
Bounding Part Scores for Rapid Detection with
Deformable Part Models

Iasonas Kokkinos ⋆

1 Center for Visual Computing, École Centrale Paris, France
2 Équipe Galen, INRIA Saclay, Île-de-France, France

3 Université Paris-Est, LIGM (UMR CNRS), École des Ponts ParisTech, France

Abstract. Computing part scores is the main computational bottleneck in object
detection with Deformable Part Models. In this work we introduce an efficient
method to obtain bounds on part scores, which we then integrate with deformable
model detection. As in [1] we rapidly approximate the inner product between
a weight vector and HOG-based features by quantizing the HOG cells onto a
codebook and replace their inner product with the lookup of a precomputed score.
The novelty in our work consists in combining this lookup-based estimate with
the codebook quantization error so as to construct probabilistic bounds to the
exact inner product.
In particular we use Chebyshev’s inequality to obtain probably correct bounds
for the inner product at each image location. We integrate these bounds with both
the Dual-Tree Branch-and-Bound work of [2,3] and the Cascade-DPMs of [4]; in
both cases the bounds are used in a first phase to conservatively construct a short-
list of locations, for which the exact inner products are subsequently evaluated.
We quantitatively evaluate our method and demonstrate that it allows for approx-
imately a twofold speedup over both [2] and [4] with negligible loss in accuracy.

1 Introduction

Deformable Part Models (DPMs) [5,6,4] combine mathematical rigor with excellent
performance, but come with increased computational cost when compared with simpler
alternatives such as Bag-of-Word classifiers. In this work we accelerate detection with
DPMs: we use the exact same ‘mixture-of-DPMs’ model as that of [7] and obtain a
substantial speedup with negligible and controllable error.

Our work builds on [2,3] where ‘Dual Tree Branch-and-Bound’ (DTBB) is intro-
duced as an efficient bounding-based method for detection with DPMs. DTBB sub-
stantially accelerates the stages following part computation for both single- and multi-
category detection, turning their complexity from linear to roughly logarithmic in the
image size. However, as highlighted in [8,4] and also mentioned in [2] the computation
of part scores is actually the main computational bottleneck for DPMs.

In this work we introduce a method to rapidly compute upper and lower bounds
for part scores. We integrate these part bounds in DTBB as well as in Cascade-DPM
detection [4]. Our algorithm eventually computes the exact values of the part scores

⋆ This work was supported by grant ANR-10-JCJC-0205

2 Iasonas Kokkinos

and the correct object score, but only around locations ‘shortlisted’ by a first bounding
stage. This drastically reduces the number of exact score computations performed.

After presenting prior work in Sec. 2, we present our bounding technique in Sec. 3,
and describe how we integrate our bounds with DTBB and cascaded detection in Sec. 4;
in Sec. 5 we evaluate our method on the PASCAL VOC dataset. Our code is available
at http://vision.mas.ecp.fr/Personnel/iasonas/dpms.html.

2 Prior work on Efficient Object Detection

Cascade algorithms for detection were introduced in the beginning of the previous
decade in the context of boosting [9] and coarse-to-fine detection in [10]. Cascades
use a sequence of tests to decide about the presence of an object and stop whenever
any of those test fails; this reduces the number of image locations where all tests are
applied. Cascades use conservative thresholds, set to ensure that the number of false
negatives on the training set (and hopefully also the test set) is minimized. This idea has
been recently applied to detection with deformable models in [4,8] as well as to pose
estimation with more complex structured models in [11], where thresholds are set in a
learnable, data-dependent manner.

On the other hand, bounding-based techniques such as Efficient Subwindow Search
(ESS) [12] bound the score of a detector within an interval by exploiting properties
of its form; this allows to use techniques such as branch-and-bound, or coarse-to-fine
search [13] to narrow-down the set of locations containing strong object hypotheses.
Bounding-based (admissible) heuristics were used for hierarchical object parsing with
A∗ in [14], while detection with deformable part models was cast in terms of Branch-
and-Bound in [2,3]. More recently, [15] introduced a branch-and-bound method to deal
with the more general structured models of [11].

The common idea in the works above is to prune computation when we have evi-
dence that it is not worth pushing it until the end. For DPMs so far this has been done
exclusively in ‘cascade mode’, namely by using empirically set thresholds. In the work
of [4] on Cascaded Deformable Part Models (C-DPM) thresholds precomputed on the
training set are used to prune computation with minimal possible loss. Specifically the
authors observe that the DPM score is obtained gradually as the accumulation of the
part scores; after computing the contribution of every part the authors stop the compu-
tation if the cumulative sum falls below a conservative (probably correct) threshold. In
a similar vein [8] used a coarse-to-fine framework by using the ‘root’ (whole-object)
filter response as a quick test to prune the range of locations where the part filters were
evaluated. Again this requires setting a threshold for the root filter and fixing the range
over which parts are searched for.

