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Abstract—This paper presents the theory, design principles,
implementation, and performance results ofPicHunter, a proto-
type content-based image retrieval (CBIR) system that has been
developed over the past three years. In addition, this document
presents the rationale, design, and results of psychophysical exper-
iments that were conducted to address some key issues that arose
during PicHunter’s development. ThePicHunter project makes
four primary contributions to research on content-based image
retrieval. First, PicHunter represents a simple instance of a general
Bayesian framework we describe for using relevance feedback to
direct a search. With an explicit model of what users would do,
given what target image they want,PicHunter uses Bayes’s rule
to predict what is the target they want, given their actions. This
is done via a probability distribution over possible image targets,
rather than by refining a query. Second, an entropy-minimizing
display algorithm is described that attempts to maximize the
information obtained from a user at each iteration of the search.
Third, PicHunter makes use ofhidden annotation rather than
a possibly inaccurate/inconsistent annotation structure that the
user must learn and make queries in. Finally,PicHunter intro-
duces two experimental paradigms to quantitatively evaluate the
performance of the system, and psychophysical experiments are
presented that support the theoretical claims.

Index Terms—Bayesian search, content-based retrieval, digital
libraries, image search, relevance feedback.

I. INTRODUCTION

SEARCHING for digital information, especially images,
music, and video, is quickly gaining in importance for busi-

ness and entertainment. Content-based image retrieval (CBIR)
is receiving widespread research interest [1]–[4], [6]–[20].
It is motivated by the fast growth of image databases which,
in turn, require efficient search schemes. A search typically
consists of a query followed by repeated relevance feedback,
where the user comments on the items which were retrieved.
The user’s query provides a description of the desired image or
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class of images. This description can take many forms: it can
be a set of keywords in the case of annotated image databases,
or a sketch of the desired image [21], or an example image,
or a set of values that represent quantitative pictorial features
such as overall brightness, percentages of pixels of specific
colors, etc. Unfortunately, users often have difficulty specifying
such descriptions, in addition to the difficulties that computer
programs have in understanding them. Moreover, even if a
user provides a good initial query, the problem still remains of
how to navigate through the database. After the query is made,
the user may provide additional information, such as which
retrieved images meet their goal, or which retrieved images
come closest to meeting their goal. This “relevance feedback”
stage differs from the query by being more interactive and
having simpler interactions.

To date, there has been a distinct research emphasis on the
query phase and therefore finding better representations of im-
ages. So much emphasis is placed on image modeling that rele-
vance feedback is crude or nonexistent, essentially requiring the
user to modify their query [7], [11], [17]. Under this paradigm,
retrieval ability is entirely based on the quality of the features
extracted from images and the ability of the user to provide a
good query. Relevance feedback can be richer than this. In par-
ticular, the information the user provides need not be expressible
in the query language, but may entail modifying feature weights
[22] or constructing new features “on the fly “[23].

PicHuntertakes this idea further with a Bayesian approach,
representing its uncertainty about the user’s goal by a proba-
bility distribution over possible goals. This Bayesian approach
to the problem was pioneered by Coxet al. [3]. With an explicit
model of a user’s actions, assuming a desired goal,PicHunter
uses Bayes’s rule to predict the goal image, given their actions.
So the retrieval problem is inverted into the problem of pre-
dicting users. Section IV describes how to obtain this predictive
model.

An impediment to research on CBIR is the lack of a quanti-
tative measure for comparing the performance of search algo-
rithms. Typically, statistics are provided on the search length,
e.g., the number of images that were visited before an image
was found that was satisfactorily “similar” to a desired target
image. The use of quotes around the word “similar” is delib-
erate; it is obvious that the search length depends on the content
structure of the database and on how strict the criteria are for
accepting an image as similar. In this context, searches can be
classified into three broad categories.

1057–7149/00$10.00 © 2000 IEEE
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1) Target-Specific Search or, Simply, Target Search:Users
are required to find a specific target image in the database;
search termination is not possible with any other image, no
matter how similar it is to the singular image sought. This type
of search is valuable for testing purposes (see Section V) and
occurs, for example, when checking if a particular logo has
been previously registered, or when searching for a specific
historical photograph to accompany a document, or when
looking for a specific painting whose artist and title escapes the
searcher’s memory.

2) Category Search:Users search for images that belong to
a prototypical category, e.g., “dogs,” “skyscrapers,” “kitchens,”
or “scenes of basketball games;” in some sense, when a user
is asked to find an image that is adequately similar to a target
image, the user embarks on a category search.

3) Open-Ended Search—Browsing:Users search through a
specialized database with a rather broad, nonspecific goal in
mind. In a typical application, a user may start a search for a
wallpaper geometric pattern with pastel colors, but the goal may
change several times during the search, as the user navigates
through the database and is exposed to various options.

The Bayesian approach described above can be adapted to ac-
commodate all three search strategies. We focused on the target
search paradigm for the reasons explained in Section V.

Another advantage of having a predictive model is that we can
simulate it in order to estimate how effective a particular kind
of interaction will be, and thereby design an optimal interaction
scheme. In Section VII, we describe a novel display algorithm
based on minimum entropy. This approach is evaluated by both
simulation and psychophysical experiments.

Searching for images in large databases can be greatly
facilitated by the use of semantic information. However, the
current state of computer vision does not allow semantic
information to be easily and automatically extracted.1 Thus,
in many applications, image databases also include textual
annotation. Annotated text can describe some of the semantic
content of each image. However, text-based search of annotated
image databases has proved problematic for several reasons,
including the user’s unfamiliarity with specialized vocabulary
and its restriction to a single language. Section VI examines
this problem in more detail.

This paper presents an overview ofPicHunter, a prototype
image retrieval system that uses an adaptive Bayesian scheme,
first introduced in 1996 [3], and continuously updated with im-
proved features up to the present [1], [2], [4]–[6]. We present a
conceptually coherent and highly expressive framework for the
image retrieval problem, and report on validation of this frame-
work using a simple system and careful experimental methods.
Section II describes the theoretical basis forPicHunterand de-
rives the necessary Bayesian update formulae. In order to im-
plement the theoretical framework, it is necessary to decide
upon a user interface and a model of the user. These are de-
scribed in Sections III and IV. The user model is supported
by psychophysical experiments that are also reported in Sec-
tion IV. In order to evaluate the effectiveness of relevance feed-
back and a variety of other implementation issues, we introduce

1Color has proven to be an image feature with some capability of retrieving
images from common semantic categories [19], [24]–[29].

two experimental paradigms that are described in Section V.
We also provide experimental results that evaluate the perfor-
mance ofPicHunterwith and without relevance feedback. Next,
in Section VI, we describe how annotation can be hidden from
the user yet still provide valuable semantic information to ex-
pedite the search process. Usually, the set of retrieved items
that is displayed to a user is the closest set of current matches.
However, such a scheme is not optimal from a search perspec-
tive. In Section VII, we describe a strategy for display which
attempts to maximize the information obtained from the user
at each iteration of the search. Theoretical and psychophysical
studies demonstrate the utility of the information maximization
approach. Finally, Section VIII describes possible extensions to
the PicHuntermodel, Section IX details future avenues of re-
search, and Section X concludes with a discussion of the con-
tributionsPicHuntermakes to CBIR research together with a
discussion of broader issues.

II. BAYESIAN FORMULATION

During each iteration of a PicHunter ses-
sion, the program displays a set of images from its
database, and the user takes an actionin response, which
the program observes. For convenience thehistory of the
session through iteration is denoted and consists of

.
The database images are denoted , andPicHunter

takes a probabilistic approach regarding each of them as a puta-
tive target.2 After iteration PicHunter’s estimate of the prob-
ability that database image is the user’s target , given the
session history, is then written . The system’s
estimate prior to starting the session is denoted .
After iteration the program must select the next set of
images to display. The canonical strategy for doing so selects
the most likely images, but other possibilities are explored later
in this paper. So long as it is deterministic, the particular ap-
proach taken is not relevant to our immediate objective of giving
a Bayesian prescription for the computation of .
From Bayes’ rule we have

That is, thea posteriori probability that image is the
target, given the observed history, may be computed by evalu-
ating , which is the history’s likelihood given
that the target is, in fact, . Here represents thea
priori probability. The canonical choice of assigns
probability to each image, but one might use other starting
functions that digest the results of earlier sessions.3

2This amounts to the implicit assumption that the target is in the database,
and this is indeed the case in all of our experiments. Formulations without this
assumption are possible but are beyond the scope of this paper.

3The starting function must not assign probability zero to any image; oth-
erwise the system’sa posterioriestimate of its probability will always remain
zero.
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ThePicHuntersystem performs the computation of
incrementally from according to

where we may write instead of
because is a deterministic

function of .
The heart of our Bayesian approach is the term

, which we refer to as theuser modelbecause its
goal is to predict what the user will do given the entire history

and the assumption that is his/her target. The user
model together with the prior give rise inductively to a prob-
ability distribution on the entire event space , where

denotes the database of images anddenotes the set of
all possible history sequences . The par-
ticular user model used in our experimental instantiation of the
PicHunter paradigm is described in section IV. Note that the
user model’s prediction is conditioned on imageand on all
images that have been displayed thus far. This means that the
model is free to examine the image in raw form (i.e., as pixels),
or rely on any additional information that might be attached. In
practice the model does not examine pixels directly but relies
instead on an attached feature vector or other hidden attributes
as described later in this paper.

Letting denote the number of images in each iteration,
our implementation assumes a space of possible
actions corresponding to the user’s selection of a subset of the
displayed images, or his/her indication that one of the im-
ages is the target, or an “abort” signal respectively. But much
more expressive action sets are possible within our framework
(Section IX-C).

A contribution of our work is then the conceptual reduction of
the image search problem to the three tasks: 1) designing a space
of user actions, 2) constructing a user model, and 3) selecting an
image display strategy.

Our implementation makes the additional simplifying as-
sumption that the user model has the form ,
i.e., that the user’s action is time-invariant. Note, however, that
as a consequence of our Bayesian formulation, even this simple
time-invariant model leadsPicHunterto update its probability
estimate in a way that embodies all the user’s actions from the
very beginning of the search.

Beyond the time-invariant user models of our experiments are
models that fully exploit our Bayesian formulation and adapt
their predictions based on the entire history. To preserve the pos-
sibility of incremental computation we introduce the notion of
user models withstateand write thePicHunterupdate equation
as

(1)
where the model starts in some initial stateand updates its
state to produce after observing action . Notice that
we have said nothing of the structure of the state variable. But
for efficiency’s sake it makes sense to design it as a finite and
succinct digest of the history .

Equation (1) is, however, a fully general way to express
PicHunter update since it spans the entire spectrum from
time-invariant models where the state is trivial and constant,
through models that carry forward a finite amount of state, to
the original form where the state
is just and grows without bound.

