an inexpensive intef® be the same. We resolve this problem by using a weighted
polation technique. The technique we use is linear intefverage of all the desired changes to each elemefit 8o, in
polation of the magnitudes of the coefficients. the above example, we would change the valu€'pby
The zero-padding has the effect of adding separation between
the implicit tiles in the spatial domain, thus reducing the dis- M (Fy = Fi) + Mi;(Fj, — Ir)
tortions shown in Fig. 1. Viewed another way, by padding with M j + My ;
black we obtain a denser sampling of the Fourier transform, thus .
reducing the distances between the DFT’s sample points andfﬁ%summg thad/; ; andAMy, ; are the only nonzero elements of
log-polar sample points and reducing the error introduced by A2 umny). . L
expensive interpolation. The a_bove method results in a rough approxm_atlon to_ the
desired inversion. Thus, even with no subsequent image distor-
B. Difficulty of Inverting Log-Polar Mapping tions, the d_etectorw?ll not e>_<trgstbut rather an approximation,
. . _ v = &. If this vector is not similar enough to the watermauk,
Each element of the log-polar Fourier magnitude array 'S(Qs measured by the correlation coefficient), to result in a detec-
weighted average of up to four elements of the Cartesian Fourf%rn, the embedder can be applied again. After each application

magnitude array. Thus, we can write of the embedder, the extracted vectgmmoves closer taw and

(16)

F = MC (15) the detection value increases. We have found that three or four
iterations usually suffice to produce an approximation that can
where be robustly detected.
F column vector containing all the elements of the log-
polar array; C. Orientation of Image Boundaries

C column vector containing the elements of the Cartesian; is well known that the rectangular boundary of an image
array; usually causes a “cross” artifact in the image’s energy spectrum

3Alliney [31] presents a technique for the efficient direct computation of th(esee_ Fig' 2). This happens beclause there is usuglly a _'afg_e dis-
polar Fourier transform of an image. continuity at each edge of the image due to the implicit tiling.
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Fig. 5. Image with dominant vertical structure and its DFT.

modification to the watermark embedder, and have been left
Fig. 2. Animage and its DFT. for future work.

D. Dynamic Range of Frequency Magnitudes

The magnitude of low frequencies can be very much larger
than the magnitude of mid and high frequencies. In these cir-
cumstances, the low frequencies can become overwhelming. To
reduce this problem, we sum the logs of the magnitudes of the
frequencies along the columns of the log-polar Fourier trans-
form, rather than summing the magnitudes themselves.

A beneficial side-effect of this is that a desired change in a
given frequency is expressed as a fraction of the frequency’s
current magnitude rather than as an absolute value. This is better
from a fidelity perspective.

E. Unreliability of Extreme Frequencies

Fig. 3. DFT effects of rotation.
It is well known that the lowest and highest frequencies
N . I‘ L] in an image. are usually .unreliable for watermarkipg. The
W low frequencies are unreliable because they are difficult to
modify without making visible changes in the image. The high
frequencies are unreliable because they can be easily modified
| by common processes such as compression, printing, and
3| analog transmission. Our solution is to neglect these unreliable
frequencies when extracting the watermark.
A better solution would be to use a perceptual model to esti-
mate the maximum amount of change that can be applied to each
Fig. 4. DFT effects of rotation and cropping. frequency and a model of specific attacks to estimate the de-
gree of robustness. The amount of watermark energy embedded

The DFT magnitude of such vertical and horizontal discontiniPto each frequency would then be proportional to this percep-
ities has large energy in all the vertically and horizontally orft@l significance and robustness. Such an approach is discussed
ented frequencies, which results in the cross artifact. in [3], [34]-{36]. Application of this idea to the present water-
If the image is rotated, but padded with black so that no imagarking method is a topic for future research.
content is cropped, then the cross in the DFT magnitude will
also rotate (Fig. 3). If, on the other hand, the rotated imageFls
cropped, so that no black is added, then the new image boundThe energy in an image is seldom evenly distributed in an-
aries cause a horizontal and vertical cross similar to that foundjular frequency. Images frequently have a large amount of en-
the original image, even though the rest of the DFT magnituéegy in one group of directions, while having much lower en-
is rotated (Fig. 4). Since the cross has so much energy, it temdgy in an orthogonal group of directions. For example, images
to cause two large bumps in the extracted watermark vectoontaining buildings and trees have significant vertical structure
which substantially reduce the correlation coefficient with thgielding more energy in the horizontal frequencies than in the
embedded watermark. vertical (Fig. 5), while seascapes or sunsets are strongly oriented
Our present solution to this problem is to simply ignore the horizontal direction yielding higher vertical frequencies
the bumps in the extracted signal by ignoring a neighborho¢iig. 6).
around each of the two highest-valued elements. AlternativeSpectra such as those of Figs. 5 and 6 suggest an uneven
solutions that appear in the literature include multiplicatiomasking ability in orthogonal directions. As a consequence, it
of the image by a circularly symmetric window [32] andmay be much easier, from a fidelity perspective, to embed some
blurring of the image edges [33]. These solutions are probalggrtions of the watermark than others. For example, when wa-
more general than the one employed here, but would requieemarking the image of tall buildings, we can more easily hide