Using the results in our paper we can take an approach complementary to these two
works: since we can bound the part scores we do not need to recompute thresholds.
In particular for DTBB we approximate the part scores everywhere in a rapid manner
and the optimization algorithm determines the subset of locations where the part score
estimate is refined. For C-DPM we use our bounding-based technique to perform a
rapid (faster than the one in [4]) computation of upper and lower bounds for the root

Bounding Part Scores for Rapid Detection. 3

filter and then focus on a subset of part locations while also dynamically pruning the
set of candidate object locations.

3 Part Score Bounding

3.1 Score Approximation

We compute part scores as inner products of Histogram-of-Gradient (HOG) [16] fea-
tures with a part-specific weight vector, trained as in [7]. Denoting by h[x, f] the f -th
dimension of the HOG cell located at x, and by w[y, f] the value of the ‘part template’
(weight vector) for location y and dimension f , the score of a part at x is:

s[x] =
∑
y∈Y

F∑
f=1

w[y, f]h[x+ y, f], (1)

where Y is a set of displacements and F = 32 is the dimensionality of the HOG cell at
any point; we skip part indexes for simplicity. For ‘part filters’ Y = [0, 5] × [0, 5], so
computing the score at any point x requires 36 · 32 multiplications and summations.

Our goal is to replace these |Y | · F operations with a rapidly computable approxi-
mation. By introducing the F -dimensional vectors wy = [w[y, 1], . . . , w[y, F]]T , and
hx = [h[x, 1], . . . ,h[x, F]]T , we can write the right hand side of Eq. 1 as:

s[x] =
∑
y

⟨wy,hx+y⟩. (2)

As in [1], we use vector quantization to replace the F multiplications involved in every
inner product with a single lookup operation that approximates the final outcome. For
this we construct a codebook C = {C1, . . . , CK} for h with K-means clustering (we
use K =256) and create a K × |Y | array of precomputed values:

Π[k, y] = ⟨Ck,wy⟩, (3)

which gives the score of part-cell y in the presence of an image-cell Ck.
When provided with a new image we quantize its HOG cells with our dictionary, i.e.

we associate an index I[x] = argminkd(Ck,hx) with every image-cell hx; in particular
we use KD-trees for fast approximate nearest neighbor search [17]. Given x we consider
hi,j ≃ CI[x] and use use this approximation in Eq. 2 to obtain:

⟨hx+y,wy⟩ ≃ ⟨CI[x+y],wy⟩ = Π[I[x+ y], y] (4)

s[x] ≃ ŝ[x] =
∑
y

Π[I[x+ y], y], (5)

which exchanges the |Y | · F multiplications and summations of Eq. 2 with |Y | lookup
and summation operations. For F = 32 this can result in approximately a 30-fold
speedup. In practice due to the numerous memory access operations the speedup can
be smaller; our implementation is optimized to reduce the number of cache misses, but
since the method is rather technical we will report it in a larger version of the paper; we
refer to our publicly available code for details.

4 Iasonas Kokkinos

3.2 Bounding the approximation error

We now turn to ways of bounding the inner product score of Eq. 2 in terms of the lookup
approximation in Eq. 5, by constructing upper and lower bounds on the approximation
error. We first present a deterministic bound which comes from Holder’s inequality. As
this bound is too loose, it is only useful for presentation, and to introduce the necessary
notation; we then provide tighter probabilistic bounds using Chebyshev’s inequality.

3.3 A Deterministic bound using Holder’s inequality

We denote by ex = hx − CI[x] the quantization error for the feature hx at x; We start
by considering the contribution of a single HOG cell, say x + y to the overall score;
the approximation error ϵx+y in Eq. 4 can be expressed in terms of the inner product of
ex+y with wy as follows:

ϵx+y
.
= ⟨hx+y,wy⟩ −Π[I[x+ y], y] (6)
= ⟨hx+y,wy⟩ − ⟨CI[x+y],wy⟩ = ⟨ex+y,wy⟩. (7)

