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Abstract

In this work we address the problem of boundary detection by combining ideas
and approaches from biological and computational vision. Initially, we propose a
simple and efficient architecture that is inspired from models of biological vision.
Subsequently, we interpret and learn the system using computer vision techniques:
First, we present analogies between the system components and computer vision
techniques and interpret the network as minimizing a cost functional, thereby es-
tablishing a link with variational techniques. Second, based on Mean-Field Theory
the equations describing the network behavior are interpreted statistically. Third, we
build on this interpretation to develop an algorithm to learn the network weights
from manually segmented natural images. Using a systematic evaluation on the
Berkeley benchmark we show that when using the learned connection weights our
network outperforms classical edge detection algorithms.
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1 Introduction

Low and mid-level vision tasks have been the object of extensive research in
both the computational and biological vision communities. This has resulted
in efficient algorithms for problems like edge detection [1–4], image denoising
[5,6] and segmentation [7,8] on the one hand and an increasingly detailed
understanding of the functions of neurons in the first stages of the visual
cortex on the other [9–11]. However, despite significant early works like e.g.
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[12–14], research in these two areas proceeds along loosely coupled paths,
leaving largely unexplored the potential of their fruitful interaction.
In this paper we present a thorough computational and statistical analysis of
a biologically motivated system for vision tasks. Starting with the Boundary
Contour System/Feature Contour System (BCS/FCS) architecture developed
by S. Grossberg, E. Mingolla and collaborators through a series of publications
[15–22], we have significantly simplified it and pursued the construction, anal-
ysis and learning of a biologically motivated and computationally competent
model of boundary detection.

1.1 Contributions and Paper Outline

Our approach is synthetic in nature, putting together pieces from interrelated
fields; even though some ideas used in this paper have been proposed in the
past, they have not been combined in a cohesive manner. In synthesizing such
a multi-faceted system our main contributions are:
• A minimal model comprising the functionalities of the BCS/FCS architec-

ture: In Sec. 3 we propose our model that uses recurrent neural dynamics
and integrates multi-scale contour, surface and saliency information in a
simple architecture.

• Interpreting the network’s function using variational techniques: In Sec. 4
we identify the corresponding computer vision problems and analyze our
model computationally by providing a Lyapunov function of the network.
This describes the network dynamics as minimizing a variational criterion.

• A statistical interpretation of the network’s function and an algorithm for
learning the network weights: In Sec. 5 we consider the network neurons
as a field of interrelated random variables and use Mean Field Theory to
interpret its function. In Sec 5.4 we present a learning algorithm for our net-
work that reduces ad-hoc choices in network design and results in improved
performance.

• The systematic evaluation of the network’s performance on an edge detec-
tion task using ground truth data for complex natural images: Experimental
results and systematic evaluations are provided in Sec. 6, where significant
performance improvements are demonstrated.

Some initial results of this work have been presented in [23], while an extensive
presentation of our research can be found as a technical report in [24].

2 Previous Work

In this section, after some elementary background on the human visual system
we present previous work related to neural architectures that inspired the
proposed model; pls. cf. [24] for a more extensive background review.
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2.1 Visual Cortex Neurons

Most biologically motivated architectures for vision problems adopt the bottom-
up ordering laid out in [12]: a preliminary feature extraction stage takes place
in the retina, LGN and area V1 followed by the introduction of increasing
invariance to phase, location and pose in areas V1, V2, V4 and IT.
Simple cells in layer V1 are tuned to specific spatial frequencies and locations,
and their receptive fields are commonly modelled in terms of two-dimensional
Gabor filters [25]. Complex cells combine the outputs of simple filters in a
phase-invariant response [26,27], which can be modelled as the magnitude of
convolution with a complex Gabor filter. Refinements to these approxima-
tions take into account the horizontal interactions between cells in these areas
[28,29].
In area V2 Von der Heydt and colleagues [30] discovered ‘context aware’ cells
that are active in the absence of stimuli in their receptive field, provided
their neighboring cells are active. The role assigned to such cells is grouping
the responses of isolated cells in area V1 and strengthening the responses of
mutually consistent neurons, and they are commonly viewed as the neural
substrate of perceptual grouping.
Despite the similarities between cells in areas V1 and V2, there is evidence
[31,32] that area V2 is more strongly involved than V1 in higher level processes,
like surface formation, segmentation and grouping. Further, recent research
e.g. [33] proposes that areas V1 and V2 continuously interact with higher
level areas. In our work we consider only the interaction between contour
linking and boundary detection typically assumed to be mediated by V1-V2
interaction.

2.2 Models of Neuron Dynamics

Models of increased sophistication and accuracy for the function of individual
neurons have been developed during decades of research [34], but when mod-
elling a large number of neurons computationally convenient approximations
are used.
The Mean Firing Rate (MFR) [34] approximation summarizes the behavior of
a cell in terms of its average rate of spike emission: this results in tractable
models that account for a significant part of network dynamics, but discards
timing information. The interactions of networks of neurons are described in
terms of Ordinary Differential Equations -ODE(s). The most common ODE
is that of the additive model, where the MFR Ui of neuron i is influenced by
the MFRs Uj of neurons j in its neighborhood N (i) as:

dVi

dt
=−AVi +

∑

j∈N (i)

Wi,jUj, Ui = g(Vi). (1)

The potential Vi of neuron i is related to its mean firing rate Ui via a nonlinear
function g that keeps the firing rate positive and saturates for high values of
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V . The leakage term −AVi drives the neurons to a neutral state in the absence
of external inputs. If neuron i influences the firing rates of its neighbors, this
results in a recurrent architecture that has nontrivial dynamics.
A more elaborate model of interactions [35] replaces Eq. (1) with:

dVi

dt
= −AVi + (Vmax − Vi)Ei + (Vmin − Vi)Ii (2)

where Ei =
∑

j∈N (i)

WE
j Uj, Ii =

∑

j∈N (i)

W I
j Uj.

The steady state potential Vi thus remains bounded in [Vmin, Vmax] and does
not saturate for arbitrarily high net excitatory (Ei) and inhibitory (Ii) inputs.
Further, in [28] an additional term was introduced in Eq. (2):

dVi

dt
=−AVi + (Vmax − Vi)Ei + (Vmin − Vi)Ii − ViGsh, (3)

where Gsh is again a sum over the activity of neighboring neurons. The special-
ity of this last term is that the inhibition it causes to neuron i is only evident
if neuron i is active, and it is therefore termed shunting inhibition. Actually,
by solving for the steady state potential of neuron i we see that effect of Gsh

is divisive rather than subtractive, hence it is commonly considered to be the
substrate for divisive normalization.
Divisive normalization has successfully been used in [28,36] to explain the
non-linear behavior of neuron ensembles and the suppression of responses by
stimuli presented outside the classical receptive field. The latter phenomenon,
known as surround suppression [37–39] has been modelled in [40] explicitly
in terms of a division with a pooled sum of neighboring neurons, and was
analyzed in [41,42] as a mechanism to reduce the response of typical edge
detection operators to textured areas.

2.3 Neural Architectures for Low- and Mid- level vision problems

Issues concerning model complexity, accuracy and plausibility emerge when
building models for whole areas of the visual cortex and their interactions. In
the following we present three influential models of increasing compactness,
followed by a brief discussion motivating the introduction of our model.