Finding effective models with state is an intriguing oppor-
tunity for future work within thePicHunter framework. We
imagine that state might be used to carry forward estimates of
feature relevancy, user type (e.g., expert versus beginner), gen-
eral model type (e.g., color versus texture), and others.

III. U SERINTERFACE

PicHunteruses a simple user interface designed to search for
target images with minimum training. The rationale is that CBIR
systems should ultimately be used as image-search tools by the
general user on the World Wide Web, hence their usage should
be effortless and self-explanatory. The user provides relevance
feedback on each iteration of the search. The interface and user
model (described in Section IV) are based onrelative similarity
judgmentsamong images, i.e., “these images are more similar
to the target than the others.” If all images seem dissimilar to
the target, the user can select none. Many systems instead use
categorical feedback,where the user only selects the images that
are in the same category as the target [16], [23]. However, this
burdens the user to decide on a useful categorization of images
in a possibly unfamiliar database, and is more suited to category
search (Section I) than target search.

The user interface is shown in Fig. 1. It consists of a
small number of images; in this particular implementation

. The initial display is determined by the display-up-
date algorithm. The target is always present in the display
to avoid possible interference from memory problems. Of
course, the target could be in the form of a traditional printed
photograph,but in such cases the CBIR system is unaware of
what the target is. The user selects zero or more images that are
similar to the desired target image by clicking on them with the
mouse. If users wish to change their selection, they can unselect
images by clicking on them again; the mouse clicks function as
toggles in selecting/unselecting images. As mentioned above,
users can select no images if they think that all images are
dissimilar to the desired target image. After users are satisfied
with their selection, they hit the “GO” button to trigger the next
iteration. The program then interprets their selection based on
the user model, and subsequently the display-update algorithm
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Fig. 1. PicHunter’s user interface.

(Section VII) decides which images will be shown in the
next iteration. The process is repeated until the desired image is
found. When this is achieved, the user clicks the mouse button
on the image identifier that is found directly above the image.

IV. USERMODEL: ASSESSINGIMAGE SIMILARITY

As explained in the previous section, the key term in the
Bayesian approach is the term , where

stands for the specific user conducting the search. As-
sume that . The task of the user
model is to compute

, in order to update the probability
that each image in the database might be the target image

. The first approximation we make is that all users respond
in the same way, so that the dependence oncan be dropped.
This approximation is not entirely supported by our human ex-
periments, but we believe that more complex models should be
motivated by the failure of a simple one. Kurita and Kato (1993)
[30] reported work in taking account of individual differences.

The second approximation is that the user’s judgment
of image similarity can be captured by a small number
of statistical pictorial features, in addition to some se-
mantic labels, chosen in advance. That is, it is a function
of some distance measure between the
feature values and

of images and .

Psychophysical experiments helped us choose the distance
measure as well as the form of the probability function. Dif-
ferent models are compared in terms of the probability they as-
sign to the experimental outcomes; models which assign higher
probability are preferred.

When and the user must pick an image (is either
1 or 2), the probability function that we found to perform best
was sigmoidal in distance (in what follows, we drop the iteration
subscript, , for simplicity):

(2)

where is a parameter of the model chosen to maximize the
probability of the data using a one-dimensional search.

When and the user must pick , a
convenient generalization is the softmin

(3)

Note that transitive ordering of the images is not required by this
model.
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When the user can pick any number of images, including
zero, no complete model has been found. One approach is to as-
sume that the user selects each image independently according
to . Another approach is to assume that the user first
decides the numberof images to select and then chooses one
of the possible selections of images, according to a
softmin. Both approaches achieved similar probabilities for the
data once their weights were tuned. This paper reports on the
latter approach. Unfortunately, both give a constant probability
to selecting zero images, independent of the target and the
choices, which is at odds with our experimental results and
limits the accuracy of our simulations.

Two possible schemes for combining multiple distance mea-
sures were considered. The first scheme multiplied the softmin
probabilities for each distance measure. The second scheme
simply added the distance measures before computing the
softmin. In both cases, each distance measure was multiplied
by an adaptive scaling factor , since distance measures are
generally not on the same scale. These scaling factors were
set to maximizing the probability of the training data, using
gradient ascent. The second model achieved a higher maximum
probability, so it was chosen for thePicHunter experiments.
The resulting formula is

(4)

The individual distance was the simple L1 distance between
feature and .

A. Pictorial Features

This subsection deals with the pictorial features that the
model uses for predicting human judgment of image similarity.
It must be emphasized that we used rudimentary pictorial
features, because our objective was not to test features as such,
but only to use them as a tool to test the Bayesian approach
and the entropy display-updating scheme. Hidden semantic
features are covered in Section VI.

The original pictorial version ofPicHunter[3] worked with
18 global image features that are derived for each picture in the
database. These features are: the percentages of pixels that are
of one of eleven colors (red, green, blue, black, grey, white,
orange, yellow, purple, brown pink), mean color saturation of
entire image, the median intensity of the image, image width,
image height, a measure of global contrast, and two measures of
the number of "edgels,” computed at two different thresholds.
Thus the dominant influence is that of chromatic content, in the
form of the 11-bin color histogram. These features are admit-
tedly not as sophisticated as those used in other CBIR systems,
but they merely provided a starting point for experimenting with
the initial system.

The current version ofPicHunter incorporates some rudi-
mentary information on the spatial distribution of colors, in ad-
dition to a conventional color histogram. The current version’s
pictorial features have the following three components.

1) HSV-HIST, a 64-element-long histogram of the HSV
(Hue, Saturation, Value) values of the image’s pixels.

These values are obtained after conversion to HSV color
space and quantization into color bins.

2) HSV-CORR, a 256-element long HSV color autocorrel-
ogram at distances 1, 3, 5, and 7 pixels [24]. The pixel
values are subjected to the same preprocessing as HSV-
HIST. The first 64 bins are the number of times each pixel
of a given color had neighbors of the same color at dis-
tance 1. The next 64 bins are for distance 3, etc.

3) RGB-CCV, a 128-element long color-coherence vector of
the RGB image after quantization into color
bins. This vector is the concatenation of two 64-bin his-
tograms: one for coherent pixels and one for incoherent
pixels. A coherent pixel is defined as one belonging to a
large connected region with pixels of the same color [25]

B. Relative—Versus Absolute-Distance Criteria

1) Relative-Distance Criterion:In this scheme, the set
of selected images in the display

, as well as the set of nons-
elected images, play a role in approximating theuser-model
term by a function [3], [4]. The distance
difference is computed for every
pair of one selected and one nonselected image.
This difference determines, of course, whetheris closer to

or to ; the difference is first transformed through a
sigmoid function [(2) or (3)], and is then applied toward com-
puting the function . Thus, each pair increases
the probabilities of images, , that are closer to , and
decreases the probabilities of images that are closer to in
feature space.

2) Absolute-Distance Criterion:In this scheme, only one
image in the display can be selected by the user in each
iteration. The selection of either increases or decreases the
probability of an image , depending on whether is
small or large, respectively. In our implementation of the abso-
lute-distance criterion, this updating of the probability

takes the form

where is a monotonically decreasing function of its argu-
ment. One way to think about the updating of probabilities is to
visualize the selected image as defining an “enhancement
region” in the -dimensional feature space, centered at .
The probability of each image in this region is enhanced,
and the magnitude of the enhancement decreases as the distance
from increases. After obtaining a new value
for each image by multiplying it by , each value is divided by
the grand total , such that the ultimate values
at the end of each iteration sum up to 1. This post-normaliza-
tion has the effect of enhancing or depressing the probabilities
of images whose feature vectors are near or far, respectively,
from the selected image in feature space, independently
of the magnitude of ; the only requirement is that be
monotonically decreasing. The series of iterations can be visu-
alized as a series of enhancement regions that progress toward
the target from one iteration to the next, getting progressively
narrower as they converge to a small region that contains the
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Fig. 2. The three types of displays used in the experiments: (a) the
“2AFC” configuration, (b) the “relative-similarity” configuration, and (c) the
“absolute-similarity” configuration.

target. In this scheme, the nonselected images do not
influence at all the distribution of probabilities in the database.
Thus, this scheme can also be referred to as a “query-by-ex-
ample” search, because only one image can be selected in each
iteration, providing an example for converging to the target.

C. Experiments: Judgment of Image Similarity by Humans

This section deals with experiments that were designed to col-
lect data on how humans judge image similarity, for use in de-
veloping a user model with some knowledge of human perfor-
mance. In this experiment we used the three display configura-
tions shown schematically in Fig. 2. The task of the user was
always the same for a given configuration, but differed across
configurations.

Fig. 2(a) shows the two-alternative forced-choice configura-
tion, which we shall refer to simply as the “2AFC” configura-
tion. Three images are presented on the screen: the target image
on top, and two test images on the bottom. We will refer to the
target, left test, and right test images in this and similar triplet
configurations as T, L, and R, respectively; collectively, the set
will be referred to as the LTR triplet. The user must select the
test image that he/she thinks is more similar to the target image.

The second type of display, referred to as the “relative-simi-
larity” configuration, is shown in Fig. 2(b). There are now five
buttons between the bottom two images. The user clicks on one
of the five buttons, depending on how he/she judges the relative
similarities of the two test images are with respect to the target
image, using the 5-point scale. If he/she thinks that one of them
is clearly more similar to the target image, he/she clicks on the
corresponding extreme button (left-most or right-most). If the

two test images seem to be equally similar or equally dissimilar
to the target image, then the user clicks on the middle button.
If one of the test images is somewhat more similar to the target
image, then he/she clicks on the button immediately to the left
or to the right of the center, as appropriate.

The third type of display, referred to as the “absolute-sim-
ilarity” configuration, involves two images, one on top of the
other, and five buttons at the bottom of the screen, as shown
in Fig. 2(c). These buttons are used by the user to denote the
degree of similarity of the two images, on a 5-point scale. The
extreme left button indicates the least degree of similarity (0),
and the extreme right one is used to show the maximum degree
of similarity (4). If the two images have intermediate degrees of
similarity, the user clicks on one of the intermediate three but-
tons, as appropriate.

The stimuli for this experiment consisted of a set of 150 LTR
triplets, in all of which the L, T, and R images were randomly se-
lected from a database of 4522 images. The user was presented
with a sequence of trials, i.e., a sequence of randomly selected
LTR triplets, and was asked to indicate his/her choices based on
image similarity. Each triplet was shown in all three configura-
tions of Fig. 2, and these three displays were randomly scattered
among the 600 trials (150 of type 2a, 150 of type 2b, and 300
of type 2c, i.e., 150 for LT and 150 for RT pairings). Five users
took part in this experiment. They were exposed to LTR triplets
for about 20 min before the beginning of a session, so as to ac-
custom themselves to the variety of images in the database and
the range of similarities and dissimilarities. They were told that
the images they were exposed to represented a good sample of
all the images in the database. This exposure would allow them
to calibrate their scales of similarity [31] to produce choices that
are well distributed across the entire range, and this was indeed
the case with most of the users. The results from these exper-
iments indicated that 2AFC choices correlated very well with
both the relative-similarity and the differences between the ab-
solute-similarity judgments of the same LTR triplets. The data
supported the idea of using some form of distance metric, and
were used for adjusting the weights of the distance function for
the pictorial features of the user model [see (4)].

