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ABSTRACT

Usually watermark embedding simply adds a globally
or locally attenuated watermark pattern to the cover data
(photograph, music, movie). The attenuation is required to
maintain fidelity of the cover data to an observer while the
watermark detector considers the cover data to be “noise”.
We refer to this as blind embedding. In [1], it was observed
that the cover data is not noise, i.e. it is not random but
completely known at the time of embedding. This knowl-
edge, along with knowledge of the detection algorithm to
be used, allows a new category of informed embedder to be
realized. In this paper, we describe a simple watermark-
ing algorithm and then compare the performance of blind
embedding with three types of informed embedding. Note
that in all four cases, the watermark detector is unchanged,
only the embedder is altered. Experimental results clearly
reveal the improvement of informed over blind embedding.

1. INTRODUCTION
In discussions of watermarking systems, a distinction

is generally made between blind detectors, which have no
knowledge of the original, unwatermarked media, and in-
formed detectors (or non-blind detectors), which use the
original media to assist in detection. A similar distinc-
tion can be made between designs of watermark embed-
ders. Although all watermark embedders receive the un-
watermarked media as input, many ignore this input when
deciding on the watermark pattern to be added. These blind
embedders work by adding a weak signal to the cover media
[2, 3, 4, 5, 6, 7]. Other embedders make partial use of the
unwatermarked media to locally attenuate the watermark
pattern in regions where it will be perceptable [8, 9, 10].
However, these embedders still ignore the effect of the me-
dia on watermark detection.

In [1], it is observed that a watermark embedder can be
made more effective if it is designed to exploit the informa-
tion it has about the cover media, together with knowledge
of the watermark detector to be used. This observation
leads to a view of watermarking as an example of com-
munication with side information [11]. We refer to such a
system as an informed embedder.

In this paper, we apply the ideas of [1] to a simple image
watermarking system, and compare four different strategies

for using the available information. The first of these strate-
gies is simple, blind embedding, with a constant signal-to-
noise ratio (SNR). The next two also yield the same con-
stant SNR, but employ information about the cover me-
dia and detector to obtain better performance. The fourth
strategy employs this information to maintain more con-
stant performance across images, at the expense of variable
SNR.

Section 2 of this paper reviews the approach to design-
ing watermark embedders outlined in [1]. Sections 3 and 4
describe the simple watermarking systems we used for our
tests. Experimental results are given in Section 5.

2. GENERIC INFORMED EMBEDDING
ALGORITHM

We can think of each piece of media as a point in a
K-dimensional media space. With respect to a given wa-
termark and piece of cover data, the watermark detector
and the human observer define two regions of media space.
The region of acceptable distortion is the set of all points
that a human will perceive as being acceptably close to the
original cover media. The watermark detection region is the
set of all points that the watermark detector will categorize
as containing the watermark. Ideally, the watermark em-
bedder should output a signal that lies in the intersection
of these two regions.

For a watermark embedder to identify the region of ac-
ceptable distortion, it must have a perceptual model [10],
which is often expressed with a perceptual distance metric.
We will use D(A, B) to denote this metric, where A and B
are pieces of media.

Identifying the watermark detection region is straight-
forward. Most detection algorithms can be divided into two
basic steps. First the detector extracts a vector, v, from the
media content. This vector lies in an N -dimensional water-
mark space, where N ≤ K. Next, the extracted vector is
compared to a predesignated vector, w, that identifies the
watermark we are testing for. The comparison produces a
detection statistic, and if this exceeds a threshold, T , then
a watermark is present in the media.

Our informed embedder performs the following steps:
(1) extract a signal, v, from the unwatermarked cover me-
dia, I. We use X(I) to denote this signal extraction process.



(2) apply a mixing function, f(v, w, I), to produce a new
vector, v′, that is perceptually similar to v, but is inside
the watermark detection region around w. (3) modify I to
obtain I ′ using an inverse extraction function, X−1(v′, I).
The inverse extraction function produces a piece of media
that yields v′ when the signal extraction process is applied
to it, and which is perceptually close to I.

Given a watermark detection algorithm, the functions
used in steps 1 and 3 are usually straightforward to de-
sign. We define a detection algorithm, along with these two
functions in the next section. Designing the “mixing func-
tion” of step 2 is more subtle. Section 4 is devoted to four
different ways this function can be defined for our simple
example.

3. A SIMPLE WATERMARK
The watermark detector we develop here is intended

only to serve as a clear example of how to implement an
informed watermark embedder. This system makes no use
of such ideas as embedding in mid-frequencies, correcting
for geometric distortions, or sophisticated perceptual mod-
eling.

Our detector first extracts a 64-dimensional vector, v
by computing the inner product between the image’s pixel
intensities and 64 random, orthogonal matrices:

vi = X(I) =
∑

x,y

Ix,yM [i]
x,y (1)

where Ix,y is the pixel intensity at location x, y, M
[i]
x,y is

the value of the i’th matrix at location x, y, and vi is the
i’th element of the extracted signal vector, v. Each of the
matrices, M [i], consists of 0’s and an equal number of 1’s
and -1’s. At each pixel, exactly one of the matrices has a
non-zero value.