Images are Rotationally Asymmetric
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We reduce this problem by replicating elements of the de-
sired watermark to obtain a lower-frequency watermark. For ex-
ample, if the watermarks are extracted by computing 74 samples
of g1(#) (after removing the samples that contain the “bumps”
discussed in Section IlI-C), then we would define our desired
watermark as a vector of 37 values, and duplicate each of its 37
values to obtain a length 74 vector.

IV. EXPERIMENTAL RESULTS

The following results were obtained by extracting a length
90 vector from the image and neglecting the 16 samples sur-
rounding the peak (assumed to correspond to the DFT cross ar-
tifact). This leaves a descriptor that is 74 samples in length. The
detection process involves a comparison of the watermark with
all 90 cyclic rotations of the extracted descriptor. In this section
we examine the false positive behavior, effectiveness, and ro-

noise with a strong vertical component than noise with a stroRyStNess of the proposed scheme. False positive measurements

horizontal component. This can be a problem if the difficult-ta/ere collected on 10000 unwatermarked imagesid effec-

modify portions of the watermark are critical in differentiatind’Ve"€SS and robustness measurements were collected on 2000
it from other watermarks. watermarked images.
To reduce this problem, we divide the extracted signal ingg)

two halves, and add the two halves together. Thus, rather than
usingg(8) of (10), we usey; (#) of (12). We begin our evaluation of the new watermarking method by

If we want to m0d|fy an element cjl(e), we can do so by f|nd|ng the relationship between the threshold and the pI’Oba—
hiding noise that's oriented along either angjter angles+90°.  bility of false positive. A false positive or false detection occurs

This increases the likelihood that each element of the waterma¥Ren the detector incorrectly concludes that an unwatermarked
can be embedded within the fidelity constraints. image contains a given watermark. Thus, the probability of false

positive is defined as

Fig. 6. Image with dominant horizontal structure and its DFT.

Probability of False Positive

G. High Correlation between Elements of Extracted
Watermark Py = P{Duax > T} 7

For natural imagesy; (¢) is likely to vary smoothly as a func- where D,.... is a detection value obtained by running the de-
tion of 6. In other words, the extracted signal will have morgector on a randomly selected, unwatermarked imageZaisd
low-frequency content than high-frequency content. This reghe detection threshold. The subscript max specifies the max-
duces the effectiveness of the correlation coefficient as a detRum detection value from all of the cyclical shifts examined.
tion measure. _ . ~ This probability is estimated empirically by applying the de-

We improve the detection measure by applying a whiteningctor to 10 000 unwatermarked images from [37], testing for
filter to both the extracted signal and the watermark being tested different binary watermarks in each. The ten resulting his-
for before computing the correlation coefficient. Note that thegrams are shown in Fig. 7(a) superimposed on one another.
whitening filter is employed only in the watermark detector; thghe probability of false positive is then plotted in Fig. 8(b) as a
embedder is unchanged. The whitening filter was designedfimction of threshold. Again, each trace corresponds to one of
decorrelate the elements of signals extracted from natural ifAe ten watermarks.
ages, and was derived from signals extracted from 10000 im+ig. 7(a) indicates that most detection values from unwater-
ages from [37]. These images were not used in any of the swharked images fall between 0.2 and 0.4. This might seem sur-

sequent experiments reported in Section IV. prising, since we might expect unwatermarked images to yield
The idea of using a whitening filter to improve watermarigetection values closer to zero. The reason the values are so high
detection in this way has been discussed in [38]. is that each one is the maximum of 90 different correlation coef-