V. EXPERIMENTAL PARADIGM—TARGET TESTING

The paradigm oftarget testingrequires the user to find a
specific target image in the database. When a user signifies
that he/she has found the target, there are two possibilities:
1) if this is indeed the target, the search is terminated; 2) if
the user mistakenly thinks that she/he found the target, then
an appropriate message informs them of their mistake and
instructs them to continue the search (the “ABORT” button is
there for frustrated users who lose interest in finding the target
after a lengthy search). This section presents more details on
the implementation of the target testing paradigm that was used
in the vast majority of our experiments. General remarks are
made in Section V-A, and specific details on the databases are
presented in Section V-B. Section V-C discusses two major
memory schemes, and experimental results are given in the last
two sections.
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A. Rationale

The main problem with evaluating the performance of CBIR
systems that terminate a search when the user finds an image
which is “adequately similar” to a target image is that the simi-
larity criteria can vary from user to user. This is reflected in the
data we obtained in two different search-termination strategies:
one in which users terminate the search when a “similar” image
is encountered, and another employing target testing. The stan-
dard deviation across users is much higher in the former case
(Section V-D), underlying the wide variability in judging image
similarity. Thus it is very difficult to evaluate a CBIR system’s
performance under a category search, or a very-similar-to-target
search termination scheme.

The main reason for deciding to employ target testing in
PicHunterwas precisely our belief that the use of more objec-
tive criteria of performance than category search results in more
reliable statistical measures. Theperformance measurethat has
been used throughout our experiments isthe averagenumber

of images required to converge to the desired specific target.
Typically, we obtained this average across 6–8 users, with
each user’s score averaged across searches of 10–17 randomly
selected target images. This performance measure is extremely
useful in two ways: 1) It provides a yardstick for comparing
different PicHunter versions and evaluating new algorithmic
ideas; 2) it is also a first step in the direction of establishing
a benchmark for useful comparisons between CBIR systems,
when coupled with a baseline search scheme, as explained in
Section V-E.

B. Databases

The pictorial database was assembled using images from 44
Corel compact disks (CD’s), each containing 100 images with
a common theme such as horses, flower gardens, eagles, pic-
tures of Eskimo everyday life, scenes from ancient Egyptian
monuments, etc. [32]. To these 4400 images we added 122 im-
ages from a nonthematic Corel CD for a total of 4522 images.
This database was used in all versions ofPicHunterwhere the
user model was based exclusively on pictorial features. In ad-
dition, we created a database of 1500 annotated images, which
was a proper subset of the 4522-image set, from 15 thematic
CD’s. This semantic database is described in more detail in Sec-
tion VI-A.

C. Schemes with and Without Memory

PicHunter differs from most CBIR systems along another
dimension: how the user’s relevance feedback is treated
from the very beginning of a search. Whereas most systems
tend to concentrate on the user’s action only in the previous
iteration,PicHunter’s Bayesian formulation empowers it with
“long-term” memory: all the user’s actions during a target
search are taken into consideration. Nevertheless, the benefit
of such memory has not been demonstrated experimentally.
It is conceivable that performance gains from the inclusion of
memory may depend on other conditions. Investigating such
dependencies was the purpose of the experiments presented in
Section V-D.

D. Experiments on Features, Distance, and Memory Schemes

All the experiments reported in this paper were conducted
with the color images displayed on 1280 × 1024-pixel monitor
screens, measuring 38 cm by 29 cm, viewed from a distance
of about 70 cm. The programs ran on Silicon Graphics Indigo2
workstations. Individual images were either in “portrait” or in
“landscape” format, and were referred to by their unique identi-
fication number. They were padded with dark pixels either hori-
zontally or vertically to form square icons that measured 7.25 ×
7.25 cm. All users tested perfect for color vision, scoring 15/15
on standard Ishihara test plates. All users were also tested for
acuity, and found to have normal or corrected-to-normal visual
acuity.

This set of experiments [5], [6] was designed to study the
role of the following components: 1) memory during the search
process; 2) relative-distance versus absolute-distance judgment
of image similarity (Section IV-B); 3) semantic information
(Section VI). Toward this goal, we tested six versions of
PicHunter, which we code with trigraphs XYZ for mnemonic
reasons. The letters in the trigraphs XYZ refer to components
1–3 above, in that order. Thus, the first letter X refers to
memory: M or N denote that the algorithm did or did not use
memory, respectively, in the search process.refers to the
standard Bayesian system of Section II.refers to a system
that bases its actions on the user’s relevance feedback for only
the last display. The second letter Y, referring to distance, can
be either or to denote whether the model used relative
or absolute distances, respectively. Finally, the last letter Z is
devoted to semantic features, and it can have three possible
values: , or , or denote, respectively, that only pictorial
features, or only semantic features, or both, are used in the user
model for predicting judgments of image similarity. The picto-
rial features in these experiments were the 18 features described
in Section IV-A. All the experiments of this section were run
with algorithms that used the most-probable display-updating
scheme of Section VII-A. Our previous experience indicates
that some XYZ combinations are of little practical value, thus
we concentrated on the following six versions.

1) MRB: Uses memory, relative distance, both semantic
and pictorial features.

2) MAB: Same as MRB, but with absolute distance.
3) NRB: Same as MRB, but doesn’t use memory.
4) NAB: Same as MAB, but doesn’t use memory.
5) MRS: Same as MRB, but uses only semantic features.
6) MRP: Same as MRB, but uses only pictorial features.

Six first-time PicHunterusers, naive as to the experimental
purposes, participated in this study. They ran the experiment
in a 6-users × 6-versions Latin-square design [33]. Each user
went through 15 target searches, terminating the search under
the target testing paradigm; all searches terminated successfully.
The results of these experiments are shown in Table I. The first
row has the average number V of 9-image displays visited be-
fore convergence to the target; smaller values of V denote better
performances. The second row displays the standard error SE,
and the third row shows the ratio SE/V, as a measure of the
variability of V across users. Two experienced users also ran
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TABLE I
RESULTS OF THE EXPERIMENT THAT WAS

DESIGNED TOTEST THEROLES OFMEMORY, DISTANCE METRIC, AND

SEMANTIC FEATURES IN PICHUNTER. THE EXPECTEDVALUE OF V UNDER

RANDOM SEARCH IS (1500/2)/9= 83.3. IN THIS, AS WELL AS IN TABLES II,
IV, AND V, SMALLER VALUES OFV SIGNIFY BETTERPERFORMANCES

the experiments under the same conditions. Their averages are
shown below the data for the naive users.

The following main trends can be observed in the data.
First, when one compares the results of the MRB and the MRS
schemes, performance with the semantics-only features (MRS)
is substantially better than with the semantics-plus-pictorial
features (MRB). This is just the opposite of the expected
behavior; namely, if the pictorial features were well chosen,
their inclusion should improve, rather than worsen, perfor-
mance (even if semantic features dominate in judgments of
similarity, the addition of pictorial features should at worst keep
performance the same). One obvious conclusion is that the 18
features ofPicHunter’s original version need to be refined, and
this is precisely what was done in the most recent version (see
Section IV-A).

Second, the clear advantage of the MRS version over all
others underscores the role played by semantic features in the
search process. This fact is also corroborated by the experi-
mental data of Sections VI-B and VII-E.

Third, pair-wise comparison of versions MRB to NRB and
MAB to NAB show that the effect of memory depends on
the distance criterion. The former comparison indicates that
memory improves the relative-distance version, while the latter
comparison shows thatmemory slightly worsens the abso-
lute-distance version. This apparent paradox can be explained
if one visualizes the search in the absolute-distance version
as an enhancement region that moves toward the target across
the iterations. Since probabilities are updated by multiplying
factors cumulatively in long-memory versions, this memory
adds a delay by introducing “inertia,” due to the effect of all the
previous iterations. By contrast, this accumulation is helpful
in the the relative-distance versions, in which the target is
approached as the feature space is successively partitioned in
each iteration [5].

Fourth, other than the optimal scheme MRS, the next best one
is the MRB scheme, which incorporates memory, a relative-dis-
tance measure, and both kinds of features; all other schemes per-
form somewhat worse than the two best schemes.

Fifth, as expected, the experienced users were substantially
more efficient than the inexperienced ones.

E. Target and Baseline Testing as a Benchmark for Comparing
CBIR Systems

As argued earlier, there is a great need for a benchmark for
comparing CBIR systems. Such a benchmark can also be used
for assessing the value of incorporating a new approach for a

TABLE II
RESULTS OFTHE EXPERIMENT WITH TARGET SEARCH AND CATEGORY

SEARCH. THE EXPECTEDVALUE OF V UNDER RANDOM SEARCH IS 83.3. THE

ASTERISK ONRAND/C IS MEANT TO INDICATE THAT THIS IS NOT A

VERSION OF THEPICHUNTERCBIR SYSTEM

specific system, by comparing the new version’s performance
against that of the original version. Ideally, one hopes for an
automated comparison, but this is not feasible at the present.
Hence, our efforts must be focused on producing a benchmark,
based on efficient experiments with as few human users as pos-
sible. The benchmark must yield a robust estimate of perfor-
mance that is representative of performances of the population
as a whole. In this section we describe such a scheme based
on the target testing paradigm. Our experimental results tend
to confirm our intuition, and in this sense are not surprising.
But such confirmation is valuable in guiding the development
of complex systems that interact with humans.

To be able to compare performances with systems that search
for a similar-category image, rather than a unique image target,
we need to establish a performance baseline against which to
compare other versions. Such a baseline is provided by a sim-
ilar-target search, with a random display update, since it is rea-
sonable to determine what the performance would be in the
complete absence of any relevance feedback from the user. This
motivated the present set of experiments, that were conducted
with six first-time PicHunterusers, who were naive as to the
purposes of the experiment [6]. These users were the same as
those who participated in the experiments of Section V-D. We
have just introduced a new option, namely whether searches are
terminated under target testing (T), or under “category” search
(C), in which an image similar to the target is found. Thus,
MRB/T and MRS/T denote the same target-specific versions of
PicHunterthat were referred to as MRB and MRS, respectively,
in Section V-D. Similarly, MRB/C is the MRB version that ter-
minates searches when a similar image is found. In addition to
MRB/T, MRS/T and MRB/C, the fourth scheme that we exper-
imented with was RAND/C. RAND indicates that displays are
updated at random, independently of the user’s feedback, with
the only restriction of not displaying images repeatedly, if they
were already displayed in previous iterations.