Holder’s inequality states that ∥fg∥1 ≤ ∥f∥q∥g∥p for 1/p + 1/q = 1 and can
be used to bound the approximation error in Eq. 7 in terms of the L2-norms of the
quantization error, ∥ex+y∥2 and the weight vector ∥wy∥2:

|ϵx+y| = |⟨wy, ex+y⟩| ≤ ∥wy∥2∥ex+y∥2. (8)

This result bounds the approximation error ϵx+y due to a single HOG cell. Coming to
integrating the contributions form the multiple HOG cells, we turn to the approximation
error in Eq. 4, which we denote as ϵx

.
= s[x]− ŝ[x] =

∑
y ϵx+y and bound as follows:

|ϵx| ≤
∑
y

|ϵx+y| ≤
∑
y

∥wy∥2∥ex+y∥2
.
= Bx. (9)

We note that computing Bx takes only |Y | multiplications and summations: the norm
of the quantization error is computed once for the whole image, independently of the
number and size of parts, while the norms of the weight vectors can be precomputed.

3.4 A Probabilistic Bound using Chebyshev’s inequality

Even though rapidly computable, the bound delivered above is too loose to be of prac-
tical use. This is due to its generality; as we now show, it can be tightened by exploiting
our problem-specific knowledge. In particular the inner product in Eq. 7, ⟨ex+y,wy⟩ =∑

f ex+y[f]wy[f] adds up the product of the weight vector and quantization error el-
ements. We know that the distribution of ex+y[f] will be zero-mean and consecutive
summands are likely to cancel each other out. The Holder-based bound derived above
ignores this and will be valid even if all vector elements have a common sign. As such
it gives a bound which is too conservative to be useful.

Instead, we now derive a probabilistic bound that is valid with controllable accuracy.
This means that we can tighten the bound at the cost of decreasing its probability of

Bounding Part Scores for Rapid Detection. 5

Input image Exact part score s[x]

Approximation variance mx Lookup-based approximation, ŝ[x]

Lower bound, pe = .05 Upper bound, pe = .05

20 40 60 80 100

−0.1

0

0.1

0.2

0.3

0.4

P
ar

t s
co

re

Horizontal location

Exact score
Approximation
Upper bound, p

e
=0.05

Lower bound, p
e
=0.05

Upper bound, p
e
=0.01

Lower bound, p
e
=0.01

Fig. 1. Illustration of the part score approximation and bounding (please see in color):
our goal is to rapidly bound the value of the part score s[x] shown on the top right.
The bound we propose in Eq. 12 is formed in terms of two quantities, a lookup-based
approximation ŝ[x] and an estimate of the approximation error’s variance mx, detailed
in Eq. 13 and shown in the second row. These two are combined as in Eq. 12 to form an
interval that contains the actual value with a certain probability of error pe. The values
of the lower and upper bounds for pe = 0.5 are visualized in the third row. In the last
row we show for an horizontal line through the image the values of the exact score, the
approximation, as well as the upper and lower bounds for two different values of pe. We
can observe that for small pe (higher probability of being correct) the bounds become
looser.

6 Iasonas Kokkinos

being correct and vice versa. To obtain our bound we model the F elements of ex+y

and wy involved in the inner product giving the HOG cell-level error:

ϵx+y = ⟨ex+y,wy⟩ (10)

as samples from two distributions, Px+y(e), Py(w) respectively; since e is quantization
error, Px+y(e) is considered to be zero-mean and symmetric around zero; we do not
make assumptions about Py(w). We denote by me

x+y and mw
y the respective variances

(second moments) of the two distributions. Moreover, we assume that the quantization
error at neighboring image locations is independent ex+y; one can consider cases where
the quantization noise at neighboring locations has dependencies, e.g. when neighbor-
ing HOG cells are similar, and far outside the ‘span’ of the available codebook; a more
thorough evaluation of whether this holds is needed, even though empirically we have
observed that our subsequent bounds are valid.

Based on these assumptions, the products ex+y[f]wy[f], f = 1, . . . , F formed
from the f -th elements of the vectors involved in Eq. 10 can be modeled as indepen-
dent samples of a zero-mean, symmetric distribution with variance mx+y

.
= me

x+ym
w
y .

Consequently, the cell-level approximation error ϵx+y appearing in Eq. 10 can be seen
as the sum of F independent variables having zero mean and variance mx+y , so ϵx+y

will in turn be a random variable with zero mean and variance Fmx+y; similarly the
part-level approximation error ϵx will have zero mean and variance mx =

∑
y Fmx+y .