2.3.1 The BCS-FCS model
The FACADE (Form And Colour and DEpth) theory of vision proposed by
S. Grossberg and his collaborators in a series of papers [20,21,15,17,22,43]
deals with almost the whole of low- and mid-level vision, starting from edge
detection and ending at motion segmentation and binocular vision.
Our focus has been on the Boundary Contour System (BCS) and Feature
Contour System (FCS) subparts of this model [44], which are related to the
tasks of boundary detection and image segmentation respectively.
In its full-blown version [22,20] the BCS consists of 6 processing stages, each
comprising 4-8 orientations and 3 scales: Stage I models On-Off/Off-On cells in
LGN. Their inputs are obtained from isotropic Gaussian filters with different
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widths; e.g. On-Off cells combine an excitatory input from a small Gaussian
with an inhibitory input from a broad Gaussian to detect bright blobs. Stage
II models simple cells in V1, by convolving the outputs of Stage I cells with
elongated Gaussians to extract orientation-sensitive responses. Two directions
along each orientation are considered, since neurons cannot have negative
outputs and nonlinearities are used to avoid saturation. Stage III captures the
behavior of complex cells by pooling the responses of simple cells at opposite
directions. This yields a single, invariant response signaling variation along an
orientation.
In Stages IV-VI boundary formation takes place: Stages IV and V perform
nonmaximum suppression, along location and orientation respectively, aided
both by bottom-up information and a top-down saliency signal computed by
Stage VI. The latter is obtained by pooling the responses of Stage V outputs,
and is fed back to Stage IV yielding a recurrent process that detects and
enhances smooth boundaries.
The Feature Contour System (FCS) combines input from On/Off-Off/On cells
with the boundaries provided by the BCS.
Continuous surface percepts are formed by diffusing the surface neuron activi-
ties via a system of coupled ODEs. The coupling between neighboring neurons
is loosened at locations where the BCS signals an edge, thereby achieving the
anisotropic diffusion of the image content.
Many ideas in this model are intuitively appealing, while the plethora of psy-
chophysical phenomena it explains in a unified manner [21] support its plau-
sibility. Still, its high complexity renders it unmanageable and this led us to
develop the simpler architecture presented in the following.

2.3.2 Bayesian model of texture segmentation in the Cortex [45]
The model of [45] is strongly influenced by ideas developed in the computer
vision community related to variational image segmentation [7,46] and pro-
vides a mapping between computational and biological processing modules.
It relies on a region-based diffusion process that smooths the responses of
simple and complex cells. The introduction of a line process blocks diffusion
at feature discontinuity points, yielding feature channels separated in smooth
compartments. To avoid trivial oversegmentations of the image, a cost on the
line process is introduced in the energy functional, guaranteeing line elements
are introduced only where necessary. A physiological mechanism potentially
underlying the minimization of the functional using an annealing technique is
proposed and a neural circuitry implementation of the model is suggested.
This model can be seen as a mathematically sound version of the BCS/FCS
model, allowing for a variational/Bayesian treatment. Still, it lacks both an
edge detection and a saliency computation module, accounting only for region-
based boundary detection. However, the abundance of biological evidence on
boundary processes, and computational evidence of the merit of combining
bottom-up edge detection with region-based cues [4] hint that edge detection
is useful for any model.
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2.3.3 Segmentation without Classification model [47]
In this model a minimal architecture is proposed to address the question
whether separate feature and boundary streams are necessary. Using a model
where all V1 cells interact with their neighbors in the same manner, the ability
to perform texture segmentation without a separate feature processing stage
is demonstrated. This contradicts typical computational [3,46,48] and biolog-
ical [21,45] models which assume texture processing takes place in a separate
stream that cooperates with boundary processing.
The compactness of this model is appealing, but the complexity of the role
assigned to V1 cells seems daunting: feature extraction, boundary detection,
nonmaximum suppression and saliency computation are assumed to be ac-
complished by the same cells. Even though evidence in favor [49] and against
[50] such an architecture is not conclusive, for practical reasons we adopt a
less involved approach at the stage of model building.

2.4 Discussion and motivation for the new model

In our understanding there is no ‘winner’ among the above and other models,
e.g. [51,52]. Psychophysical phenomena do provide insight on the functionality
of the computational modules, while the architecture of the visual cortex can
constrain the possible models that explain the phenomena. However, the par-
tiality of this knowledge leaves space for numerous models: as a first example,
illusory contour formation has been modelled in [47] as being accomplished
in V1 by horizontal interactions, in [51] as a gating feedback from V2, and in
[44,21] as an additive feedback from V2. A second example concerns surface
processes related to brightness perception [19,21] and texture segmentation
[45]: these are commonly modelled with a surface stream complementary to
the boundary stream, but in [47] this was explicitly omitted from the model,
resulting again in plausible results. Psychophysical evidence in favor of sepa-
rate region and boundary streams [50] is not conclusive, especially for texture-
related channels, where the same simple and complex cells respond both when
lying on a region boundary and in the interior of a textured region [31].
The bottom line is that few models come with actual physiological arguments
in favor of their structure, while the focus is primarily on reproducing psy-
chophysical phenomena. In our initial research efforts we had focused on the
BCS/FCS model, primarily because it has been extended to account for almost
the whole of low- and mid-level vision [21] and has been applied to natural
images [22] giving promising results. In our implementation we faced practical
problems with the large number of processing modules, design parameters and
the lack of a mathematical analysis of its behavior. This led us to propose the
simpler model presented in the following section. Our model uses a recurrent
architecture comprising the main functionalities of the BCS/FCS architecture;
however, the number of BCS processing stages is significantly reduced, while
its recurrent dynamics facilitate its variational and statistical interpretation.
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Orientation

Stage I: Feature Extraction and Contrast Normalization

Stage II: Cue Combination and Boundary Formation

Input Image

Shunting
Inhibition

Suppression
Nonmaximum

Stage III: Saliency Detection

Stage I

Stage III

Stage II

Input

FCS

Scale

System Architecture

Fig. 1. Bottom left: Block Diagram of system module interactions. Right: Boundary
computation across the three processing Stages.

3 A Recurrent Architecture for Boundary and Surface Processing

A visual roadmap of our system is shown in Fig. 1, where we show the neuron
activations of the three processing stages used by our model at a single scale:
feature extraction at multiple orientations takes place in Stage I and is followed
by boundary formation in Stage II. There the bottom-up cues are recurrently
combined with the top-down saliency signal computed from Stage III. Stages
I and II follow recurrent dynamics, determined by their lateral interactions.
Below we describe in more detail the function performed by each processing
stage. Since in Section 5 we derive an algorithm to learn the connection weights
among neurons from ground truth data we omit the heuristic expressions used
in our earlier work [23,24].