) ) ficients, computed during the cyclical search (see Section II-A,
H. Interrelation between Changes made in Watermark step 3). This means that

Elements
During watermark embedding, it is difficult to change thePrp = P{Dmax > T}
value of one element of the extracted watermark, without =P{(Do > T)or(D; > T)or ---(Dsg > T)} (18)

changing the values of its neighbors. This results primarily ) o

from the fact that any one frequency in the DFT can effe¥{hereLlo - -- Dso are the 90 correlation coefficients computed
several values of, (6), so changing that frequency can effecfiuring the search. Each &f, - - - Dg, is drawn from a distribu-
several elements of the watermark. Because of this, it is diffic(ien that is centered around zero, as shown in Fig. 7(b), which
to embed a watermark that varies wildly from one element t0srpe images used in this test were all different from, but from the same data-
the next. base as the 10 000 images that were used to generate the whitening filter.
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Fig. 7. Detection value distributions for ten watermarks in 10 000 unwatermarked images: (a) maximum detection value for each watermark/imége pair a
(b) all 90 detection values for each watermark/image pair.
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Fig. 8. False positive rates measured with 10 000 unwatermarked images: (a) individual correlation coefficients and (b) final detection vadliel. tEamh
corresponds to one of ten different watermark vectors. The dotted line represents theoretical estimates.

shows ten superimposed histograms of the 90000 correlatiorthe present system, with= 74. The resulting false positive
coefficients computed for each of the 10 watermarks during tpeediction is shown as a dotted line in Fig. 8(a). The model pre-
experiment. The maximum of 90 values drawn from a distribalicts the probability that one correlation coefficient is greater
tion like that in Fig. 7(b) is likely to be higher than zero. than the threshold, not the probability that the maximum of sev-
During the experiment with unwatermarked images, tteral coefficients is greater. Thus, it predi¢t§D, > T}.i €
highest detection value obtained was 0.55. Thus, we have [fe- - 89], rather thanP{D,,.., > T}. Fig. 8(a) indicates how
data to estimaté;,, for ' > 0.55. To estimate this, we must well the model predicted@®{D; > T} in our experiment.
employ a theoretical model, such as the one described in [39]We obtain an estimated upper boundB{D,,,.x > T} by
This model says that, i is the correlation coefficient betweenobserving that
a preselected-dimensional watermark vector and a random
vector drawn from a radially-symmetric distribution, then

cos™! (T)
/ sin?=2(u) du
0

/2 . (
2 sin®=2(w) du
0

T

P{QoorQ;or ---Q,_1} < min <1, Z P{Qi}> . (20)

P{D > T} = R(T,d) = 19) Whe_nQi corresponds to the evefib; > T'), andn = 90, we
obtain
P{Dpax > T} < min(1,90 x R(T,74)). (21)
The whitening filter employed in our detector makes the dis-
tribution roughly spherical, so this model is expected to applhis prediction is shown in Fig. 8(b) as a dotted line.
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Fig. 9. Signal-to-noise ratio.

Fig. 11. Character of the watermark noise when the strength is too high. The
watermark strength in this figure was increased so that the problem should be
visible after printing in this RANSACTIONS

similar to the textures in the image. Thus, when we watermark
an image that contains a homogeneous texture, the watermark is
well-hidden. But when we mark an image that contains widely
varying textures, the mark can become visible. Fig. 11 illus-
trates the problem. The watermark strength in this figure was
increased so that the problem should be visible after printing in
this TRANSACTIONS

Solving the fidelity problem in nonhomogeneous images
would require a modification to the algorithm that attenuates or
shapes the watermark according to local texture characteristics.
This has been left for future work.

Fig. 10. Watermarking with little impact on fidelity.