As per Chebyshev’s inequality [18], any zero-mean random variable X satisfies:

P (|X| > α) ≤ E{X2}
α2

, (11)

where E{·} denotes expectation - hence the numerator is the second moment of X . This
means that with probability larger than E{X2}/α2, X will be contained in [−α, α]; or,
X will be contained in [−

√
E{X2}/pe,

√
E{X2}/pe] with probability of error pe.

We can use this fact to bound ϵx probabilistically: with a probability of error pe we
will have ϵx ∈ [−

√
mx/pe,

√
mx/pe]. Since ϵx = s[x] − ŝ[x], this means that with

probability 1− pe we will have:

s[x] ∈
[
ŝ[x]−

√
mx/pe, ŝ[x] +

√
mx/pe

]
(12)

where mx =
∑
y

Fme
x+ym

w
y , ŝ[x] =

∑
y

Π[I[x+ y], y]. (13)

This bound is the main result of our paper. Comparing it to the Holder-based bound
of Eq. 9, we first note that the empirical estimators of me

x+y,m
w
y are related to the

2-norms of ex+y , wy , respectively as:

me
x+y =

1

F

F∑
f=1

e2x+y[f] =
1

F
∥ex+y∥22 (14)

and similarly mw
x+y = 1

F ∥wx+y∥22. So apart from the root operation computing mx in
Eq. 13 has the same complexity as computing B in Eq. 9. Moreover the length of the
interval in Eq. 12 scales proportionally to

√
|Y |F while in Eq. 9 it scales proportionally

to |Y |F , which shows that the Chebyshev bound is tighter than the Holder bound.

Bounding Part Scores for Rapid Detection. 7

4 Integration with deformable object detection

We now describe how we integrate the bound obtained above in the Dual-Tree Branch-
and-Bound (DTBB) [2] and Cascaded DPM (C-DPM) [4] methods. Due to lack of
space we refer to the respective works for algorithm details and provide a high-level,
and intuitive outline of the integration, leaving technicalities for a future version.

4.1 Combination with Dual-Tree Branch-and-Bound

The DTBB method described in [2,3] uses bounding-based techniques for detection
with DPMs. In particular Branch-and-Bound is used to bypass Generalized Distance
Transforms (GDTs) and shown to result in substantial speedups for the part combination
phase. However in [2] the part scores are considered to be computed in advance of
DTBB, while this is actually the main computational challenge in detection with DPMs.
Instead, we now integrate our efficient probabilistic part score bound with DTBB.

In particular, DTBB relies on upper bounding the quantity:

µs
d = max

x∈Xd

max
x′∈X′

s

s[x′] +B[x′, x] (15)

which indicates the maximal contribution of a set of candidate part points X ′
s to a set of

candidate object points Xd; s[x′] is the appearance term at the candidate part location
x′ and B[x′, x] is the geometric consistency term between x′ and the object location x.
Since maxx∈X f [x] + maxx∈X g[x] ≥ maxx∈X f [x] + g[x], we can bound Eq. 15 as:

µs
d ≤ max

x′∈X′
s

s[x′]︸ ︷︷ ︸
S

+ max
x∈Xd

max
x′∈Xd

B[x′, x] (16)

A complementary term that emerges [3] is λs
d = minx∈Xd

maxx′∈Xs s[x
′] + B[x′, x]

which is lower bounded as:

min
x′∈X′

s

s[x′]︸ ︷︷ ︸
S

+ min
x∈Xd

max
x′∈Xs

B[x′, x] ≤ λs
d. (17)

The computation of the upper and lower bounds relevant to the geometric term,
B[x′, x], exploits the fact that Xs, Xd are rectangular, and is detailed in [3]. Coming to
the bounds on the unary terms, the approach taken has been to compute the exact part
scores at every location s[x] and then obtain S, S. As the domains Xs are organized in
a kd-tree the latter maximization can be rapidly performed in a fine-to-coarse manner,
but the computation of s[x] was not avoided.

Instead we propose to accelerate the computation of S, S by initially sidestepping
the computation of s[x] using the probabilistic bound of Eq. 13: the terms s = ŝ[x] −√

mx/p and s = ŝ[x] +
√
mx/p involved in Eq. 13 are with probability 1 − pe lower

and upper bounds of s[x] respectively. Based on these we can upper and lower bound
S as follows: S = maxx′∈X′

s
s[x′] ≤ maxx′∈X′

s
s[x′] and S = minx′∈X′

s
s[x′] ≥

minx′∈X′
s
s[x′], and thereby use s, s as surrogates for s[x] in DTBB.