The first three rows in Table II are the results with searches
by these four schemes for the six naive users, each searching
for the same 15 target images. In the XYZ/C searches, users
were instructed to terminate the search when they encountered
an image which looked similar to the target image. The entries of
the Table follow the same convention as that of Table I. Namely,
the first row shows the mean number V of 9-image displays
required to converge to the target, averaged across the means of
6 users, where each user’s performance was averaged across the
15 targets. The Table also includes the standard error SE, as well
as the ratio SE/V, which is a measure of the relative variability of
V across users. The last row has the averages V of the same two
experienced users who also ran the experiments of Section V-D.
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The entries for columns MRB/T and MRS/T are duplicated from
Table I.

The following observations can be drawn from the data of
Table II.

1) RAND/C converged rather fast to a picture that the av-
erage user judged to be similar to the target, establishing
a high baseline standard. This makes it necessary to re-
visit results given in other reports where similar images
are retrieved, but no baseline is established.

2) Despite this high standard, performance with the cor-
respondingPicHunter scheme MRB/C is substantially
better.

3) Variability in the baseline scheme RAND/C is markedly
higher by a factor of 1.85 than that in MRB/C, which in
turn is higher than that of the MRB/T scheme by a factor
of 1.88. Since low variability allows efficient tests with
few users, target search offers a valuable testing paradigm
for getting representative performance data.

4) One must remark on the solid performance of the seman-
tics-only target-search MRS/T version, which is compa-
rable to the category-search MRB/C version, and better
than the baseline.

5) Again, as expected, the performance of the experienced
users was considerably better that of the naive ones, with
the notable, but expected, exception of the random cate-
gory search.

VI. HIDDEN ANNOTATION

Systems that retrieve images based on theircontentmust in
some way codify these images so that judgments and inferences
may be made in a systematic fashion. The ultimate encoding
would somehow capture an image’s semantic content in a way
that corresponds well to human interpretation. By contrast, the
simplest encoding consists of the image’s raw pixel values. In-
termediate between these two extremes is a spectrum of possi-
bilities, with most work in the area focusing onlow-level fea-
tures, i.e., straightforward functions of the raw pixel values (see
[34], [21], [7], [35], [11], [12], [36], [17], [37]–[39], and [19]).
Some such features, such as color, begin to capture an image’s
semantics, but at best they represent a dim reflection of the
image’s true meaning. The ultimate success of content-based
image retrieval systems will likely depend on the discovery of
effective and practical approaches at a much higher level. In this
section we report conceptual and experimental progress toward
this objective.

Any attempt to codify image semantics inevitably leads to
design of a language with which to express them. If a human
operator is required to formulate a query using this language,
and interpret a database image’s description in terms of the lan-
guage, two serious problems arise. First, the language must not
only be effective in theory, but must also serve as a natural tool
with which a human can express a query. Second, inaccurate or
inconsistent expression of each database image in terms of the
language can lead to confusion on the part of the user, and ul-
timately undermine the effectiveness of, and confidence in, the
system. The need for accurate and consistent expression can also
limit the language’s design.

For these reasons we are led to studyhidden languagesfor
semantic encoding, and in particular hidden Boolean attributes
affixed to each database image.

A. Annotation Implementation

In an effort to characterize how CBIR performance is en-
hanced by the introduction of semantic cues, we created an an-
notated database of 1500 images from 15 thematic CD’s of 100
images each. A set of approximately 138 keywords was identi-
fied by one of the authors who had extensive exposure to our ex-
perimental database of 1500 images taken from the Corel data-
base [32]. The objective was to obtain a set of keywords that
covered a broad spectrum of semantic attributes. Each image
was then visually examined and all relevant keywords iden-
tified. An additional set ofcategorykeywords were then as-
signed automatically. For example, the “lion” attribute causes
the category attribute “animal” to be present. Altogether there
are 147 attributes. These supplement the pictorial features used
by the basicPicHunterversion, and described in [2]. The 147
semantic attributes are regarded as a boolean vector, and nor-
malized Hamming distance combines their influence to form,
in effect, an additionalPicHunterfeature. Table III shows rep-
resentative semantic labels and suggests the level of semantic
resolution. It must be emphasized that these semantic features
are hidden: users are not required to learn a vocabulary of lin-
guistic terms before using the system, or even use a particular
language.

B. Experiments: Hidden Annotation and Learning

These experiments were designed to compare performances
between the original pictorial-feature version ofPicHunter[3]
with a version that incorporated semantic features in addition
to the image features. Furthermore, we examined whether user
performances improved after they were explicitly taught which
particular features were considered important by the algorithm’s
user model in both versions [1]. For notational purposes, we
refer to the pictorial version as “P” and to the pictorial-plus-
semantic version as “B” (B stands forboth). The experiments
involved eight first-timePicHunterusers who were not aware
of the purposes of the study. All sessions involved searches of
a target image among the 1500 images in the database. There
were a total of 17 target images that were selected randomly.
Users were required to locate all 17 targets in one session for
eachPicHunter version. Both the P and the B versions were
implemented with displays of nine images.

The experiments consisted of two major phases, each
using the same 17 target images. In the first phase, the pre-
explanation phase, users were told to use their own similarity
criteria. The order of exposure was balanced: four users
went through sequence (P,B), and the others through (B,P).
The eight users were then divided in two groups of four,
to balance within-group average performances and standard
deviations for the two groups. This grouping was done on
the basis of their performances in the first phase, and it was
constrained by requiring that each group have two members
that went through the (P,B) sequence, and the other two
through the (B,P) sequence. In the second phase, users were
first given explicit instructions for judging image similarity,
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TABLE III
REPRESENTATIVESEMANTIC LABELS IN THE ANNOTATED DATABASE

TABLE IV
EFFECT OFSEMANTICS AND EXPLANATIONS ON PERFORMANCE. THE

EXPECTEDVALUE OF ENTRIES UNDER RANDOM SEARCH IS 83.3

according to the user model. For the P model, we briefly
explained to them the 18 features and their relative weights,
and instructed them to ignore the images’ semantic contents.
For the B model, users were told to base similarity not only
on image characteristics, but also on image semantics; they
were shown the 42 words of Table III, to get an idea of
how the B version was designed. This explanation was very
brief, lasting at most 8 min for each of the two versions.
Explanations were given separately for each version, and
users started the 17-target search with that particular version
of PicHunter. This was followed by explanations for the
other version, and ended with a 17-target search with that
other version. The order of versions, (P,B) or (B,P), was
balanced in this second phase, as well.

The results are given in Table IV, the entries of which are the
mean number V of nine-image displays that were required for
users to locate the target, averaged across the eight users and
the 17 targets. It is obvious from the entries of Table IV that
both semantic features and training, in the form of explanations,
improve users’ performance. Specifically, the data indicate the
following.

1) Without prior instruction, users took on average about 1/3
fewer displays to converge to the target with the B version
than with the P version, underlying the importance of se-
mantics.

2) After users were instructed on the similarity criteria,
performance improved for both versions, as expected.
Users took over 25% more displays prior to instruction,

when their performance is pooled over both versions of
PicHunter.

3) In the P version the explanations reduced the search time
to 77.8% of its original level; in the B version the search
time was reduced to 81.2% of its original level. A 2 ×
2 within-groups analysis of variance (ANOVA) was per-
formed over both the version type and the instruction
presence to look for an interaction between the two ef-
fects listed above. No such interaction was found

. This shows that the in-
struction helped users equally with both versions.

Also, the issue of feature relevancy must be addressed. In ob-
serving the eight users’ strategies, we observed that test images
were sometimes selected because of similarity with the target
in terms of, say, color (“it has as much blue as the target”), and
other times because of similarity in, say, overall brightness. To
the extent that a user relies on a small number of features during
a session, it may be possible to learn which are being used, and
in so doing improve performance. This is, in principle, possible
using user models with state as described in Section II.

Because the attributes are hidden in our approach, we are
free to consider attribute schemes in future work that might not
work well in a traditional nonhidden approach. We might, for
example, entertain a scheme that employs 10 000 attributes, far
more than a human operator could reasonably be expected to
deal with. Moreover, some of these attributes might correspond
to complex semantic concepts that are not easily explained, or
to overlapping concepts that do not fit well into the kind of hier-
archies that humans frequently prefer. They might even include
entirely artificial attributes that arise from a machine learning
algorithm. Because the attributes are hidden, it may be that the
system performs well despite considerableerror in the assign-
ment of attributes. For this reason we are free to consider at-
tributes even if their proper identification seems very difficult.

We remark that there are errors and inconsistencies even in
attributes assigned by humans. Here, the fact that the attribute
values are hidden can result in more robust performance in the
presence of error. We also observe that in some settings, such as
the emerging area of Internet Web publication, authors are im-
plicitly annotating their images by their choice of text to accom-
pany them. Exploiting this textual proximity represents an im-
mediate and interesting direction for future work and this gen-
eral direction is explored in [27], [40]. Semantically annotated
images are also appearing in structured environments such as
medical image databases, news organization archives—and the
trend seems to extend to generic electronic collections. In ad-
dition to using these annotations in a hidden fashion, mature
image search systems may be hybrids that include an explicit
query mechanism that corresponds to the space of available an-
notations. Even in query-based systems, learning may play a
role as illustrated by related work in the field of textual infor-
mation retrieval [41].

It is not clear howhigh in the semantic sense our approach of
hidden attributes might reach. It is certainly conceivable that a
large portion of an image’s semantic content might be captured
by a sufficiently large and rich collection of attributes—entirely
obviating the need to produce a single succinct and coherent
expression of an image’s meaning.
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VII. D ISPLAY UPDATING MODEL

Once the user-model module ofPicHunterupdates the prob-
ability distribution across the entire database, the next task is
to select the images to be shown in the next display. We
have experimented with several schemes in this area, but we re-
port on the two that produced the best results: the most-probable
scheme, and the most-informative scheme.

A. Most-Probable Display Updating Scheme

This is an obviously reasonable strategy: For the next dis-
play, choose the images that possess the highest probabil-
ities of being the target; possible ties are broken with random
selections. This is the scheme that was used in all but the most
recent version ofPicHunter. It performed quite well, achieving
search lengths that were about ten times better than random
target-testing searches for purely picture-based features [2], [3].
Typically, this updating scheme produces displays whose im-
ages belong to a common theme, such as aircraft or horses,
even with the purely pictorial feature user model, somehow ex-
hibiting an ability to extract semantic content. However, this
greedy strategy suffers from an over-learning disadvantage that
is closely related to its desired ability to group similarly looking
images. The problem is that, in a search of, say, an image of a
jungle scene,PicHunteroccasionally “gets stuck” by showing
display after display of, say, lion pictures as a result of the user
having selected a lion picture in an earlier display. This problem
is addressed by the information-based scheme, described below.