C. Effectiveness

B. Fidelity The effectiveness of a watermarking scheme is measured as
o ) the probability that the output of the watermark embedder will
The tradeoff between fidelity and robustness is controlled ntain the watermark, subject to constraints on the fidelity of
adjusting the relative weighting used in the mixing of the Wane marked image and the detection threshold or probability of
termark signal and the signal extracted from the original imagse detection. In other words, effectiveness is the probability
(see Section 11-B). As the relative weight assigned to the watgjt (e detection when the marked image is not subjected to
mark signal is increased, the strength of the embedded waigky gistortions after embedding. The effectiveness of the current

mark is increased at the expense of lower fidelity. Once chosg@Rheme is measured and plotted as the dashed ROC timves
the mixing weights were held constant over all experiments dgsch of Figs. 13-20.
scribed in this section. These weights were empirically selected
to yield an average signal-to-'noise rgtio of apout 40dBg. 9 D. Robustness
shows a histogram of thg ratios o_btallned_. Fig. 10 Sh.OWS. an e a practical setting, RST distortions are usually accompa-
ample of a watermarked image with little impact on fidelity. . ) . . . i
It must be noted, however, that signal-to-noise ratio is notnzlled by cropping. Fig. 12(f), (9), and (i) show respectively rota
X ! ' gnar-1 . tion, scaling, and translation with the associated cropping. With
very effective predictor of perceptual quality. The fidelity OT th e current algorithm, cropping can be viewed as distortion of
image depends to a large degree on the perceptual relatlon?'EgJextracted signal b’y additive noise. As such, we expect crop-
between the image and the noise. In general, noise that matches : ’ '
. . . . . RpIAg to degrade the detection value.
the underlying textures in animage is less perceptible than no >fn this section, seven geometric distortion attacks are exam-
that is very different from the image, even at the same signal-to-_ . : . g . . :
noise ratios ined: rotation with and without cropping, scaling up with and
' without cropping, translation with and without cropping, and
The present system generates watermark patterns by makmg ) : . X
. .~ scdling down. Note that scaling down does not imply cropping.
small percentage adjustments to the powers of frequencies ih

the image’s spectrum, so the resulting noise pattern is usuallya receiver-operating-characteristic (ROC) curve is a plot of the probability
of true detection as a function of the probability of false detection. For details
SHere the “signal” is the image, and the “noise” is the watermark pattern. see [40].
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) (h) @
Fig. 12. Examples of geometric attacks: (e) and (a) are the original and padded original respectively; (b)—(d) attacks without cropping; attac{{ijth

cropping.
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Fig. 13. Rotation without cropping,®, 8°, 30°, and45°. (a) Histogram and (b) ROC (dashed line represents the detection values prior to attack).

In order to isolate the effects of rotation, scaling up, and trangrmarked gray padding prior to detection or attack. The amount
lation from cropping, the images have been padded with graf padding is such that none of the rotation, scaling up, and

as shown in Fig. 12(a). The embedder has been applied to thizgaaslation experiments cause image data to be cropped. The
expanded images and then the gray padding replaced with unealy data that is cropped is unwatermarked padding. Thus, the
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differences between the detection values prior to rotation aasisociated cropping of unwatermarked padding does not effect
those after rotation can be attributed solely to the rotation as the detection value.
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The detection value prior to attack is used to measure the efthe watermarked image (the watermarked gray padding) has
fectiveness of the watermarking scheme. This effectivenesseen replaced with nonwatermarked padding. However, the pur-
likely to be reduced in the padded examples since a portipnse of the experiments based on these padded geometric at-
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tacks, shown in Fig. 12(b)—(d), is to isolate the effects due pwobabilities were estimated using the method described in Sec-
geometric distortions from those due to cropping. tion IV-A. In the two plots of Fig. 13, the dashed lines represent
1) Rotation: Two experiments were performed to test théhe detection values prior to attack, i.e., the effectiveness of the
watermark’s robustness against rotation. The first experimesthbedding. The deviations of the solid traces from the dashed
was designed to isolate the effects of rotation from all otheepresent the effects of the attack.
types of attack. The second was a more realistic test of the efin the second experiment, we watermarked the original image
fects of rotation with cropping. without padding, and allowed part of the watermark pattern to
Each trial of the first test comprised the following steps.  be cropped off after rotation. Fig. 12(f) shows an example of
1) Pad an image with neutral gray, increasing its size. Théhat an image looked like after the rotation. This experiment
amount of padding was chosen to allow rotation withowvas performed on 2000 images with rotationsidf 8°, 30°,
any part of the original image going outside of the imagand45°. Fig. 14 shows the results.

boundaries [Fig. 12(a)]. Three immediate observations based on the ROC curve of
2) Embed a randomly-selected watermark in the paddét. 13(b) are that the effects of these four rotations are all
image. similar, for a fixed false positive probability;;,,, (independent