The second step, vector comparison, is performed using
correlation coefficient, c,

c =
v̂ · ŵ

‖v̂‖‖ŵ‖ (2)

where v̂ = (v− the mean of v), ŵ = (w− the mean of w),
and v̂ · ŵ is the linear correlation (or inner product) between
the two vectors. Finally, we choose a threshold value based
on the model described in [12] to predict the false positive
probability.

The above detector design directly gives the signal ex-
traction function to be used in step 1 of our embedder. We
now define the inverse signal extraction function, X−1(v′, I),
of step 3. If we have an image that yields an extracted vec-
tor, v, and we want to change it to yield a different extracted
vector, v′, we can just add each of the matrices, M [i], to
the image, scaled by an amount proportional to v′i − vi:

I ′ = X−1(v′, I) = I +
∑

i

(v′i − vi)
ni

M [i] (3)

where ni is the number of non-zero values in M [i].
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Figure 1: Four watermark embedding strategies.

In practice, our inverse extraction function cannot be
implemented perfectly, because of problems with round-
off and clipping. Our implementation uses a simple form
of error-diffusion to produce an image that yields a close
match to v′, at the expense of a small fidelity impact.

Finally, to facilitate the design of the mixing functions
described in the next section, we must define a method of
measuring perceptual distances in media space. We define
D(I ′, I), to be the mean squared error (MSE) between I ′

and I, scaled by the mean square of I. This yields a value
that is equivalent to the signal-to-noise ratio1, expressed in
dB as 10 log10(1/D(I ′, I)).

4. EMBEDDING STRATEGIES
In this section, we explore four different embedding strate-

gies, defined by the mixing function, f(v, w, I). These strate-
gies differ in the values they hold constant and their opti-
mization criteria. The first three hold the distortion, D(I, I ′),
constant while trying to optimize a value related to detec-
tion. The fourth method holds a robustness measure con-
stant, while minimizing distortion.

We observe that, in all four cases, the optimal v′ will
lie in the plane of watermark space that contains the ori-
gin, v, and w. Thus, we can restrict ourselves to the two-
dimensional problem of finding the optimal point in this
plane. Figure 1 illustrates the plane for one combination of
extracted vector, v, and watermark, w. Referring to this
figure, we now consider each mixing strategy in turn.

Blind embedding or Maximizing linear correla-
tion (MLC). This is the simplest strategy. We assume
that the user has specified a limit on fidelity loss. To keep
fidelity constant, we scale the watermark vector, w, to a
magnitude that corresponds to our fidelity limit, and add
it to the extracted signal, v. This strategy maximizes the

1Here, the image is the “signal”, and the watermark is the “noise”.



linear correlation between the resulting signal and w. It is
illustrated in Figure 1 by the arrow labeled “MLC”.

Note that Figure 1 shows the MLC strategy failing to
reach the detection region. In practice, with lower detection
thresholds, this occurrence is not as common as implied by
this figure. However, MLC will fail to embed the watermark
even in some images who’s regions of acceptable distortion
overlap with the detection region.

Maximizing correlation coefficient (MCC). This
strategy maximizes the actual detection statistic used. Thus
we want to choose the point along the surface of the region
of acceptable distortion that has the highest correlation co-
efficient with the watermark vector. This is equivalent to
finding the vector that forms the smallest angle with the
watermark vector. In Figure 1, the arrow labeled “MCC”
shows what is added to v by this version of the mixing
function.

Since this function explicitly considers the detection statis-
tic, it should succeed in embedding a watermark whenever
the region of acceptable distortion overlaps with the de-
tection region. However, it will often choose a vector that
is very short (has low amplitude). Even a small amount
of noise added to such a vector can easily move it outside
of the detection region. Thus, this strategy is expected to
embed fairly fragile watermarks.

Maximizing robustness (MR). Here, we explicitly
optimize the robustness of the watermark. To do this, we
need a formula that gives us some measure of how robust a
given signal is, assuming a given watermark and detection
threshold. One such formula is suggested in [1]2:

r2 =
(v′ · w)2

T 2‖w‖2
− ‖v′‖2 (4)

where v′ is the vector being tested, w is the watermark vec-
tor, T is the threshold, and r2 is a measure of the amount
of noise that can be added to v′ before its correlation coef-
ficient with w is expected to fall below T .

In the two-dimensional plane of Figure 1, the set of all
points that have a given value of r2 is a hyperbola. Thus
we want to find the point on the perimeter of the circle
of acceptable distortion which lies on the hyperbola that is
deepest within the detection cone. The vector that this mix-
ing method adds to v is illustrated in Figure 1 by the arrow
labeled “MR”. The dashed hyperbola shows the contour of
points that have equivalent robustness to the selected point.

Constant robustness (CR). In this strategy, the user
specifies a desired robustness measure, rather than a max-
imum acceptable distortion. The mixer examines points
that all have the given robustness measure, and chooses the
one that is closest to the extracted signal, v. In Figure 1,
the solid hyperbola shows all the points that have some,
specified robustness value, and the arrow labeled “CR” in-
dicates the vector that is added to v by this version of the
mixer.