B. Most-Informative Display Updating Scheme

Another approach is to attempt to minimize the total amount
of iterations required in the search. The result is a scheme which
tries to elicit as much information from the user as possible,
while at the same time exploiting this information to end the
search quickly.

At any time during the search, all of the knowledgePicHunter
has about the target is concisely summarized by the distribution

over the database . The idea is
to estimate the number of iterations left in the search, based on
the distribution . Call this estimate . Then
the display scheme chooses the display which minimizes the
expected number of future iterations, which is

target not found

where

and

target not found

and is the distribution over targets after user re-
sponse .

Information theory suggests entropy as an estimate of the
number of questions one needs to ask to resolve the ambiguity
specified by

(5)

for some positive constantwhich is irrelevant for the purpose
of minimization. This offers an alternative interpretation of min-
imizing future cost: maximizing immediate information gain.

To illustrate this scheme, consider an ideal case when
:

if )
if )
if )

If , all elements farther from than will get zero
probability. The remaining elements will have uniform prob-
ability (assuming no ties). The most-informative display up-
dating scheme will therefore choose and so that the ex-
pected number of remaining elements is minimum. This min-
imum is achieved when the decision boundary

exactly divides the set of targets in half. So in this ide-
alized situation the most-informative display updating scheme
behaves like thevantage-point treealgorithm of Yianilos [42],
which is a kind of binary search on an arbitrary metric space.

Now consider the generalization

When , this is the same as . When
, there is a smooth transition from probability zero to prob-

ability one as varies. When , outcomes are com-
pletely random. This formula can be interpreted as after
corrupting the distance measurements with Gaussian noise. The
parameter can therefore be interpreted as the degree of preci-
sion in the distance measurements.

Unfortunately, finding to minimize
is a nontrivial task. An incremental

approach in does not seem possible, since an optimal
display for can be far from an optimal display for

. The problem is at least as hard as vector quantization,
which we know can only be solved approximately by local
search algorithms. Local search does not seem feasible here,
since evaluating is quite costly and there can be many local
minima. One needs an optimization scheme which can give
decent results with a small number of evaluations. Inspired
by Yianilos’s vantage-point tree algorithm, we chose a Monte
Carlo approach: sample several random displays
from the distribution and choose the one which
minimizes . Though crude, it still achieves considerable gains
over the most-probable display update strategy.

C. Related Work

The general idea of maximizing the expected information
from a query has also been pursued in the machine learning
literature under the name “active learning” or “learning with
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Fig. 3. Number of iterations needed to find a target, for varying database sizes
and search strategies. User actions were generated according toP .

queries” [43]. Active learning techniques have been shown to
outperform simple probability ranking for document classifica-
tion [44]. We know of no application of active learning tech-
niques to database retrieval.

Comparison searching with errors has also been studied in
the theoretical computer science literature. The algorithm of
Rivestet al.[45] assumes that the number of errors has a known
bound. Nevertheless, their algorithm is similar to the one pre-
sented here, in the sense that it minimizes at each step an infor-
mation-theoretic bound on the number of future comparisons.
The algorithm of Pelc [46] allows errors to occur at random but
requires them to be independent of the comparison and the target
and furthermore does not guarantee that the target is found.
So while both of these algorithms run in provably logarithmic
time, they also operate under more restrictive conditions than
PicHunter.

D. Simulation Results

This section evaluates these two display update schemes
(most-probable and most-informative) by comparing them to
other plausible methods for choosing :

a) Sampling: Sample from the distribu-
tion . This is a special case of the Most Informative
scheme where only one Monte Carlo sample is drawn.

b) Query by example:Let be the
closest items to the winner of the last comparison. This is a
favorite approach in systems without relevance feedback [7].
It does not exploit memory or a stochastic user model. The
idea is to simulate a user’s responses by sampling from the
stochastic user model. The database is synthetic, consisting of
points uniformly-distributed inside the unit square. This allows
databases of varying sizes to be easily drawn. The simulated
users used the Euclidean distance measure.

1) Deterministic Case:Fig. 3 plots the empirical average
search time for finding a randomly selected target as a function
of database size, using the most probable, sampling, and most
informative (entropy) schemes. The number of choices
was two. User actions were generated by the model. In
all experiments, the average is over 1000 searches, each with
a different target, and the database was resampled ten times.
Performance of these three schemes is comparable, scaling like

. In particular, the Most Informative scheme is virtually

Fig. 4. Same as Fig. 3, but including the query-by-example method.

Fig. 5. Here, user actions were generated according top with � =

0:1.

optimal, with deviations only due to a limited number of
Monte Carlo samples. The query-by-example scheme is quite
different, as shown in Fig. 4 note the change in vertical scale.
The query-by-example method is not exploiting comparison
information very well; its time scales as . Increasing
or the dimensionality will reduce the difference between the
four schemes.

2) Nondeterministic Case:Fig. 5 shows what happens when
user actions are generated by the model, with .
Increasing the database size causes the unit square to be sampled
more and more finely, while the distance uncertainty threshold

remains the same. Thus it is much harder to isolate a partic-
ular target in a large database than in a small one, as would be
true in a real situation. Again, the Sampling and Most Infor-
mative schemes are similar in search time, which scales like a
square root. However, the fragility of the Most Probable scheme
is evident here. Fig. 6 also reveals a large discrepancy in the
query-by-example scheme. An explanation for this is that the
most probable and query-by-example schemes tend to choose
elements which are close together in feature space—exactly
when comparisons are most unreliable. Entropy-minimization,
by contrast, automatically chooses displays for which compar-
isons are reliable. The most probable scheme also does not prop-
erly exploit broad and nonuniform distributions, or distributions
which are multimodal. Furthermore, a multimodal distribution
causes this scheme to switch to different parts of the database
between iterations, which is disconcerting to a real user.
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Fig. 6. Same as Fig. 6, but including the query-by-example method.n square.

E. Experiments on Updating Schemes

The most recent experiments onPicHunter, reported here for
the first time, addressed two issues. 1) Compare performances
with the two most promising display updating schemes. 2) Eval-
uate the new pictorial features introduced in Section IV-A. To-
ward this end, we tested seven versions ofPicHunter, coded
with a digraph notation XY that is analogous to that used in
Section V-D. Some of these versions were the same as those
tested previously (Section V-D); in these cases we label the
scheme with the trigraph notation used in Section V-D next
to the new digraph notation. The first letter X of the digraph
XY represents the display-updating mode:stands for the en-
tropy-based “most-informative” updating. stands for a rela-
tive-distance-based, most-probable scheme that uses memory.

is similar to , but uses an absolute distance criterion without
memory (“query-by-example”). The second letter Y of the di-
graph XY denotes the features used by the model for simi-
larity judgments: for pictorial only, for semantic only, and

for both, with denoting the new pictorial features, and
denoting the combination of the semantic features

and the new pictorial features (the semantic features remained
the same). The seven versions are the following: EB′, EP′, and
ES, which are entropy-based schemes with S + P′, P′, and S, re-
spectively; RB′ and AB′, which are the same as the versions de-
noted by MRB′ and NAB′ in the trigraph notation, but using the
combination of the new pictorial features and the semantic fea-
tures; finally, RS and RP, which are identical to versions MRS
and MRP of Section V-D. All seven versions were run with the
same set of 15 target images, which was different from the set of
15 images of the experiments of Section V-D. seven users, who
were naive as to the purposes of the experiment and had never
usedPicHunterbefore, participated in the 7 × 7 Latin-square
design [33]. The results are shown in Table V, which uses the
same notation as that of Tables I and II. The same two expe-
rienced users who participated in all the previous experiments
also ran a subset of the experiments.

The user model in the new version ofPicHunter(the results
of which are shown in the first five columns) differs from the old
one (last two columns) in two major ways, besides the pictorial
features. 1) The sigmoid slope and the feature weights

are different, since they are based on more training data, and
optimized in a better way than before. This affects the perfor-

TABLE V
RESULTS OF THEEXPERIMENTSTHAT TESTEDENTROPY-BASED DISPLAY

UPDATING SCHEMES TOTRADITIONAL SCHEMES, AS WELL AS THE

EFFECTIVENESS OF THENEW PICTORIAL FEATURES. THE EXPECTED

VALUE OF V UNDER RANDOM SEARCH IS 83.3

mance of individual metrics as well as combinations of metrics.
2) The user model in the old version was an approximate softmin
while the new version uses an exact softmin.

One can make the following observations on the data of
Table V. First, a comparison of the entropy-based schemes
reveals that the combination of both semantic and pictorial
features (EB′) results in better performances than using either
semantic (ES) or pictorial (EP′) features alone, as expected.
This expected behavior is unlike the surprising pattern of
results of the experiments in Section V-D. One possibility for
the difference is that the new set P′ of pictorial features is better
than the original ones P, hence they improve performance
when they combine with the semantic features. Second, the
best entropy-based scheme (EB′) is at least as good as the best
most-probable scheme (MRB′), and both are much better than
the QBE search (NAB′). The superiority of the entropy-based
scheme is even more evident in the results of the experienced
users. It is interesting to note that such a display strategy
produces a qualitatively different feel to the overall system.
At the beginning of the search, the displayed set of images
shows a large variety, which is in contrast to traditional display
algorithms that attempt to display a set of very similar images.
Third, the conditions RS and RP were used in order to compare
the old version to the new one, where both were tested with
the common new set of 15 target images. The data indicate
that the combination of both S and P′ features (RB′) does not
seem to yield an improvement over the semantics-only version
(RS), which performs remarkably well. Parenthetically, one
piece of useful data that would enable a complete comparison
is performance of the most-probable scheme with the new
pictorial features alone, i.e., the RP′ scheme.

At this point, it is useful to reflect on the improvements of
the present schemes as compared with earlier versions. In the
original implementation, about half of the searches by first-time
users were labeled “unsuccessful” in that users gave up after
an excessive number of iterations. The average number of im-
ages visitedin the successful searches onlywas 300 [3] which
was 13.3% of the expected number under random search for the
4522-image database. This number must be at least doubled if
we want to include the effect of the unsuccessful searches. By
contrast, our users had only successful searches by definition,
because they were required to continue searching until the target
was found. This requirement necessitated some excessively long
searches, which may be statistical outliers, yet their lengths in-
flate the mean value. Despite this, the improved schemes con-
verged after visiting, on average, 100.8 images, which is still
13.4% of the expected number under random search for the
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1500-image database. Experienced users do a lot better, aver-
aging 8.2% of the expected length of random searches. Consis-
tent users inPicHunterevaluations, in addition to the authors,
report that present versions ofPicHunterperform remarkably
better than earlier versions in locating targets efficiently. It must
be emphasized that these figures are for target testing, which is
the most demanding of the search types.