3) Replace the padding with neutral gray again. This rexis) rotation decreases the likelihood of detection (difference
moves any watermark information from the neutral gralyetween the dashed and solid lines), and the effect of rotation on

area. the probability of detection is dependent on thg, or equiva-
4) Run the watermark detector on the image to obtain a dently the threshold. For relatively highy,,, for example10—2
tection value before rotation. or one in a thousand, the current method is extremely robust

5) Rotate the image by a predetermined angle, and cropteorotation. At smaller values dPy,,, for examplel0~*, rota-
the original size. Fig. 12(b) shows what an image looK#n degrades the detection value more significantly. Fig. 14(b)
like after this step. Note that only the padding is croppeélrther shows that the cropping that accompanies rotation has
so we do not crop off any of the watermark pattern.  a significant, negative impact on detection [downward shift of
6) Run the watermark detector on the image to obtain a dbe solid lines in Fig. 14(b) from those in Fig. 13(b)], and the
tection value after rotation. deterioration of the detection value is more dependent on ro-
Since the padding that's cropped off during rotation contaiitgtion angle (different rotations result in different amounts of
no watermark pattern, any difference between the “beforetopping).
value obtained in step 4 and the “after” value obtained in step 6These ROC curves emphasize the importance of the baseline
can only result from the effects of rotation. measurement (dashed lines), which serves as an upper bound
This experiment was performed on 2000 images with rotan robustness. They also show that each of the two experiments
tions of4°, 8°, 30°, and45°. We limited this test to a maximum begin from a different baseline. In the second experiment, the
rotation of45° because rotations beyord° are equivalent to rotation attack is applied to images that have been much more
smaller rotations after a rotation 96°. An image that has been effectively watermarked. The lower effectiveness of the first ex-
rotatedd0° yields exactly the same extracted vector as an unneeriment represents the cropping of watermarked data that oc-
tated image, so a rotation of greater thaf should behave the curs when the watermarked gray padding is replaced with un-
same as a smaller rotation. watermarked gray padding. Recall that these somewhat artifi-
As indicated in Fig. 13(a), the different rotations yielded esial embedding conditions are in place to isolate the effects of
sentially the same results. Fig. 13(b) shows ROC curves befoogation from any further degradation that may occur due to the
and after rotation. For each of the ROC curves, the false-positu®pping that normally accompanies rotation.
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These results demonstrate that the current watermark, tée then translated the image by cropping gray off the bottom
signed to be invariant to rotations, does exhibit a resilience to @nd right, and padding gray onto the top and left. Fig. 12(d)
tation. This watermark has not been explicitly designed to witshows an example of such a translated image. The experiment
stand cropping and the results highlight this fact. was performed on 2000 images at translations of 5%, 10%, and

2) Scale: To test robustness to scaling, we performed thrédé% of the image size. The results are shown in Fig. 18.
experiments. The first and second test the effect of scaling up;The second translation test was performed without padding
with and without cropping. The third tests the effect of scalintihe image before translation, so that part of the watermark pat-
down, with padding. tern is cropped during translation. Fig. 12(i) shows an example

In the first scaling test, the steps performed for each trial we®é this attack. Again, the experiment was performed on 2000
the same as those for the first rotation step, with the excdprages at translations of 5%, 10%, and 15% of the image size.
tion that instead of rotating the image we scaled the image dge results are shown in Fig. 19.

Fig. 12(c) shows an example of an image that has been scaledhe results of the first experiment show that translation has
up after padding and watermarking. The test was performed @@gligible effect on probability of detection. This means that the

2000 images at scales 5%, 10%, 15%, and 20% larger than $g8€0nd testis more a test of robustness to cropping than to trans-
original. The results are shown in Fig. 15. lation, and we see the same sort of pattern that was observed in

The second test was the same as the first except withdif Second rotation and scaling experiments.

padding the images before scaling, so part of the image was
cropped off after scaling. Fig. 12(g) illustrates the attack. THe JPEG Compression
test was performed on 947 images at scales of 5%, 10%, 15%while the purpose of the present watermark design is to sur-
and 20% larger than the original. The results are shown yive RST transformations, it may be important that the water-
Fig. 16. marks also survive other common types of image processing.