2In [1], a typographic error caused the formula to be printed incor-
rectly. The expression presented here is correct.

This strategy should succeed in embedding a watermark
in every image, assuming that the watermark detector uses
the same detection threshold that is used to compute r2

during embedding. However, the fidelity that it achieves
will vary.

5. RESULTS
To test the performance of our four embedding strate-

gies, we implemented four versions of the watermark embed-
der. All the code for these implementations was identical
except the portion that implements the mixing function.
We then tested them on 2000 images drawn from a Corel
image database [13]. Most of these are natural photographs,
but there are also some paintings and computer-generated
texture images.

Four different watermarked copies of each image were
obtained, one for each embedding method. The MR and
CR methods were run using an expected detection thresh-
old, T , of 0.55. Next, all the watermarked images were
JPEG compressed with a quality factor of 85, using DeBa-
belizer Pro, and decompressed. The resulting watermarked
and attacked images were then run through the watermark
detector using three thresholds.

The results of these tests are summarized in Table 1.
For each of the three thresholds, the estimated probability
of false positive is given as Pfp. The results for images after
JPEG were computed based only on the images that had
watermarks successfully embedded in them. Thus, these
results reflect only the effect of JPEG on the detectability
of the watermark.

From this table, we make the following observations:
Although the MLC, MCC, and MR embedders try to

maintain constant fidelity, there is some variation in the
actual fidelity obtained. Similarly, the CR strategy tries to
keep constant robustness, but there is some variation in the
actual r2 values obtained.

The blind embedding strategy (MLC) fails to embed
a watermark more frequently than any of the others, at
all thresholds. This is expected, since MLC ignores the
detection region during embedding.

The MCC strategy succeeds in embedding more fre-
quently than MLC or MR at the highest threshold. It has
nearly the same success rate as MR at thresholds of 0.45
and 0.55.

Watermarks embedded by MCC are more fragile than
those of MR and CR, at thresholds equal to or below the
ones used during embedding. This is expected, since MCC
will sacrifice robustness in order to maximize correlation
coefficient.

Watermarks embedded by MR survive attack better than
those of MLC and MCC, when the detection threshold is
equal to or less than the one used during embedding. This
is expected.

The CR strategy succeeds at embedding watermarks in
100% of the images at every threshold.

Watermarks embedded by CR are the most robust of
the four strategies, for thresholds equal to or below the one



MLC MCC MR CR
SNR (dB)

(min/mean/max) 28.3 / 36.5 / 37.8 28.3 / 36.5 / 37.7 28.3 / 36.5 / 37.8 24.8 / 36.0 / 43.2
Robustness Metric
(min/mean/max) 0 / 184.3 / 1032.3 0 / 98.5 / 785.8 0 / 214.4 / 1072.4 55.4 / 77.0 / 92.7

T = 0.45, No Attack 98.2% 99.2% 99.3% 100.0%
Pfp ≈ 10−4 After JPEG 63.2% 59.4% 77.0% 77.3%
T = 0.55, No Attack 93.0% 97.4% 97.7% 100.0%

Pfp ≈ 10−6 After JPEG 40.1% 48.7% 58.6% 61.7%
T = 0.80, No Attack 23.5% 83.2% 61.4% 100.0%

Pfp ≈ 10−15 After JPEG 7.4% 23.8% 11.7% 23.0%

Table 1: Fidelity and robustness results for various mixing functions.

used to compute r2 during embedding.
All but two of these results are expected from the de-

sign of the four mixing strategies. The first exception is
that MLC, MCC, and MR did not result in exactly con-
stant SNR, and CR did not result in exactly constant ro-
bustness. The second exception is that MCC and MR did
not have exactly identical failure rates at embedding for a
detection threshold of 0.55. However, both of these unex-
pected results can be explained as a consequence of our im-
perfect implementation of the inverse extraction function,
X−1(v′, I).

6. CONCLUSION

From the results presented here, we draw three main
conclusions.

First, in a watermarking system with blind detection,
the original cover media should not be considered noise.
Rather, the watermark embedder should exploit the fact
that it has complete knowledge of the cover media to embed
the watermark more reliably.

Next, the embedder should also employ an accurate
model of the watermark detector to identify the exact de-
tection region for the watermark being embedded. This
contrasts with the practice of simply adding the watermark
to the cover media, which implicitly assumes that, whatever
the detection algorithm, detectability increases with linear
correlation.

Finally, it is not enough for the embedder to simply try
to maximize a detection statistic. We can obtain signifi-
cantly better results by defining a measure of the expected
robustness of the watermark, and maximizing this function
(MR) or keeping its value constant (CR).

These principles have been applied to a simple water-
marking system, and they significantly improved perfor-
mance, without changing SNR. We believe they generalize
to many other algorithms. However, their impact depends
on how different the true detection region is from that cre-
ated by thresholding linear correlation. This is an area for
future research.

Another area to be explored in the future is the develop-
ment of better robustness measures. The r2 measure used
here is based on a simple model of attacks as additive white

Gaussian noise. But this does not accurately model the ef-
fects of image processing on our watermark, and measures
based on more realistic models might yield better results.
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