8 Iasonas Kokkinos

A subtlety is that by considering multiple terms when maximizing or minimizing
with Xs we increase the probability of violating the (probabilistic) upper and lower
bounds. But in practice we are only concerned with the points that give the maxi-
mum/minimum, and not the bulk of points contained between them.

We also note that we use s, s as surrogates for s only in the first phase of DTBB.
As soon as Branch-and-Bound converges to singleton intervals (individual pixels), we
evaluate the exact part scores, s[x]; as we show in the experimental section, this boosts
performance when compared to using only the lookup-based approximation. This more
elaborate computation however is performed around a drastically reduced set of points,
namely around those image locations that survive the first, quick bounding phase. Our
method thereby combines the speed of quantization [1] with the accuracy of DTBB [2].

4.2 Combination with Cascaded Deformable Part Models

In [4] the authors exploit the fact that the DPM score is expressed as the accumulation
of the part scores to devise a cascaded detection algorithm: after computing the contri-
bution of each part to the overall object score, the computation stops for any location
where the sum falls below a conservative (probably correct) threshold.

In order to accelerate the first stage of their algorithm, [4] downproject the HOG
features to a lower dimensional space obtained through PCA. This results in fewer
multiplications per HOG cell-bin, but can distort the obtained result. The remedy used
in [4] is to use separate conservative thresholds for the PCA-based part scores, and
estimate them from the training data.

By replacing the PCA-based approximation with the upper bound provided by our
method we gain in two ways: first, our method is faster, as for each HOG-cell x+ y we
use one lookup for Π[I[x + y], y] and one multiplication for ∥wy∥2∥ex+y∥2 instead
of 6 multiplications for the PCA-based features. Second, our method does not require
gathering additional statistics to compute thresholds, but rather relies on the thresholds
computed for the full (32-dimensional) part filters, which only need to be gathered once.
This gives us the freedom to explore alternative bounding schemes (e.g. using different
codebook construction techniques), without re-running our detector on the training data.
Experimentally we verify that the two methods have virtually identical performance.

5 Results

We have validated the merit of our method on the PASCAL VOC’2007 challenge. As
we use the exact same models as those in [4] our sole concern is the exactness and speed
of the optimization method, and do not address learning issues.

In Fig. 2 we provide precision-recall plots for bicycle detection, in order to demon-
strate the impact of our bounding scheme on object detection accuracy; similar results
have been obtained for other classes but are omitted for lack of space; they will be
included in a larger version of this work.

In all cases ‘exact’ refers to computations performed using GDTs as in [6]. On the
left side, we compare the performance of the PCA-based cascade of [4] with the lookup-
based cascade proposed in this work. We observe that if we use the ‘raw’ lookup-based

Bounding Part Scores for Rapid Detection. 9

estimate of the part scores, without the related upper and lower bounds, performance
drops significantly. However when using bounding intervals to accommodate the ‘slack’
due to the approximation error the performance directly becomes identical to the PCA-
based cascade. However our method does not require additional threshold estimation,
and as shown later is faster.

On the right plot we compare the performance of our lookup-based variant of DTBB
for different values of pe; we observe that for small values of pe the performance is
identical with GDTs, but with larger values of pe performance decreases. Again, this
validates the need for incorporating uncertainty in lookup-based approximations. This
is consistent with the observations in [1] where performance was observed to drop,
even when using a model directly trained with the lookup-based approximation to the
features; it is all the more natural that performance drops when using a model trained
with the full, clean features and testing with quantized features.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Cascade−based bicycle detection for threshod t = −1.1

AP 0.535, exact
AP 0.537, PCA−6
AP 0.534, lookup p

e
 = .01

AP 0.532, lookup, p
e
 = .05

AP 0.491, lookup, raw

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

DTBB−based bicycle detection for threshod t = −1.1

AP 0.535, exact
AP 0.535, lookup, p

e
 = .01

AP 0.533, lookup, p
e
 = .05

AP 0.529, lookup, p
e
 = .10

AP 0.491, lookup, raw

Fig. 2. Precision-Recall curves for bicycle detection using cascade-based (left) and
branch-and-bound detection (right). Please see text for details.

Coming to timing results, we provide in Table I timings gathered from 1000 images
of the PASCAL VOC dataset, and averaged over all 20 categories. The first row indi-
cates the time spent to compute part scores by the different methods, and the following
rows indicate detection times. We observe that our lookup-based approximations are
faster both for DTBB and Cascade Detection for moderate values of the threshold θ;
in particular for θ = −.7, or θ = −.5 the lookup-based variant of cascades requires
approximately half the time of the PCA-based cascade, and 1/30 of the time of GDT-
based detection. For more conservative threshold values the part score is fully evaluated
at more points and the merits of the first fast pass get eliminated.