VIII. E XTENSIONS

All PicHunter versions to date have been using the target
search paradigm. However, when a user operatesPicHunterto
search for images that are similar to a prototype image, say, a
North-Pole scene, the system quickly produces displays with
similar images; in a lax sense, under these conditions, this type
of search can be considered as a category search. More formally,
however,PicHuntercan become acategory-searchengine if the
Bayesian scheme is modified to treat sets of images rather than
individual images. The challenge for the system would be to
discern the commonality of the features that specify a certain
category that the user has in mind.

The main characteristic ofopen-ended browsingis that users
change their goals during the search either gradually or quite
abruptly, as a result of having encountered something inter-
esting that they had not even considered at the beginning of
the search. Accommodating these changes necessitates a modi-
fication of the probability distribution updating scheme. For the
gradual changes one may assign weights to the probability up-
dating factors that are strongest for the most recent iteration
steps, and decay exponentially for distant past steps. For the
abrupt changes, one option is to enable the user to indicate such
switches, and then assign small weights to iterations prior to the
abrupt change.

AlthoughPicHunterwas developed specifically for searching
image databases, its underlying design and architecture make it
suitable for other types of databases that contain digital data,
such as audio passages or video-sequence databases.

IX. I DEAS FORIMPROVEMENT

A. More Representative Databases

The main problem of the initial database, described in Sec-
tion V-B, is that its images are clustered into thematic categories
of 100 elements each. This results in a clustered distribution in
feature space, which may not be representative of distributions
in larger databases.PicHunter’s problem of occasionally “get-
ting stuck,” i.e., producing displays of a certain category in step
after step (Section VII-A), may in fact turn out to be an advan-
tage in databases that have a wider, nonclustered, distribution in
feature space. A representative image database is needed by the
CBIR community as a means toward establishing a benchmark
for algorithm assessment.

B. More Relevant Image Features

PicHunter’s performance improved when the new pictorial
features were incorporated in the user model. The main advan-
tage of the new features of the color autocorrelogram and the
color-coherence vector is that they embody some measure of

the spatial extent of each color, rather than a conventional color
histogram’s mere first-order statistics. Along the same lines,
the user model can benefit by adding more information on the
spatial properties of images, such as location, size, shape, and
color of dominant objects in the image. The inclusion of spatial
and figural features is especially important for the minority of
color-blind people. Another feature can be the first few low-fre-
quency Fourier components of the image’s spectrum, or other
measures of the distribution of spatial frequencies [17]. The
need is evident for more psychophysical studies that investi-
gate what criteria are used by humans in judging image simi-
larity [47], [48]. Ultimately, some shape information [9] or ob-
ject-based scene description [49] must be employed in CBIR
systems.

C. More Complex User Feedback

PicHunterwas deliberately designed with a very simple user
interface, to concentrate on more fundamental issues in CBIR
research. The items below remove this simplicity constraint by
suggesting more complex ways of accepting users’ feedback.
Obviously, the user model needs to be adjusted accordingly to
accommodate the additional feedback. Naturally, the introduc-
tion of new feedback modes has to be evaluated vis-a-vis the
conflicting requirement for a simple user interface; appropriate
experiments can decide whether there are any significant gains
by the proposed idea to make it worth pursuing.

1) Specify Which Feature(s) are Relevant in a Selected
Image: Post-experimental interviews with the users reveal that
some of them followed a common strategy in selecting similar
images in a display. They selected one image because it looked
similar to the target in terms of, say, overall color, and another
image for its similarity in, say, overall contrast. This suggests
the possibility of allowing users to specify which feature(s)
make a selected image desirable, and can be extended to cover
semantic features as well.

2) Strength of Selected Image:Independently of specifying
feature relevance, the user could also indicate the degree, or
strength, of similarity between a selected image and the pur-
sued target. This can be done by providing either a slide bar or
a series of buttons below each image in the display.

3) Portions of Selected Image:Yet another independent
form of more complex user feedback is to indicate the portion(s)
of the image that is (are) similar to the target. The interface can
still maintain simplicity by allowing the user to circumscribe
relevant portions using the mouse.

D. More Complex Displays

The first three items below discuss how best to start the iter-
ation process by using as informative an initial display as pos-
sible (the first item deals with expanding the current version by
just providing more images in the initial display, the next two
deal with initial queries). The last item provides the user with
information on why images were selected to be included in the
current display.

1) Initial Display: It would be helpful to give the user a head
start by using a more complex initial display, keeping displays
in the rest of the iterations as simple as described so far. For the
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particular database that we worked with, one idea that we exper-
imented with was to take advantage of the fact that the database
contained clusters in feature space. Thus we included in the first
display a large number of images (50 or so), each being at the
center of a cluster. This seemed to speed up search time but as
yet we have no comprehensive data from such informal experi-
ments.

2) Initial Query Template: PicHuntercan be modified to
add a feature that is common in many “query-by-example”
CBIR systems that use a “sketch” to specify a template in order
to start a search with a better-than-random initial display. The
user can be given the option to select desirable values for the
pictorial features by using, say, “slide bars.” These bars can
be used to specify mean brightness, luminance contrast, color
content, etc. This will enable the user to start the search with a
good guess in the first iteration.

3) Initial Query: Just as textual search engines do with
words and phrases, CBIR systems may use Boolean expressions
on semantics. The analogy is the following: with a database
browser, one specifies logical expressions of words when
searching for a paper in the literature; by analogy, one can use
self-explanatory icons (such as for tree, house, animal, town,
aircraft, person, crowd, lake, etc.), and build an interface for
forming Boolean expressions that characterize the target image.
This will enable users to start with an initial display that is very
close to the desired target.

4) Which Features Caused an Image to be Displayed:The
previous subsection dealt with allowing users to provide more
complex feedback to the system. Reciprocally, users can benefit
by knowingPicHunter’s current “beliefs,” as this will give them
an idea of how their choices affect the system. A simple way is
to provide an indicator, next to each displayed image, on the
system’s relative strength of belief. A more complex display
could indicate which feature(s) caused each image to be selected
in the current display.

E. Improved User Model

One area in which the scheme can be improved is in handling
the special case in which the user does not select any image in
the current display before hitting the “GO” button to continue
the search. This is an essential special case because users fre-
quently find themselves forced to proceed to the next iteration
without selecting any image. Currently, the program keeps the
probability vector unchanged and then enters the display-update
routine, in essence ignoring the user’s action. However, some,
perhaps most, users make this selection precisely to indicate that
they want to avoid the types of displayed images. Experiments
are needed to explore modifications to the algorithm for dealing
with this special case.

X. CONCLUSIONS—DISCUSSION

PicHunter’s new approach is its formulation on a Bayesian
framework, which tries to predict the user’s actions for refining
its answers to converge to a desired target image. The central
data structure is avector of posterior probability distribution
across the entire database, i.e., each image has an entry in the
vector that represents the probability of its being the target.

This distribution is updated based on the user action after
each iterative display. This action is “interpreted” by theuser
model, which is the second major component of the system,
together with the probability vector. This is an action-pre-
dictor model that uses rudimentary knowledge of humans’
judgments of image similarity, based on empirically derived
pictorial and semantic features. The user model was refined
on the basis of data obtained from our similarity judgment
experiments (Section IV-C). The third major component, the
display-updating scheme, is concerned with how to select the
images for the next iteration’s display. We presented two major
alternatives, a most-probable and a most-informative scheme,
which exhibited considerably improved performances over
alternative schemes. Overall, the system performs quite well
for a wide spectrum of users tested on a wide variety of target
images. The improvement over earlier versions, as verified by
the reported experiments and attested by consistent users of the
system, is very promising.

In comparing algorithms based on their performances under
the target testing scheme, we make the implicit assumption that
systems which are optimized under this target testing condi-
tion will also perform well in category searches and open-ended
browsing. We reported on experiments that support this assump-
tion when the target testing version is used for a form of cate-
gory searching (Section V-E). Performance under open-ended
browsing is much more difficult to quantify because of the vague
nature of the task at hand. The main requirement in open-ended
browsing is that the system display images that are similar to
those selected by the user, and avoid displaying images that
are similar to the nonselected images, resulting in appropriate
changes to the display updating scheme. At the same time, be-
cause the goal changes during the search, the user must be al-
lowed to reset the memory when he/she makes such a goal
change, so that earlier choices no longer affect the display up-
dating decisions.

It would be highly desirable to rank-order the various cri-
teria used by humans for judging image similarity according
to their importance. Weights can the be assigned to such cri-
teria according to the role they play in predicting judgment of
similarity by humans. Relevant research has been carried out
on the application of multidimensional scaling (MDS) methods
for finding principal attributes to characterize texture percep-
tion [47]. Much image processing research has also been con-
ducted for utilizing texture as a pictorial feature in CBIR sys-
tems [14], [50], [51]. Rogowitzet al.[48] applied MDS analysis
to humans’ judgments of similarity using natural images; this
task is quite complex, mainly due to the presence of semantics.
An interesting experiment along these lines is to let humans play
the role ofPicHunter, to see what criteria they use, and to com-
pare their performance with that ofPicHunter.

The computation performed byPicHunter with each user
interaction, and its main memory space requirements scale
linearly with the number of images in the database assuming
the user model requires constant time. Execution time is
dominated by the user model,4 and space by the storage of

4Any machine learning technique capable of producing a predictive model
may be used to implement the required user model, so it is hard to say anything
general about its computational burden.
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feature vectors.5 As such our approach might be expected to
handle perhaps millions of images in today’s technological
environment, but not hundreds of millions. We remark that
approximating its Bayesian update with a sublinear number
of user model executions and the feature vectors in secondary
storage, represents an interesting area for future theoretical and
systems work.

While we have demonstrated search times that are much
shorter than brute force, they are clearly not short enough
to satisfy many users. It is possible that our pure relevance
feedback approach might lead to a fully acceptable system, but
it is also possible that a hybrid approach will prove best. That
is, one that involves some explicit querying, but uses relevance
feedback to further shorten the search.

Our experiments indicate that humans attend to the semantic
content of images in judging similarity. Highly specialized
databases, such as medical image databases in large medical
centers, have started to get semantically annotated, and the
trend appears to carry to images in generic electronic libraries.
Thus, it seems that searching for an image will have much in
common with searching for text documents in library databases.

In all our experiments, experienced users performed at a level
that was considerably better than users with little experience,
as expected. For example, they completed the average search
by visiting only 65.4% and 53.2%, respectively, of the images
visited by first-time users for the experiments reported in
Sections V-D and VII-E. It must be noted, however, that even
first-time users improve their scores substantially, after we
explained to them the algorithm’s user model (Section VI-B).
This training was very brief, lasting less than 8 min, after
which their (already good) pretraining performance improved
by reducing the search length by about 20%. This substantial
improvement after minimal training of nonexpert users is a
desirable feature for a search engine, enabling the development
of a short on-line training session for first-time users.