3.1 Stage I: Feature Extraction, Divisive Normalization.

The first two stages (contrast and feature detection) of the BCS are merged
into one, using Gabor filters for feature extraction; the optimality properties
related to 2-D Gabor filters and their accurate modelling of simple cell re-
ceptive fields [25] suggest they constitute an adequate approximation to the
feedforward input to simple cells.
We use the Gabor filterbank described in [45] since its parameters are cho-
sen to comply with measurements of simple cell receptive field and its even-
symmetric filters have zero DC components, which is necessary for modelling
simple cells. The feedforward input to a single cell at location i, j with ori-
entation preference θ, scale σ with an even-symmetric receptive field is given
by
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Iθ,σ
e (i, j) = <(Ψθ,σ ∗ I)(i, j). (4)

Ψθ,σ is a complex Gabor filter with scale σ and orientational preference θ, ∗
denotes convolution, I is the input image and < is the real part of a complex
number. For odd-symmetric cells we use the imaginary part, =: Iθ,σ

o (i, j) =
=(Ψθ,σ ∗ I)(i, j).
Shunting inhibition is used to account for surround suppression and contrast
normalization as in [28], with a shunting term that changes dynamically based
on the activations of neighboring cells. The equation driving the potential Vi

of neuron i writes:
dVi

dt
=−AVi + (Vmax − Vi)Ii − Vi

∑

j∈N (i)

Wi,jUj, (5)

V ∞
i =

VmaxIi

A + Ii +
∑

j∈N (i) Wi,jUj

(6)

where Ui = max(Vi, 0) is the MFR of neuron j, N (i) the neighborhood of
neuron i and Wi,j denotes the strength of the interaction between i and j.
Starting from Eq. (5), a neuron at location k, l and with orientation θ is
indexed using the one-dimensional index i for simplicity.
The output sent to Stage II is obtained by combining the outputs of odd- and
even- symmetric cells in a phase-invariant term as in [26,53,3]:

O =
√

U2
o + U2

e (7)

where Ue, Uo are the steady-state responses of even- and odd- symmetric Stage
I neurons at the same location, orientation and scale. The merits of combining
even and odd-symmetric filter as in Eq. (7) have been established in [3] while
such a scheme has been used to model the behavior of complex cells in [26]
and the perception of boundaries in [53]; biological evidence supporting it is
reviewed in [27].
Since neurons can have only positive firing rates, one should separate positive
and negative cell responses and perform the normalization in parallel for each

part. In practice we observed that initially estimating I =
√
<(Ψθ,σ ∗ I)2 + =(Ψθ,σ ∗ I)2,

and subsequently performing the normalization process on this single channel
yields hardly discernible results.

3.2 Stage II: Edge Thinning, Contour Formation.

The function of this stage lies at the heart of the boundary detection process:
in this stage the combination of bottom-up (Stage I), top-down (Stage III),
region-based (FCS) and multi-scale information takes place, while simultane-
ously performing edge thinning.
Edge sharpening in space and orientation is simultaneously accomplished via
horizontal inhibitory connections. Thereby the activities of the most active
neurons are enhanced to the detriment of their less active neighbors.
Saliency information and coarse-scale boundary detection results are provided
from other modules, enhancing the activity of neurons lying on perceptually
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(a) (b) (c)

Fig. 2. The lobes derived from the Elastica model (defined in Eq. (12)) of curves
for parameters (a) λ = 10, σ = 0.4, (b) λ = 10, σ = 0.2,(c) λ = 20, σ = 0.2.

strong borders, or borders appearing at multiple scales.
The surface process, S, influences the evolution by favoring the formation
of edges at locations of feature discontinuities. These are indicated by the
magnitude of the directional derivative of S perpendicular to orientation θ,
|∇Sθ⊥|.
Combining all these cues, the evolution of neuron i potential writes:

dVi

dt
=−AVi + (Vmax− Vi)Ii + (Vmin− Vi)

∑

j∈N (i)

Wi,jUj (8)

Ii = [c1O + c2C + c3T + c4|∇Sθ⊥|] .

The excitatory input Ii is formed by combining T , the top-down signal pro-
vided from Stage III, C, the coarser scale term arriving from an homologous
system functioning at a larger scale, O, the oriented-energy feedforward term
in Eq. (7) and the FCS-derived signal. The sigmoidal function

Ui = g(Vi) =
1

1 + exp(−(Vi

β
− γ))

(9)

relates the potential of a neuron to its MFR, with β determining the steepness
of the input-output relation and γ acting like a bias term.

3.3 Stage III: Saliency Computation

At this stage salient contours are detected by pooling information from the
neighborhood of each neuron according to the connection pattern shown in
Fig. 2; as will be explained later, the interconnection pattern shown in Fig. 2
depends on two design parameters λ, σ corresponding to the scale and spread
of the lobes, respectively.
For each direction of arrival (left/right in the figure), a weighted sum is com-
puted and the two sums are combined to guarantee that evidence in favor of
a contour exists on both sides.
For this we use the evolution equation:

dVi

dt
= −AVi +


 ∑

j∈N+(i)

W+
i,jUj





 ∑

j∈N−(i)

W−
i,jUj


 (10)

where N+, N− are the subsets of neighbors lying on the two sides of i, W+,W−
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Fig. 3. The top row figures give rise to the illusory boundaries of the bottom row.
These are detected in Stage II, thanks to the saliency signal from Stage III.

are the corresponding connection weights and Uj is the MFR of neuron j,
derived from Vj via rectification. We used multiplication in Eq. (10) assuming
the neural circuitry proposed in [54,51] can approximate it sufficiently well.
The contours detected at this stage are fed back to Stage II, resulting in a
cooperative process that favors smooth and long boundaries. Illusory contours
can thereby be perceived, as shown in Fig. 3.

3.4 FCS: Anisotropic Image Smoothing

Two practical differences of our model’s FCS from the original are that, first,
the intensity values of the image are used instead of the On/Off- Off/On
cell outputs and second, we consider BCS neurons are located between FCS
neurons as in [55]. The evolution of an FCS neuron potential S writes:

d

dt
S =

∑

θ

∇θ⊥S(1− Uθ), (11)

where Uθ is the MFR of the Stage II neuron having orientation θ and lying
between the neighbors used to estimate ∇θ⊥S. As in [6] the value of S at
neuron i is always the subtracted quantity in ∇θ⊥S, i.e. for a discrete grid
∇θ⊥ = S ′ − Si where S ′ is the closest neighbor to i along orientation θ⊥.
In our model surface formation interacts with boundary detection, keeping
the boundaries close to maxima of brightness gradients. On synthetic images
we observed that this avoids the occasional shifting of edges due to higher
level (Stage III) cues and the breaking up of corners eventually caused by
orientational competition. This interaction can also be useful if region-based
cues drive boundary detection, e.g. for texture segmentation [45].

3.5 Edge Detection Results

Some results of our system on real-world images are shown in Fig. 4 where
its performance is compared to Canny edge detection [1] with approximately
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Input Image

Canny Edge Detection Results
 T

1
 = 0.16, T

2
 = 0.06, σ = 1, # edge pixels: 9464  T

1
 = 0.33, T

2
 = 0.13, σ = 1, # edge pixels: 13310  T

1
 = 0.23, T

2
 = 0.09, σ = 1, # edge pixels: 17090  T

1
 = 0.35, T

2
 = 0.14, σ = 1, # edge pixels: 16735

Thresholded Network Outputs
# edge pixels: 9173 # edge pixels: 12494 # edge pixels: 16977 # edge pixels: 16385

Fig. 4. Comparison between Canny edge detection and the results of our network.
The thresholds for both methods have been set to return the same number of edge
elements. Canny edge detection yields a large number of edges on textured areas,
while our network focuses on salient borders.

the same number of pixels. Our system favors smooth and long contours,
occasionally even hallucinating them as in the image of the dear: the edge
starting from its leg is unified with the one due its head’s shadow. In general,
however, it is a bias that pays off, compared to plain Canny edge detection.
Specifically the latter suffers at coarse scales from poor edge localization while
at finer scales edges are detected at textured regions. Our model avoids these
problems due to both its multi-scale architecture and its surround suppression
mechanism. The benchmark results presented in Sec. 6 validate that the man-
ually designed model initially presented in [23] systematically outperforms fine
scale Canny edge detection, but for a coarser scale the improvement of our
model is only evident once learning is introduced.