For the test of reduced scaling, we do not have to be concerie therefore conducted a test of robustness to JPEG compres-
with cropping. After watermarking and scaling, the image ision.
padded back to its original size. This padding is part of the After watermarking, images were JPEG compressed at
scaling attack, not an operation performed by the detector. Sirteality factors of 90, 80, and 70 using Equilibrium Debabelizer
cropping is not an issue here, the image need not be padfkd. The test was performed on 2000 images. Fig. 20 shows
with gray before watermarking and we performed only one velhe results.
sion of the experiment. The scale-down attack is illustrated in The results show that the likelihood of detection decreases
Fig. 12(h). The test was performed on 2000 images at scaVéth the amount of compression noise introduced and that this
5%, 10%, 15%, and 20% smaller than the original. The resutiscrease is dependent on tRg,. For relatively highP;, =
are shown in Fig. 17. 10~3, the current method is extremely robust to JPEG com-

As with rotation, the results show that scaling up, in generdalession at the qualities tested. At more restrictive false positive
degrades the probability of detection as a functiod’pf. For Probabilities, for example0—*, JPEG aQF' = 70 still yields
the relatively highP;, = 103, scaling has very little effect on @ respectable robustness of about 88%.
the likelihood of detection while aP;, = 10~® the effect is
more significant. We also observe that the results differ slightly V. CONCLUSION
for different scale factors at these lower false positive rates. L . . .

Geometric distortions continue to be a major weakness for

The differences between the ROC curves in Figs. 15 and Iy \watermarking methods. We described a solution to the
clearly show the severe degradation due to the cropping th@mon problems of rotation, scale, and translation. This so-
normally accompanies scaling. As expected, the effect of thigion, is related to earlier proposals in the pattern recognition
cropping increases with the scale factor because higher sqalgatyre regarding invariants of the Fourier—Mellin transform.
factors imply more cropping. However, unlike those proposals, we do not explicitly derive an

Fig. 17 shows that a decrease in scale has virtually no eff@gfariance relationship.
for Py, > 10~ 7 or so and for lowel;, the degradationis only  |nstead of creating a truly RST invariant signal, we create a
slight. signal that changes in a trivial manner as a result of rotation,

The current watermark was designed to be invariant &ale, or translation. The calculation of this projection is per-
changes in scale and these results demonstrate an excef@hed by taking the Fourier transform of the image, performing
resilience to a decrease in scale and good resilience to zadg-polar resampling, and then integrating along the radial di-
increase in scale. Again, these results highlight the negativRnsion. We note that an alternative implementation can be per-
impact of cropping. formed using the Radon transform [27]. We have investigated

3) Translation: We expect translation alone to have no efthis implementation but do not report it here.
fect on the watermark, since the watermark is computed fromThe 1-D watermark has a many-to-one mapping to the 2-D
the magnitudes of the Fourier coefficients. To test this, we peage space. This is advantageous, especially when the em-
formed two experiments. bedder is based on the principle of communications with side

The first experiment was similar to the first rotation anéhformation. Our implementation is a very simple example of
scaling experiments, in that the image was padded before wlais principle and we believe that future work can lead to signif-
termarking and the padding was replaced after watermarkingant improvements.
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Experimental results on a database of over 2000 imaggsi]
demonstrate that the method is resilient to either rotations, scale
changes, or translations. In addition, the technique is resilier
to mild JPEG compression. The degree of resilience changes as
a function of the probability of false positive. The results alsol13]
demonstrate the weakness of this method to cropping, an attack
against which no steps have been taken in the design. [14]

Future work will focus on more effective embedding and RST[15]
resilient watermarking designed to survive cropping and com-
pression. Improvements in effectiveness are possible in the ap-6]
proximate inversion of the log-polar resampling and in the dis-
tribution of the difference signal to the log-polar coefficients. ;7
Methods based on gradient descent will be investigated. Also,
the current technique of uniform distribution does not fully ex-
ploit the visual properties of the host image.

We will examine techniques for building crop resistant wa-
termarks that rely on first subdividing the image into a numbef°!
of possibly overlapping, tiles. The RST resilient watermark is
then embedded in each of these tiles. The detection algorithiro]
is applied to each tile and the results averaged together. With
appropriate constraints on the tiling and the symmetry of the;21]
watermark this technique may provide the desired resilience to

cropping.
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