Most published papers provide data on the search length in
terms of how many iterations are needed before users find an
image that is similar to a desired target. This, however, may
not be a reliable measure, because even a random search can
produce relatively short search lengths, as shown in the exper-
iments of Section V-E (column RAND/C in Table II). In fact,
this latter search length could be used as a baseline against
which to measure the performance of an algorithm under test.
Even better, we believe that data under the target search para-
digm offer an objective measure of performance. In addition,
this measure exhibits small standard deviations across users’
scores, when each user’s score is averaged over an adequately
large number of searches with different targets, whereas the
corresponding random-search baseline measure exhibits much
higher variability [5], [6]. Thus, target testing requires experi-
ments with fewer users to establish the same degree of confi-
dence in the statistics.

The experiments in this paper were designed withPicHunter
in mind. Nevertheless, their results and findings are useful and
potentially applicable to any CBIR system and, more generally,

5If an entropic display update is used, its computational burden is significant
as well.

to any system that involves judgment of image similarity by
humans.

ACKNOWLEDGMENT

The authors thank Y. Hara and K. Hirata, NEC Central Labo-
ratories, for directing our attention to CBIR system research and
for providing us with their system and image database; J. Ghosn,
K. Lang, and S. Omohundro, who have contributed significantly
in PicHunter’s development; B. Krovetz, T. Shamoon, and H.
Stone for valuable discussions; the anonymous reviewers for
their useful suggestion; E. Brooks, T. Conway, and S. Shah for
administering experiments; and A. Feher for providing technical
support.

REFERENCES

[1] I. J. Cox, J. Ghosn, M. L. Miller, T. V. Papathomas, and P. N. Yianilos,
“Hidden annotation in content based image retrieval,” inProc. IEEE
Workshop on Content-Based Access of Image and Video Libraries, 1997,
pp. 76–81.

[2] I. J. Cox, M. L. Miller, S. M. Omohundro, and P. N. Yianilos, “Pichunter:
Bayesian relevance feedback for image retrieval,” inProc. Int. Conf.
Pattern Recognition, vol. 3, 1996, pp. 362–369.

[3] , “Target testing and thePicHunterBayesian multimedia retrieval
system,” inProc. 3rd Forum on Research and Technology Advances in
Digital Libraries, ADL’96, 1996, pp. 66–75.

[4] I. J. Cox, M. L. Miller, T. P. Minka, and P. N. Yianilos, “An optimized in-
teraction strategy for bayesian relevance feedback,” inProc. IEEE Conf.
Computer Vision and Pattern Recognition, 1998, pp. 553–558.

[5] T. V. Papathomaset al., “Psychophysical studies of the performance of
an image database retrieval system,” inIS&T/SPIE Symp. Electronic
Imaging: Science and Technology, Conf. on Human Vision and Elec-
tronic Imaging III, 1998, pp. 591–602.

[6] T. V. Papathomaset al., “Psychophysical evaluation for the performance
of content-based image retrieval systems,”Investigative Ophthalmology
and Visual Science, vol. 39, no. 4, p. S1096, 1998.

[7] M. Flickner et al., “Query by image and video content: The QBIC
system,”Computer, vol. 28, pp. 23–32, 1995.

[8] D. Forsyth, J. Malik, and R. Wilensky, “Searching for digital pictures,”
Sci. Amer., vol. 276, pp. 88–93, 1997.

[9] B. Gunsel and A. M. Tekalp, “Shape similarity matching for query-by-
example,”Pattern Recognit., vol. 31, pp. 931–944, 1998.

[10] B. Gunsel, A. M. Tekalp, and P. J. L. van Beek, “Content-based access
to video objects: Temporal segmentation, visual summarization, and fea-
ture extraction,”Signal Process., vol. 66, pp. 261–280, 1998.

[11] K. Hirata and T. Kato, “Query by visual example; content based image
retrieval,” inAdvances in Database Technology—EDBT’92, A. Pirotte,
C. Delobel, and G. Gottlob, Eds. Berlin Germany: Springer-Verlag,
1992.

[12] T. Kato et al., “Cognitive view mechanism for multimedia database
system,” inIMS ’91 Proc.: First Int. Workshop on Interoperability in
Multidatabase Systems, 1991, pp. 179–186.

[13] W. Y. Ma and B. S. Manjunath, “A texture thesaurus for browsing large
aerial photographs,”J. Amer. Soc. Inform. Sci., vol. 49, pp. 633–644,
1998.

[14] B. S. Manjunath and W. Y. Ma, “Texture features for browsing and re-
trieval of image data,”IEEE Trans. Pattern Anal. Machine Intell., vol.
18, pp. 837–842, 1996.

[15] A. Pentland, R. W. Picard, and S. Sclaroff, “Photobook: Content-based
manipulation of image databases,”Int. J. Comput. Vis., vol. 18, pp.
233–254, 1996.

[16] Y. Rui, T. S. Huang, and S. Mehrotra, “Content-based image retrieval
with relevance feedback in MARS,” inProc. IEEE Int. Conf. Image Pro-
cessing, Santa Barbara, CA, Oct. 1997.

[17] H. S. Stone and C.-S. Li, “Image matching by means of intensity and
texture matching in the Fourier domain,” inProc. SPIE Storage and Re-
trieval for Image and Video Databases, 1996, pp. 337–349.

[18] Q. Tain and H. J. Zhang, “Digital video analysis and recognition for
content-based access,”ACM Comput. Surv., vol. 27, no. 4, 1995.

[19] G. Yihong, Z. Hongjiang, and C. H. Chuan, “An image database system
with fast image indexing capability based on color histograms,” inProc.
1994 IEEE Region 10’s Ninth Ann. Int. Conf. Theme: Frontiers of Com-
puter Technology, 1994, pp. 407–411.



36 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 1, JANUARY 2000

[20] H. J. Zhang, C. Y. Low, S. W. Smoliar, and J. H. Wu, “Video parsing,
retrieval and browsing: An integrated and content-based solution,” in
Proc. ACM Multimedia, Nov. 1995.

[21] A. Del Bimbo, P. Pala, and S. Santini, “Visual image retrieval by elastic
deformation of object sketches,” inProc. IEEE Symp. Visual Languages,
1994, pp. 216–223.

[22] Y. Rui, T. S. Huang, and S. Mehrotra, “Relevance feedback techniques
in interactive content-based image retrieval,” inProc. IS&T and SPIE
Storage and Retrieval of Image and Video Databases VI, San Jose, CA,
Jan. 1998.

[23] T. P. Minka and R. W. Picard, “Interactive learning with a ‘society of
models’,”Pattern Recognit., vol. 30, pp. 565–581, 1997.

[24] J. Huanget al., “Image indexing using color correlograms,” inProc.
IEEE Computer Vision and Pattern Recognition Conf., San Juan, PR,
June 1997, pp. 762–768.

[25] G. Pass, R. Zabih, and J. Miller, “Comparing images using color coher-
ence vectors,” inProc. 4th ACM Conf. Multimedia, Boston, MA, Nov.
1996.

[26] E. Saber, A. M. Tekalp, R. Eschbach, and K. Knox, “Annotation of nat-
ural scenes using adaptive color segmentation,”Proc. SPIE, vol. 2421,
pp. 72–80, 1995.

[27] J. R. Smith and S.-F. Chang, “Visually searching the web for content,”
IEEE Multimedia, vol. 4, no. 3, pp. 12–20, 1997.

[28] M. Stricker and A. Dimai, “Color indexing with weak spatial con-
straints,” in Proc. SPIE Storage and Retrieval for Image and Video
Databases, 1996, pp. 29–40.

[29] H. J. Zhang, Y. Gong, C. Y. Low, and S. W. Smoliar, “Image retrieval
based on color features: An evaluation study,” inProc. SPIE Conf. Dig-
ital Storage and Archival, Oct. 1995.

[30] T. Kurita and T. Kato, “Learning of personal visual impressions for
image database systems,” inProc. Second Int. Conf. Document Anal-
ysis and Recognition, 1993, pp. 547–552.

[31] M. Eisenberg and C. Barry, “Order effects: A preliminary study of the
possible influence of presentation order on user judgements of document
relevance,”Proc. Amer. Soc. Information Science, pp. 80–86, 1986.

[32] Corel Corp, , Corel stock photo library, Ont., Canada, 1990.
[33] G. E. P. Box, W. G. Hunter, and J. S. Hunter,Statistics for Experi-

menters: An Introduction to Design, Analysis, and Model Building, New
York: Wiley , 1978.

[34] J. Barros, J. French, W. Martin, P. Kelly, and J. M. White, “Indexing
multispectral images for content-based retrieval,” inProc. 23rd AIPR
Workshop on Image and Information Systems, Washington, DC, Oct.
1994.

[35] M. Hirakawa and E. Jungert, “An image database system facilitating
icon-driven spatial information definition and retrieval,” inProc. 1991
IEEE Workshop on Visual Languages, 1991, pp. 192–198.

[36] A. Pentland, R. W. Picard, and S. Sclaroff, “Photobook: Content-based
manipulation of image databases,” inProc. SPIE Storage and Retrieval
for Image and Video Databases, 1994, pp. 34–47.

[37] P. M. Kelly and T. M. Cannon, “Candid: Comparison algorithm for nav-
igating digital image databases,” inProc. 7th Int. Working Conf. Scien-
tific and Statistical Database Management, 1994, pp. 252–258.

[38] M. Stricker and M. Swain, “The capacity of color histogram indexing,”
in Proc. 1994 IEEE Computer Soc. Conf. Computer Vision and Pattern
Recognition, 1994, pp. 704–708.

[39] M. J. Swain and D. H. Ballard, “Indexing via color histograms,” inProc.
3rd Int. Conf. Computer Vision, 1990, pp. 390–393.

[40] C. Frankel, M. J. Swain, and V. Athitsos, “Webseer: An image search
engine for the world wide web,” Dept. Comput. Sci., Univ. Chicago ,
Chicago, IL, Tech. Rep. TR-96-14, July 1996.

[41] D. Haines and W. B. Croft, “Relevance feedback and inference net-
works,” in Proc. 16th Annu. Int. ACM SIGIR Conf. Research and De-
velopment in Information Retrieval, 1993, pp. 2–11.

[42] P. N. Yianilos, “Data structures and algorithms for nearest neighbor
search in general metric spaces,” inProc. 5th Annu. ACM-SIAM Symp.
Discrete Algorithms (SODA), 1993.

[43] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, “Selective sampling
using the query by committee algorithm,” inAdvances in Neural Infor-
mation Processing Systems. Cambridge, MA: MIT Press, 1993.

[44] D. D. Lewis and W. A. Gale, “A sequential algorithm for training
text classifiers,” in Proc. ACM-SIGIR Conf. R&D in Information
Retrieval Dublin, Ireland, July 1994.