4 Interpreting the Model in Computer Vision Terms

Most of our network functions correspond to common computer vision tech-
niques, which help analyze the network’s function mathematically. We start
with its saliency estimation module and continue with analyzing the function
of the network as a whole.

4.1 Perceptual Grouping and the Elastica Prior on Shapes:

The enhancement of perceptually salient borders has been extensively studied
in computer vision during the last decades; early work includes the hysteresis-
thresholding technique of [1] and the penalty terms on line endings used in
[56,5] which favor edge groupings. In the probabilistic formulations used in
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[57,58] edge saliency is propagated among processing nodes, while in [59] a
variational criterion including the squared integral of the curvature is used for
edge linking.
In work on contour completion that is more closely related to ours, like the
tensor voting method of [60], the relaxation labelling process of [61] and the
work of [52] a similar pattern of edgel interactions to that of Fig. 2 is used to
identify salient locations. Actually, it is shown in [58] that this pattern, ini-
tially introduced by S. Grossberg in [15], is intrinsically related to variational
approaches to contour completion [59,62]. According to the Elastica model of
[62] a curve Γ is the path of a particle driven by a diffusion process in the
continuous (x, y, θ) space where x, y are the particle’s position and θ is the
orientation of the tangent to its trajectory at that point. The motion of the
particle is described by the stochastic differential equation:

d

dt
x = cos(θ)

d

dt
y = sin(θ)

d

dt
θ = κ(t), κ(t) ∼ N (0, σ2) (12)

where the curvature, κ, of the associated curve is a Gaussian white noise pro-
cess. The length of the curves is constrained by stopping the diffusion process
at a time instant drawn from an exponential distribution with parameter λ.
The probability P (Γ) of a curve is then related to the Elastica functional:

E(Γ) =
∫

Γ
(αk2 + β)ds (13)

The smoothness of the curves is determined by the parameter α and β is
related to their expected length. In [62] it is shown that according to Eq. (12)

P (Γ) ∝ e−
∫
Γ
(αk2+βds), β = λ, α =

1

2σ2
(14)

Minimizers of the Elastica energy are thus modes of P (Γ).
The link between this model and the shape of the lobes was established in
[58]: based on Eq. (14) the posterior probability of a curve passing through a
point X0 = (x0, y0, θ0) was expressed as a product of weighted sums:

P (X0)=


 ∑

i∈r(X0)

g(X0, Xi)P (Xi)





 ∑

j∈l(X0)

g(X0, Xj)P (Xj)


 .

Here g is a six-dimensional tensor on (x, y, θ, x′, y′, θ′) and equals the proba-
bility that a particle will pass through (x′, y′, θ′) given that at time t = 0 it
is located at x, y, θ. r(X0) and l(X0) stand for the neighborhoods on the two
sides of point X0 and P (Xi) is the probability of a curve starting from Xi at
t = 0. Using Monte Carlo simulation to approximate the tensor g results in
the patterns shown in Fig. 2.
The feedback term is thus related to the posterior probability of a contour
passing through a point conditioned on its surroundings. This justifies the
specific shape of the lobes while simplifying their design since only two easily
interpretable parameters, λ and σ, are involved. This results in a drastic reduc-
tion in the number of parameters required, compared e.g. to the expressions
used in [22,51].
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4.2 A Variational Perspective

The BCS/FCS architecture parallels the use of line and surface processes by
computer vision researchers [5,55,45,56]; the general approach is to introduce
a line process and diffuse the image intensity (termed ‘surface process’) in the
whole image except for areas where a line process element is active. Disconti-
nuities of the surface process determine where a line process element can be
afforded and vice versa.
The variational approach phrases the task as the minimization of a functional,
as e.g. that of Mumford and Shah [7]:

E(S, U) = λ
∫

D
(S − I)2 + µ

∫

D−U
|∇S|2 + ν|U |. (15)

In Eq. (15) I is the observed image intensity, S is the smooth reconstructed
surface, U is a line process, |U | is the length of the line process and D is
the image domain. Finally, µ, ν are weighting factors determining the relative
contribution of each term.
Variational problems in computer vision can by solved using recurrent neural
networks [13,45,63,55] based on their link with Lyapunov functions [64,35,65,66].
A Lyapunov function is a positive definite function of the system’s state that
constantly decreases as the system evolves; one can then view the function of
the network as driving its state towards a minimum of this function.
Our goal is to see how our network can be analyzed in variational terms; based
on [35] one can directly derive a Lyapunov function for the recurrent network
described in the previous section but the integrals become involved and do
not help intuition. We therefore consider the simplified version of Eq. (8):

dVi

dt
= −AVi + CIi −D

∑

j∈N (i)

Wi,jUj (16)

where instead of the synaptic interaction among neurons we use the common
sum-of-inputs model.

4.2.1 Boundary Processing Module
Initially we treat the excitatory input I as constant, in which case a Lyapunov
function of the network is (see Appendix A):

∑

i

[a
∫ Ui

1/2
g−1(u)du

︸ ︷︷ ︸
P(U): Penalty for values of U

−cIiUi] +
d

2

∑

i,j∈N (i)

UiWi,jUj

︸ ︷︷ ︸
C(U): cost of configurations of U

(17)

For the sigmoidal function used in Eq. (9) we have

P (U) = [U ln(U) + (1− U) ln(1− U)]/β + γU − γ2. (18)

This consists of a negative entropy term [U ln(U)+(1−U) ln(1−U)], punishing
binary responses and the term γU that punishes high responses. The first term
is due to using a sigmoid transfer function in Eq. (9) and the second is due
to shifting it by γ to the right. The factor β is related to the slope of the
sigmoid function: if a rapidly increasing sigmoid is used, i.e. β is large, the
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penalty on binary responses becomes less important and vice versa. The term
−IU lowers the cost of a high U , facilitating the emergence of a boundary at
locations where I is large.
The weight Wi,j expresses the interaction among neurons i = (xi, yi, θi) and
j = (xj, yj, θj); taking into account the natural requirement of translation and
rotation invariance and assuming symmetric connections among neurons of the
same stage, a more elaborate notation would be Wi,j = W θi,φj(xi − xj, yi − yj).
A special case we examined in [23,24] expresses the connection weights W θ,θ(x, y)
among neurons of the same orientation θ as the difference between an isotropic
filter Gs and an even-symmetric filter elongated along dimension θ, Gθ

s; for dif-
ferent orientations, W θ,φ(i, j) is expressed in terms of an isotropic filter, Gd.
For each of these filters there is another filter, g, such that g∗g = G, and it can
be shown that the g filters corresponding to elongated G filters are elongated
along the same orientation.
Using these kernels the configuration cost writes [24]:

C(U) =
∑

i,j,θ

[gis ∗ Uθ]
2 − ∑

i,j,θ

[gθ ∗ Uθ]
2 + 1/2

∑

i,j,(θ,φ):θ 6=φ

[gd ∗ Uθ] [gd ∗ Uφ] (19)

Here Uθ denotes the set of neurons of orientation θ and gis is an isotropic
kernel so [gis ∗Uθ]

2 punishes in general broad activation patterns, irrespective
of whether the edge elements are collinear and consistent or simply scattered
around. gθ is an elongated filter with principal axis along the preferred ori-
entation of neurons, θ. The −[gθ ∗ Uθ]

2 term is thus a negative potential -a
‘reaction’ term- that favors sharp and well aligned edge profiles. The third
term accounts for orientational competition, punishing neurons responding to
edges at different orientations that are active in the same neighborhoods. The
penalties on [gs ∗ Uθ]

2 and [gd ∗ Uθ] · [gd ∗ Uφ] lead to the suppression of broad
structures, while the reactive term −[gθ ∗ Uθ]

2 favors isolated edges.
These terms act in a complementary way, resulting in a reaction-diffusion
like behavior, so that crisp boundaries are favored contrary to fuzzy ones. The
behavior of Winner-Take-All-type networks used for nonmaximum suppression
in [55] can be seen as a special case of this setting.