6 Conclusion

In this work we introduce Chebyshev’s inequality to bound part scores in a simple
and computationally efficient manner. We demonstrate the merit of our approach by
combining the part score bounds with Branch-and-Bound and Cascade detection for
deformable part models, which results in substantial speedups without loss in accuracy.

10 Iasonas Kokkinos

GDTs [6] BB [2] BB-LU-5 BB-LU-1 CSC-PCA [4] CSC-LU-5 CSC-LU-1
Part terms 8.35 ± 0.77 1.69 ± 0.18 0.69 ± 0.03 0.69 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
θ = −0.5 0.60 ± 0.05 0.21 ± 0.06 0.47 ± 0.11 1.04 ± 0.25 0.56 ± 0.07 0.19 ± 0.03 0.23 ± 0.04
θ = −0.7 0.60 ± 0.05 0.42 ± 0.10 1.00 ± 0.23 2.33 ± 0.65 0.72 ± 0.09 0.29 ± 0.04 0.36 ± 0.06
θ = −1.0 0.60 ± 0.05 1.31 ± 0.31 3.80 ± 0.90 9.40 ± 2.70 1.04 ± 0.16 0.51 ± 0.10 1.07 ± 0.29

Table 1. Means and standard deviation timings, in seconds, of the considered approaches. GDT
stands for distance transforms, BB for Dual Tree Branch-and-Bound, CSC for cascade, and LU-
{1,5} for lookup-based bounds with pe = .01 and pe = .05 respectively.

References

1. Vedaldi, A., Zisserman, A.: Sparse Kernel Approximations for Efficient Classification and
Detection. In: CVPR. (2012) 1, 3, 8, 9

2. Kokkinos, I.: Rapid deformable object detection using dual-tree branch-and-bound. In:
NIPS. (2011) 1, 2, 7, 8, 10

3. Kokkinos, I.: Rapid Deformable Object Detection using Bounding-based Techniques.
Technical Report 7940, INRIA (2012) 1, 2, 7

4. Felzenszwalb, P.F., Girshick, R.B., McAllester, D.A.: Cascade object detection with
deformable part models. In: CVPR. (2010) 1, 2, 7, 8, 10

5. Felzenszwalb, P., Huttenlocher, D.: Efficient Matching of Pictorial Structures. In: CVPR.
(2000) 1

6. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object Detection with
Discriminatively Trained Part-Based Models. IEEE T. PAMI (2010) 1, 8, 10

7. Felzenszwalb, P.F., Girshick, R.B., McAllester, D.: Discriminatively trained deformable
part models, release 4. (http://people.cs.uchicago.edu/ pff/latent-release4/) 1, 3

8. Pedersoli, M., Vedaldi, A., Gonzàlez, J.: A coarse-to-fine approach for fast deformable
object detection. In: CVPR. (2011) 1, 2

9. Viola, P., Jones, M.: Rapid Object Detection using a Boosted Cascade of Simple Features.
In: CVPR. (2001) 2

10. Fleuret, F., Geman, D.: Coarse-to-fine face detection. IJCV (2001) 2
11. Sapp, B., Toshev, A., Taskar, B.: Cascaded models for articulated pose estimation. In

Daniilidis, K., Maragos, P., Paragios, N., eds.: Computer Vision - ECCV 2010, Part II,
Springer (2010) 406–420 2

12. Lampert, C., Blaschko, M., Hofmann, T.: Beyond sliding windows: Object localization by
efficient subwindow search. In: CVPR. (2008) 2

13. Lampert, C.H.: An efficient divide-and-conquer cascade for nonlinear object detection. In:
CVPR. (2010) 2

14. Kokkinos, I., Yuille, A.: HOP: Hierarchical Object Parsing. In: CVPR. (2009) 2
15. Sun, M., Telaprolu, M., Lee, H., Savarese, S.: An efficient branch-and-bound algorithm for

optimal human pose estimation. In: CVPR. (2012) 2
16. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR.

Volume 2. (2005) 886–893 3
17. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision

algorithms. http://www.vlfeat.org/ (2008) 3
18. Mitzenmacher, M., Upfal, E.: Probability and computing - randomized algorithms and

probabilistic analysis. Cambridge University Press (2005) 6