[45] R. L. Rivest, A. R. Meyer, D. J. Kleitman, K. Winklmann, and J. Spencer,
“Coping with errors in binary search procedures,”J. Comput. Syst. Sci.,
vol. 20, pp. 396–404, 1980.

[46] A. Pelc, “Searching with known error probability,”Theoret. Comput.
Sci., vol. 63, pp. 185–202, 1989.

[47] R. A. Rao and G. L. Lohse, “Toward a texture naming system: Identi-
fying relevant dimensions of texture,”Vis. Res., vol. 36, pp. 1649–1669,
1996.

[48] B. Rogowitz et al., “Perceptual image similarity experiments,” in
IS&T/SPIE Symp. Electronic Imaging: Science and Technology, Conf.
Human Vision and Electronic Imaging III, 1998, pp. 576–590.

[49] J. Ponce, A. Zisserman, and M. Hebert,Object Representation in
Computer Vision—II, ser. Number 1144 in LNCS. Berlin, Germany:
Springer-Verlag, 1996.

[50] A. Kankanhalli and H. J. Zhang, “Using texture for image retrieval,” in
Proc. ICARCV’94, 1994.

[51] M. Beatty and B. S. Manjunath, “Dimensionality reduction using
multi-dimensional scaling for content-based retrieval,” inIEEE Int.
Conf. Image Processing, 1997.

[52] W. Y. Ma and B. S. Manjunath, “Netra: A toolbox for navigating large
image databases,” inIEEE Int. Conf. Image Processing, 1997.

[53] W. Y. Ma and B. S. Manjunath, “Texture features and learning simi-
larity,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition,
1996, pp. 425–430.

[54] V. Ogle and M. Stonebraker, “Chabot: Retrieval from a relational data-
base of images,”Computer, vol. 28, no. 9, pp. 40–48, 1995.

[55] R. Rickman and J. Stonham, “Content-based image retrieval using color
tuple histograms,” inProc. SPIE Storage and Retrieval for Image and
Video Databases, 1996.

[56] J. R. Smith and S.-F. Chang, “Visually searching the web for content,”
IEEE Multimedia, vol. 4, 1997.

[57] M. Davis, “Media Streams: An iconic visual language for video rep-
resentation,” inReadings in Human-Computer Interaction: Toward the
Year 2000, 2nd ed, R. M. Baecker, J. Grudin, W. A. S. Buxton, and S.
Greenberg, Eds. San Francisco, CA: Morgan Kaufmann , 1995, pp.
854–866.

[58] Y. Boykov, O. Veksler, and R. Zabih, “Disparity component matching
for visual correspondence,” inProc. IEEE Conf. Computer Vision and
Pattern Recognition, San Juan, PR, June 1997.

[59] G. Pass and R. Zabih, “Histogram refinement for content based image
retrieval,” inProc. IEEE Workshop on Applications of Computer Vision,
1996, pp. 96–102.

[60] R. W. Picard and F. Liu, “A new Wold ordering for image similarity,” in
Proc. IEEE Conf. Acoustics, Speech, and Signal Processing, Adelaide,
Australia, Apr. 1994, pp. V-129–V-132.

[61] D. E. Knuth,The Art of Computer Programming, 2nd ed. Reading,
MA: Addison-Wesley, 1973, vol. 3.

[62] 94 704S. M. Omohundro, “Five balltree construction algorithms,” Int.
Comput. Sci. Inst., Berkeley, CA, Tech. Rep. TR-89-063, Dec. 1989.

[63] K. V. S. Murthy, “On growing better decision trees from data,” Ph.D.
dissertation, Johns Hopkins Univ., Baltimore, MD, 1995.

[64] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing, 2nd
ed. Cambridge, U.K.: Cambridge Univ. Press, 1992.

[65] V. V. Federov,Theory of Optimal Experiments. New York, NY: Aca-
demic , 1972.

[66] F. Jelinek, J. D. Lafferty, and R. L. Mercer, “Basic methods of
probabilistic context free grammars,” inSpeech Recognition and
Understanding. ser. NATO Adv. Sci. Inst. Ser., P. Laface and R. De
Mori, Eds. Berlin, Germany: Springer-Verlag, 1992, vol. F75, pp.
345–360.

[67] T. L. Booth and R. A. Thompson, “Applying probability measures to
abstract languages,”IEEE Trans. Comput., vol. 22, pp. 442–450, 1973.

[68] N. Cressie,Statistics for Spatial Data, New York: Wiley, 1993.
[69] E. Saund, “A multiple cause mixture model for unsupervised learning,”

Neural Comput., vol. 7, Jan. 1995.
[70] J. Smith and S.-F. Chang, “Tools and techniques for color image

retrieval,” in Proc. SPIE Storage and Retrieval for Image and Video
Databases, 1996, pp. 426–437.

[71] R. W. Picard and T. P. Minka, “Vision texture for annotation,”J. Multi-
media Syst., vol. 3, pp. 3–14, 1995.

[72] H. R. Turtle and W. B. Croft, “A comparison of text retrieval models,”
Comput. J., vol. 35, pp. 279–290, 1992.

[73] A. R. Smith, “Color gamut transform pairs,”ACM Comput. Graph.
(SIGGRAPH), vol. 12, pp. 12–19, 1978.

[74] D. Harman, “Relevance feedback revisited,” inProc. 15th Ann Int.
SIGIR, Denmark, June 1992.

[75] I. J. Aalbersberg, “Incremental relevance feedback,” inProc. 15th Ann
Int. SIGIR, Denmark, June 1992.

[76] M. Oda, “Context dependency effect in the formation of image concepts
and its application,” inProc. 1991 IEEE Int. Conf. Systems, Man, and
Cybernetics. Decision Aiding for Complex Systems, pp. 1673–1678.



COX et al.: BAYESIAN IMAGE RETRIEVAL SYSTEM, PICHUNTER 37

[77] V. V. V. N. Gudivada and Raghavan, “Content-based image retrieval sys-
tems,”IEEE Computer, vol. 28, pp. 18–22, Sept. 1995.

[78] T.-S. Chua, H.-K. Pung, G.-J. Lu, and H.-S. Jong, “A concept-based
image retrieval system,” inProc. 27th Annu. Hawaii Int. Conf. System
Sciences, 1994.

[79] C. C. Chang and S. Y. Lee, “Retrieval of similar pictures on pictorial
databases,”Pattern Recognit., vol. 24, pp. 675–680, 1991.

[80] B. J. Oommen and C. Fothergill, “Fast learning automaton-based image
examination and retrieval,”Comput. J., vol. 36, pp. 542–553, 1993.

[81] C. H. C. Leung, J. Hibler, and N. Mwara, “Content-based retrieval in
multimedia databases,”Comput. Graph., vol. 28, 1994.

[82] G. Healey and D. Slater, “Global color constancy: Recognition of objects
by use of illumination-invariant properties of color distributions,”J. Opt.
Soc. Amer., vol. 11, 1994.

Ingemar J. Cox (M’83–SM’95) received the B.Sc.
degree from the University College, London, U.K.,
and the Ph.D. degree from Oxford University, Ox-
ford, U.K.

He was a Member of Technical Staff at AT&T
Bell Laboratories, Murray Hill, NJ, from 1984 until
1989. where his research interests were focused on
mobile robots. In 1989, he joined NEC Research In-
stitute, Princeton, NJ, as a Senior Research Scien-
tist in the computer science division. At NEC, his
research shifted to problems in computer vision; he

was responsible for creating the computer vision group at NEC. He has worked
on problems related to stereo and motion correspondence and multimedia is-
sues of image database retrieval and watermarking. He is the co-editor of two
books,Autonomous Robot Vehicles(Berlin, Germany: Springer-Verlag, 1990),
andPartitioning Data Sets: With Applications to Psychology, Computer Vision
and Target Tracking(Providence, RI: Amer. Math. Soc.).

Dr. Cox is on the editorial board of theInternational Journal of Autonomous
Robots.

Matt L. Miller received the B.A. degree in cognitive
science from the University of Rochester, Rochester,
NY, in 1986.

He began working in computer graphics at AT&T
Bell Laboratories, in 1979, after he became Lead
Programmer at NPS, Sunnyvale, CA, a start-up
developing color desktop publishing software. In
1987, he moved to Hollywood, CA, and divided
his time between programming and working on
film crews. Between 1990 and 1993, he delivered
graduate-level lecture courses in color graphics at

Aarhus University, Denmark, and Charles University and Czech Technical
University, Prague. From 1993 to 1997, he divided his time between running
Baltic Images, a company he founded in Lithuania, and consulting for NEC
Institute, Princeton, NJ. In 1997, he sold Baltic Images and returned to
Princeton to join Signafy Inc. He is currently with NEC Research Institute,
Princeton, NJ.

Thomas P. Minka received the M.Eng. degree in
electrical engineering and computer science from
the Massachusetts Institute of Technology (MIT) in
1996, and is currently pursuing the Ph.D. degree in
electrical engineering and computer science at MIT.

He is a Research Assistant at MIT Media Labo-
ratory. He strives for a formal Bayesian approach to
statistical learning and pattern recognition problems.
His interests in database retrieval include statistical
models of content, relevance feedback, learning from
multiple users, and adaptive visualization.

Thomas V. Papathomaswas born in Greece. He re-
ceived the B.S., M.S., and Ph.D. degrees from Co-
lumbia University, New York.

He worked at Bell Laboratories, Murray Hill,
NJ, from 1978 to 1989. Since 1989, he has been at
Rutgers University, Piscataway, NJ, as Professor of
biomedical engineering and Associate Director of
the Laboratory of Vision Research. He is also asso-
ciated with the NEC Research Center, Princeton, NJ,
as a consultant. His research interests are in human
and machine vision, and image processing. He is

the Editor-in-Chief ofEarly Vision and Beyond,a volume of interdisciplinary
research in vision (Cambridge, MA: MIT Press, 1995).

Dr. Papathomas is a member of the Editorial Board of theInternational
Journal of Imaging Systems and Technology.

Peter N. Yianilos (SM’86) received the B.S. and
M.S. degrees from Emory University, Atlanta, GA,
in 1978, and the Ph.D.degree in computer science
from Princeton University, Princeton, NJ, in 1997.

In 1979, he founded Proximity Technology, Inc.,
Ft. Lauderdale, FL, which merged in 1988 to become
Franklin Electronic Publishers, where he served
as Chief Scientist and then President until 1991.
At Franklin, his compression techniques, search
algorithms, data structures, and product concepts
formed the basis for the first hand-held electronic

books, ranging from spellers and dictionaries to Bibles and encyclopedias.
Since 1991, he has been a Senior Research Scientist at NEC Research Institute,
Princeton. Within electronic publishing, his research interests include digital
libraries, digital books, internet distributed storage systems, and information
retrieval. Other research interests include machine learning and stochastic
modeling, pattern recognition, nearest neighbor search, and data compression.