4.2.2 Boundary-Surface Interaction
To put all pieces together we use the interaction with the surface process that
evolves according to Eq. (11); as shown in Appendix A, a Lyapunov function
is given by:

E=
∑

i

c4 (1− U)|∇θ⊥S|2︸ ︷︷ ︸
Line − Surface interaction

−U [c1O + c2T + c3C]︸ ︷︷ ︸
External inputs

+ a
∫ U

1/2
g−1(u)du +

d

2
C(U)

︸ ︷︷ ︸
Cost for line process

.(20)

where the constants c1,...,4 have absorbed c of Eq. (16). This function has a
lower bound, since the neuron outputs in the subtracted terms cannot become
larger than 1, so adding this lower bound to E makes it positive. By differen-
tiating with respect to S and U we get the ODE in equations (11) and (16)
respectively.
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4.2.3 Relation to other variational models
Having derived an expression for the energy minimized by our network we
can place it in the context of existing variational methods. First, we can see
our functional as a more complex version of that introduced in [56], where a
simple penalty term is used to enforce nonmaximum suppression and contour
continuity to the anisotropic diffusion-derived line process. We also mention
the similarity with [67], where the evolutions of the line and surface process
are coupled, resulting in a conceptually similar model. Finally, adding a data
fidelity term to the surface evolution process would result in a more sophis-
ticated version of line process-based algorithms for the minimization of the
Mumford-Shah functional.
Our system however does not simply boil down to trying to find an approx-
imate minimum of the Mumford-Shah functional. Edge detection is more so-
phisticated since bottom up, region based, saliency based and multi - scale
information is used to derive the final edge map. Based on the Mumford -
Shah functional the only information used related to boundary detection is
the variation of the reconstructed surface process in the 4-pixel neighborhood
of each location. This ignores the architecture of the visual system, which
has filters integrating evidence over large regions to facilitate bottom-up edge
detection.

5 Statistical Analysis and Network Learning

The use of variational criteria similar to those presented in the previous section
is widespread in computer vision; yet little work has been done on learning
the variational criteria from ground truth data. This research direction is
receiving increasing interest, cf. e.g [68,69] and in this section we present a
probabilistic treatment of our network’s function that allows us to derive a
learning algorithm for the connection weights.
Considering the outputs of Stage II as posterior probabilities of boundaries
conditioned on the input image, we phrase our goal as the minimization of
a probabilistic distance measure between the network outputs and ground-
truth edge probabilities. Specifically, we obtain ideal edge detector outputs
from human generated segmentations from the Berkeley Segmentation bench-
mark [70] and target the modification of the network connections towards the
minimization of the Kullback Leibler divergence between the network outputs
and the ground truth data.
Since our network is similar architecturally to the Boltzmann Machine (BM),
we present in Sec. 5.1 the basic notions and previous work on learning algo-
rithms for the BM. In Sec. 5.2 we introduce the Mean Field Approximation
(MFA) and relate it to the function of our network. In Sec. 5.4 we derive the
learning algorithm for the network weights.
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5.1 The Boltzmann Machine

The Boltzmann Machine [71,72,66,73,74] is a probabilistic network of sym-
metrically connected binary units, which are separated in visible and hidden
units, X and Y respectively. An energy function of the form

E(X, Y ) = −
(

1

2
Y T V Y +

1

2
XT WX +

1

2
Y T JX

)
(21)

is typically used for BMs, where V , W , J are symmetric matrixes that de-
termine the intra/inter module interactions. A Boltzmann-Gibbs probability
distribution of the network’s state can be defined in terms of E(X,Y ) as:

PBM(X, Y )=
1

Z
exp(−E(X, Y )), (22)

where Z =
∑

X,Y exp(−E(X, Y )) is the partition function. This equation can
also be written in a factorized form as:

PBM(X, Y )=
∏

i,j∈EX,Y

Φi,j(Xi, Yj)
∏

i,j∈EX,X

Ψi,j(Xi, Xj)
∏

i,j∈EY,Y

Ξi,j(Yi, Yj) (23)

where EX,Y , EX,X , EY,Y are the pairs of interacting units while Φ, Ψ, Ξ are de-
termined by Eq.s (21) and (22).
The BM defines a probability distribution on its observable nodes, Y as
PBM(Y ) =

∑
X PBM(Y,X). Parameter estimation for a BM is phrased as the

minimization of the Kullback-Leibler (KL) divergence between PBM and the
‘environmental’ [72] distribution P (Y ) of the observable units:

KL(P (Y )|PBM(Y )) =
∑

Y

P (Y ) ln
P (Y )

PBM(Y )
(24)

From the two terms formed by breaking the fraction within ln, only the term
−∑

Y P (Y ) ln PBM(Y ) is actually of interest, since the other term,
∑

Y P (Y ) ln(P (Y )),
is independent of the BM and equals minus the entropy of Y . Training a BM by
minimizing Eq. (24) changes the network weights in Eq. (21) to bring PBM(Y )
closer to the observed P (Y ), since KL(P (Y )|PBM(Y )) reaches its minimum
-zero- when PBM(Y ) = P (Y ).
The original training algorithm for BMs [72] updates the weights according to

∆Wi,j ∝< vivj >+ − < vivj >− (25)

where < vivj >+ is the correlation of nodes vi, vj when the observable nodes
are fixed to their observed values and < vivj >− when the network is running
free. Estimating these means is typically performed via Monte Carlo tech-
niques which entail stochastic simulation of the network, and replacing the
expectations with a sum over the samples. This is computationally demand-
ing and therefore impractical for a network as large as the one we use here; the
need for less accurate, yet more efficient inference algorithms [74,73] emerges,
and we now show that this is performed by the evolution equations of Sec. 4.
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5.2 Mean Field Approximation

A popular alternative to Monte Carlo estimation is the variational approach;
pls. cf. [75] for an excellent introduction to the subject on which this section
is based. If the distributions Q to be inferred are assumed to belong to a
specific family Q, inference is phrased as the search for the distribution Q ∈ Q
maximizing a criterion J(Q) that favors the proximity of Q to the target
distribution. A common inference problem concerns estimating the posterior
distribution P (X|Y ) of a set of random variables X given a set of observations,
Y . A suitable criterion to maximize for this purpose is:

J(Q) = ln P (Y )−KL(Q(X)|P (X|Y )) (26)

The subtracted term is always positive and equals zero for Q(X) = P (X|Y ),
whereupon J(Q) attains its maximum. If P (X|Y ) does not belong to Q, max-
imizing J(Q) will choose the member of Q which is closest to P (X|Y ).

5.2.1 MFA for the Boltzmann Machine
Using the identities P (Y )P (X|Y ) = P (X,Y ) and

∑
X Q(X) = 1, we can write

Eq. (26) as:

J(Q)=
∑

X

Q(X) ln P (Y )−Q(X) ln
Q(X)

P (X|Y )
=

∑

X

Q(X) ln P (X, Y )−Q(X) ln Q(X)

If P (X,Y ) has the form of Eq. (23), the above expression writes:

J(Q)=
∑

i,j∈EX,X

∑

Xi,Xj

Qi,j(Xi, Xj) ln Ψi,j(Xi, Xj) +
∑

i,j∈EX,Y

∑

Xi

Qi(Xi) ln Φi,j(Xi, Yj) + S + c

All terms of Eq. (23) involving only pairwise potentials among observable units
have been absorbed in the constant c, while S = −∑

X Q(X) ln Q(X) is the
entropy of the variational distribution.
Considering that Q belongs to a specific family of distributions can fur-
ther simplify this criterion. Specifically, we use the Mean Field Approxima-
tion (MFA) [75,66,55] according to which the joint distribution P (X|Y ) over
X = {X1, . . . , XN} is approximated in terms of individual distributions Qi by
considering the Xi as independent:

P (X|Y ) ' Q(X) =
∏

i

Qi(Xi) (27)

We can thus write for J(Q)

J(Q)=
∑

i,j∈EX

∑

Xi,Xj

Qi(Xi)Qj(Xj) ln Ψi,j(Xi, Xj)+
∑

i

∑

Xi

Qi(Xi) ln Φi(Xi)+
∑

i

Si(28)

where we have used EX instead of E(X,X), have dropped the c constant and
have absorbed all the observed-hidden node interactions for node i into its
observation potential Φi:∑

j∈N (i)

∑

Xi

Qi(Xi) ln Φi,j(Xi, Yj) =
∑

Xi

Qi(Xi) ln Φi(Xi). (29)

Finally, the term
∑

i Si results from the assumption of independent random
variables, which breaks the entropy S of distribution Q(X) into the sum of
entropies of the individual distributions, Si =

∑
Xi

Qi(Xi) ln Qi(Xi).
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Fig. 5. (a) Boltzmann Machine learning: The input and outputs of the system are
considered given training, and the task is to learn the hidden node connection
weights. During testing, the output is computed by the network. (b) Coarse-to-fine
flow of information. (c) MFA approximation over clusters of neurons.

5.2.2 Network Evolution equations as MFA
If the distributions Qj(·), j ∈ N (i) are kept fixed it is straightforward to
estimate the individual distribution Qi maximizing J(Q). For binary variables
estimating Qi amounts to estimating the probability that node i is active,
Qi(1) ≡ Qi(Xi = 1) = 1 − Qi(Xi = 0). Setting the derivative of J(Q) with
respect to Qi(1) equal to zero we have:

ln
Qi(1)

1−Qi(1)
= ln

Φi(1)

Φi(0)
+

∑

j∈N (i)

∑

Xj

Qj(Xj) ln
Ψi,j(Xj, 1)

Ψi,j(Xj, 0)
.

For the BM, where the potentials are of the form Ψi,j(Xi, Xj) = exp(Ci,jXiXj),
Φi(X) = exp(CiX + bi), the above equation simplifies to:

ln
Qi(1)

1−Qi(1)
=

∑

j∈N (i)

Qj(1)Ci,j + Ci. (30)

This gives us the following expression for the Qi(1) that maximizes the vari-
ational criterion of Eq. (28):

Qi(1) =
1

1 + exp(−∑
j∈N (i) Ci,jQj(1)− Ci)

. (31)

We know observe that the ODEs in Eq. (16) for Stage II lead to steady-states of
the form Eq. (31) as can be seen by setting the time derivative to zero and using
Eq. (9) to express the mean firing rate of the neurons. This means that solving
the system of ODE’s determining the activity of Stage II neurons amounts to
performing the Mean Field Approximation on a Boltzmann Machine.
Formally, the Mean Firing Rates Ui = g(Vi), i = 1, . . . , N provide the ex-
pected values Qi(1) of the binary variables Xi that bring the distribution
Q(X) =

∏
i Q(Xi) closest in KL distance to P (X|Y ). Intuitively, we interpret

Xi as indicating whether neuron i is active; this constitutes the link between
stochastic neural networks and variational-probabilistic approaches to vision
[63,55,66].

5.3 Adapting BM learning to our network

To make the link with the BM we consider first our network function as a
Boltzmann machine, shown in Fig. 5(a), and consider the training and testing
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scenarios. The output of our system is delivered by Stage II neurons at the
finest scale, and all other neurons are considered hidden. During training the
input and output are given as the image and its boundary map. In the ter-
minology of the previous section, during testing the observable nodes Y are
the image intensities, and the ‘hidden nodes’ X are the edge neurons at the
various stages and scales. In the training case the observables are both the
image intensities and the states of the neurons at Stage II, which are clumped
to the manual edge detection results.
The goal of training is to maximize the likelihood of the observed edge and
image pairs contained in the training set. This requires integrating out the
activities of non-observable neurons and can be approximated via the MFA.
Before proceeding to the learning rules, we discuss some technical issues.
First, for the first stage of our network it is not possible to derive such a
straightforward interpretation of the ODEs in terms of mean field theory.
The energy minimized by the evolution equations derived from [35] cannot be
written in the form used for the BM. However, we still consider the outputs of
that stage as the means of binary random variables, signalling the existence
or absence of an edge.
Second, during training we only know the desired outputs of Stage II at the
finest scale; we do not know the values that Stage I units or coarser-scale
Stage II units should take. In principle one should iteratively apply the MFA
to all stages and scales, considering only the fine-scale Stage II neuron outputs
as clamped. To optimize the behavior of each module separately we consider
instead the desired distributions for each stage known in advance, following
the coarse-to-fine updating scheme of Fig. 5(b). Specifically, when updating
the values of Stage II neurons we consider the processing modules of Stage I,
and Stage II at coarser scales as fixed, whose nodes are treated as observables,
contributing to the observation potentials Φi(Xi) for Stage II nodes. An ex-
ception is that we update the values of Stage III and FCS nodes in parallel
with Stage II, which amounts to performing MFA over the cluster of nodes as
shown in Fig. 5(c).
Further, concerning the desired outputs of Stage I neurons used for training,
we note that the objective in Stage I is to elicit in a contrast-invariant manner
areas of high edge probability, while avoiding responses on textured regions,
leaving the thinning of broad maps as a separate task for the following stage.
We therefore use Gaussian filtering to smooth the ground truth edge proba-
bility maps and use them as ideal outputs. The Gaussian filter variance is half
that of the Gabor filters used for feature extraction at the corresponding scale.
Similarly, for the coarser scales of Stage II, we derive the desired outputs by
smoothing the groud truth maps with a Gaussian having half the spread of
that used for Scale I, thereby enforcing edge thinning.
Finally, some constraints are hard-wired in network training: first, connection
weights are forced to be greater or equal to zero, thereby constraining horizon-
tal interconnections to be only of the inhibitory form. Excitatory long range
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interactions are mediated only from the feedback term (Stage III) thereby
deconvoluting the role of each stage. Second, the updates to the connection
weights among neurons are appropriately averaged to guarantee rotation in-
variance in the connection pattern.

5.4 Estimating the Network Weights

Having described the statistical interpretation of our network’s function and
established the analogies with Boltzmann Machines we can now present the
learning rules for estimating the network weights.
The training data made available in [70] are of the form Yobs = {Y1, · · · , Yn}
where each Yn = (In, En) consists of an image In and a corresponding man-
ually determined binary edge map En. Training the network is interpreted
as minimizing the KL divergence between the network distribution and the
empirical distribution of observations:

KL(P (Y )|PBM(Y ))=
∑

Y

P (Y ) ln P (Y )− P (Y ) ln PBM(Y )

Ignoring the entropy term
∑

Y ∈Yobs
P (Y ) ln P (Y ) which is unaffected by learn-

ing, we focus on maximizing the empirical approximation to the second term:

L =
N∑

n=1

P (In, En) ln PBM(In, En) =
N∑

n=1

P (In, En) ln PBM(En|In)PBM(In)

=
N∑

n=1

P (En|In)P (In) ln PBM(En|In) +
N∑

n=1

P (In, En) ln PBM(In)

where In, En is a pair of image-edge maps. Since the same image is segmented
by more than one users, the environmental distribution P (En|In) is approxi-
mated by considering all the edge maps provided for image In.
Optimizing the second summand would enable the network to correctly model
the distribution of its inputs; as in [73,74] this term is dropped as it is irrelevant
to our case, since we are solely interested in the network outputs. Considering
the training image-edge pairs are equally likely a priori, i.e. P (In) = 1

N
, we

can write for the first summand

L′ =
1

N

N∑

n=1

P (En|In) ln
(
PBM(En|In)

)

The quantities E, I used up to here correspond to whole images and not pixels,
and therefore no node indexing has been used yet. However, since we are using
MFA, we substitute the converged Q(En) =

∏
i Qi(Ei,n) for PBM(En|In), which

leads to the following simplification:

L′ =
1

N

N∑

n=1

∑

i

∑

b={0,1}
Pi,n(b) ln(Qi,n(b)) (32)

In the above relation Pi,n(1) is estimated as the ratio of provided edge maps
for image n for which node i belongs to a boundary. This time, all the terms
in the criterion to be optimized are available: the expressions for Qi,n(b), as
well as the pointwise defined probabilities Pi,n(b).
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For Stage I we use the steady state values of Eq. (5) as Qi(1) in Eq. (32):

Qi(1) =
Ii

A + Ii +
∑

j∈N (i) Wi,jUj

. (33)

In the previous expression and the following ones we drop the observation
index n, considering a single image I at a time, which amounts to a stochastic
gradient descent algorithm; we opted for this due to the large number of
image-edge pairs that renders a batch learning algorithm impractical.
The expression for the KL divergence derived in Appendix B yields the fol-
lowing update rule for the connection weight among neurons i and j:

Wi,j ←Wi,j + α

[∑

i

Pi(0)Uj

A +
∑

k Wi,kUk

− Uj

A + Ii +
∑

k Wi,kUk

]
.

For Stage II in Appendix B we derive the following lower bound ∆L(∆C) on
the increase in the criterion L caused by a change ∆C in C:

∆L(∆C) =−∑

i

Pi(0)


∑

j

∆CjQj(1)


 + 1−Qi(1)−Qi(0)

∑

j

Qj(1)

ΣQi

exp(−ΣQi∆Cj)

where ΣQi =
∑

j∈N (i) Qj(1) and Cj = Wi,j. The optimal change ∆C can be
found by maximizing the lower bound via gradient ascent separately for each
∆Cj:

∂∆Cj

∂t
=

∂∆L′

∂∆Cj

(34)

and then using the optimal ∆C in the update rule C ← C + ∆C.

6 Experimental Results

6.1 Comparing the Learned to the Manual Network Performance

We have learned our network’s weights using 50 images from the training
set of the Berkeley segmentation benchmark [70,76], where natural images
are provided together with manual segmentations. In Fig. 6 we compare the
learned interconnection weights with those estimated using the ad-hoc choices
in [23,24]; it is clear that ‘intuition’ quickly misled us to non-optimal connec-
tion patterns. For example, comparing the connections weights at Stage II,
the conjectured absence of inhibition between neurons lying on the same line
has been replaced by the contrary pattern; this can be credited to the feed-
back signal from Stage III, which leads to binary decisions and necessitates
an inhibition signal to give rise to softer responses. We also observe that a
pattern similar to that initially conjectured for Stage II has been learned for
Stage I. Further, in Fig. 7 we demonstrate the effect of the training algorithm
using one image that belongs to the training set. We observe that the network
avoids taking sharp decisions and gives fewer false alarms at highly textured
areas.
To quantitatively assess whether learning improves the performance of our
network and to see where it stands compared to other works, we have used
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Fig. 6. Difference between the manually set and the learned connection weights. The
top row shows the manually set connection weights, with a bright value indicating a
strong connection between a neuron located at the center of the figure and a neuron
at that location. The bottom row shows the learned values for these. For each
stage, the first two columns correspond to Horizontal-to-Horizontal and Vertical-to-
Vertical connections at coarse scale and the following two to the same connections
at a fine scale.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Learning edge detection: (a) Input Image, (b)-(d) Probability of edge using
manually set weights, at increasing scales. (e) Probability of edge based on Human
Segmentations (f)-(h) Same as (b)-(d) using learned weights.

the Berkeley Segmentation benchmark ground truth.

6.2 Boundary Detection Benchmarking Results

The quantities used to describe a detector’s performance are its Precision, P
and its Recall, R. Recall equals the ratio of correctly detected to actual edges
and Precision the ratio of correctly detected to detected edges. Ideally a de-
tector should have precision and recall equal to 1 -it should find all edge pixels
and none of its detections would be false. By modifying the detector’s thresh-
old and plotting the values these quantities take we obtain a Precision-Recall
curve based on which we can compare two detectors. When two Precision-
Recall curves intersect, a useful measure for summarizing the performance of
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Fig. 8. Comparative results for edge detection: (a) Manually trained BCS results vs.
Canny edge detection at two different scales. (b) BCS system using learned weights
vs. BCS systems with manually set weights at multiple scales. (c) Comparison to
Canny, Oriented Energy and Second Moment Matrix methods. (d) Comparison to
Brightness/Texture Gradient. Pls. cf. [77] for further results.

the detector is its F -measure defined as:

F =
1

(α)P−1 + (1− α)R−1

where α is a weighting factor set to 0.5; larger values are more desirable and
two detectors can be compared using their F measure.
To save space, we present here only the PR curves from the whole
dataset, and provide results on individual images in the website
[77]. In Fig. 8 we plot the Precision-Recall curves for the edge-detectors im-
plemented in our work, some well established edge detectors, as well as more
recent edge detection algorithms from the work in [4]. Shown in the legend is
the maximal F-measure of each detector, valued from zero to one. The Pre-
cision and Recall values are obtained by aggregating the false positives and
true matches of the boundary detector at each threshold value over the whole
set of images.
From Fig. 8(a) we realize that the claim made in Sec. 3.5 that the original
system outperforms Canny edge detection is partially true, and holds when
using a small Gaussian function. For larger scales Canny’s method outperforms
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the original system in the high precision regime.
As we show however in Fig. 8(b) learning the network weights systemati-
cally improves performance, and the learned system outperforms all manually-
determined BCS systems. In Fig. 8(c) we observe that our system achieves a
higher F-measure compared to the Canny, Oriented Energy and the Second
Moment Matrix methods at their optimal scales. We attribute this to the in-
corporation of multi-scale cues with region-based, saliency information and
learning the connection weights. Still, as shown in Fig. 8(d) our detector out-
performs the Brightness or Brightness Texture Gradient methods of [4] only
in the high recall regime, i.e. when edge ‘hallucination’ is useful.
In [78,4] the features and classifiers that practically proved to offer the best
performance are used, using e.g. χ2 tests and decision trees to classify a pixel
as an edge. Such approaches do result in improved performance, but deviate
from biological vision towards pattern recognition.
The Oriented Energy used as input to our system is shown by the compari-
son Fig. 8(c) to be outperformed by our system outputs. We therefore expect
that if the more elaborate cues utilized e.g. in [4,79–81] were introduced in
our system its ability to learn its recurrent connection weights from ground
truth data would allow our system to surpass the performance of [4,81]; this
is a direction that we intend to pursue in future research. In specific, in the
Tensor Discriminant Analysis framework of [79,80] and the Boosting-Based
approach of [81] the feature combination used for classification is learned dis-
criminatively, which can further reduce human intervention in network design.
Before concluding, we note that the improvement in performance has been
largely due to the removal of textured edges via surround suppression and the
enhancement of low-contrast edges via the saliency signal. The use of such
mechanisms in conjunction with edge detection has previously been pursued
in computer vision, cf. e.g. [42,61,82], and its potential has been demonstrated
in these works. Still, what has been missing is a principled way to combine
such cues and the bottom-up information provided by the filtering operators
commonly used for edge detection. Our work fills this gap, and hopefully will
help strengthen research in this direction.

7 Conclusion

In this paper we proposed a simple and efficient model for low- and mid- level
vision tasks which compares favorably to classical computer vision algorithms,
relying on biologically motivated mechanisms.
Apart from putting together the parts of the presented system, the major
contributions of this work have been the analysis of the system in variational
and statistical terms and the learning algorithm for the network weights.
System performance has been demonstrated on the Berkeley segmentation
benchmark, showing that our system outperforms standard edge detection
algorithms, clearly validating the merits of a learning-based approach.
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Concerning future extensions of this work, the main direction we consider is
extending the current approach to other low- and mid- level computer vision
tasks. Learning has dramatically reduced the human intervention required and
we believe it will prove useful to both the biologically-motivated vision com-
munity and people working in classical low- and mid- level computer vision
problems, like motion, stereo and image restoration. The cross-fertilization
of learning and computer vision can weed out heuristics and ad-hoc choices,
resulting in improved performance and better understanding of vision prob-
lems.
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A Derivation of the Lyapunov Function

We validate that a system of neurons U, S following (16) and (11) decreases Eq. (20):

E=
∑

i

c4(1− U)|∇θ⊥S|2 − U [c1O + c2T + c3C] + a

∫ U

1/2
g−1(u)du +

d

2
C(U)

We have defined ∇θ⊥S = S′−Si, where S′ is the surface process element closest to
i along the line passing through i with angle θ⊥. Therefore, using Eq. (11) we have:

∂E
∂Si

= −2c4

∑

θ

(1− Ui)∇θ⊥Sθ,
dSi

dt
=

∑

θ

(1− Ui)∇θ⊥Sθ

Since c4 > 0, for all i we have ∂E
∂Si

dSi
dt < 0 so the evolution of S decreases E .

Concerning the line process, writing cI = [c1O + c2T + c3C + c4|∇θ⊥S|2] we have
∂E
∂Ui

= aV − cI + d
∑

j∈N (i)

Wi,jUj since
∂C(U)

∂Ui

Wi,j=Wj,i= 2
∑

j∈N (i)

Wi,jUj

By Eq. (9) and Eq. (16) we have for the MFR of neuron i

dUi

dt
=

dg(V )
dV

dVi

dt
= α


−aV + cI − d

∑

j∈N (i)

Wi,jUj




where α is a positive quantity, given that g is an increasing function. We thereby
conclude again that ∂E

∂Ui
and dUi

dt are of opposite sign for all i, so the evolution of
the line process leads to the decrease of E , as well.

B Derivation of the learning rules

For Stage I the steady state values of Eq. (5) are used in place of Qi(1) in Eq. (32);
writing for simplicity Wi,jUj = CjUj we have:
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L(C) =
∑

i

Pi(1) ln
Ii

a + Ii +
∑

j CjUj
+Pi(0) ln

a +
∑

j CjUj

a + Ii +
∑

j CjUj

=
∑

i

Pi(0) ln


a +

∑

j

CjUj


− (Pi(1) + Pi(0)) ln


a + Ii +

∑

j

CjUj


 + Pi(1) ln(Ii)

=
∑

i

Pi(0) ln


a +

∑

j

CjUj


− ln


a + Ii +

∑

j

CjUj


 + c

For Stage II, we adapt to our case the Improved Iterative Scaling Algorithm [83].
Using the steady-state value of Eq. (16) as Qi(1) we can write:

L(C)=
∑

i

Pi(1) ln
1

1 + exp(−∑
j∈N (i) CjQj(1))

+Pi(0) ln
exp(−∑

j∈N (i) CjQj(1))

1 + exp(−∑
j∈N (i) CjQj(1))

(B.1)

We now derive the lower bound on the change ∆L(∆C) in L caused by a change
by ∆C in the connection weights. We have:

∆L(∆C)=L(C + ∆C)− L(C)

=
∑

i

Pi(1) ln
1 + exp(−∑

j∈N (i) CjQj(1))

1 + exp(−∑
j∈N (i)(Cj + ∆Cj)Qj(1))

+Pi(0)

(
ln

exp(−∑
j∈N (i)(Cj + ∆Cj)Qj(1))

exp(−∑
j∈N (i) CjQj(1))

1 + exp(−∑
j∈N (i) CjQj(1))

1 + exp(−∑
j∈N (i)(Cj + ∆Cj)Qj(1))

)

=−
∑

i

Pi(0)
∑

j

∆CjQj(1)− (Pi(0) + Pi(1)) ln
1 + exp(−∑

j∈N (i)(Cj + ∆Cj)Qj(1))

1 + exp(−∑
j∈N (i) CjQj(1))

=−
∑

i

Pi(0)
∑

j∈N (i)

∆CjQj(1)− ln
(
Qi(1) + Qi(0) exp(−

∑

j∈N (i)

∆CjQj(1))
)

For the first equation we use the expression of L(C) in Eq. (B.1), for the second
basic properties of the ln function and in the last step the expressions for Qi(1)
Qi(0) in Eq. (B.1). A lower bound of J is derived as in [83], first by applying the
inequality − ln(a) ≥ 1− a to the last term of J , which gives

∆L≥−
∑

i

Pi(0)
(∑

j

DCjQj(1)
)

+ 1−Qi(1)−Qi(0) exp(−
∑

j

∆CjQj(1))

The second bound is based on Jensen’s inequality, exp(
∑

piqi) ≤
∑

pi exp(qi), if∑
pi = 1, pi > 0. We introduce ΣQi =

∑
j∈N (i) Qj(1) and write:

exp(−
∑

j

∆CjQj(1)) = exp(−ΣQi

∑

j

Qj(1)
ΣQi

∆Cj) ≤
∑

j

Qj(1)
ΣQi

exp(−ΣQi

∑

j

∆Cj)

We can now obtain the lower bound ∆L′ used in Eq. (34):

∆L≥−
∑

i

Pi(0)(
∑

j

∆CjQj(1)) + 1−Qi(1)−Qi(0)
∑

j

Qj(1)
ΣQi

exp(−ΣQi∆Cj).
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