
Boundary Detection using F-Measure-, Filter- and
Feature- (F3) boost.

Iasonas Kokkinos

Department of Applied Mathematics, Ecole Centrale Paris
INRIA-Saclay, GALEN Group

Abstract. In this work we propose a boosting-based approach to boundary de-
tection that advances the current state-of-the-art. To achieve this we introduce
the following novel ideas: (a) we use a training criterion that approximates the
F-measure of the classifier, instead of the exponential loss that is commonly used
in boosting. We optimize this criterion using Anyboost. (b) We deal with the
ambiguous information about orientation of the boundary in the annotation by
treating it as a hidden variable, and train our classifier using Multiple-Instance
Learning. (c) We adapt the Filterboost approach of [1] to leverage information
from the whole training set to train our classifier, instead of using a fixed subset
of points. (d) We extract discriminative features from appearance descriptors that
are computed densely over the image. We demonstrate the performance of our
approach on the Berkeley Segmentation Benchmark.

1 Introduction

The abundant biological evidence that our visual system employs sophisticated bound-
ary detection mechanisms, and the legacy of D. Marr [2] has led early computer vision
researchers to pursue computational approaches to boundary detection, considering it
as the starting point for any subsequent processing. Moreover, the striking ease with
which we recognize shape-based classes, e.g. sketches while being bereft of all appear-
ance information also suggests that boundary detection may be the missing piece in the
current, appearance-dominated, object recognition research.

A revival of research on boundary detection has been observed during the last years,
largely due to the introduction of ground-truth labeled datasets [3, 4] which facilitated
the treatment of the problem in a machine learning framework, while weeding out many
of the heuristics previously used in edge detection. Based on the consistent improve-
ments observed during the last years on these benchmarks [5–10], boundary detection
is anticipated to become an indispensable part of any computer vision ‘toolbox’.

Our work proposes another step in the direction of accurate boundary detection,
by pushing further the machine learning approach. In this work we reconsider the ob-
servation made in earlier works e.g. [4, 9], where it was mentioned that using more
elaborate machine learning techniques does not significantly improve performance. As
we demonstrate here, while using the same cues as [8] we obtain better results based on
a combination of techniques developed around boosting.

For this we build on the Anyboost framework [11] that views Boosting as gradient
descent in function space. Based on this more general point of view, we first develop a
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new variant of boosting that optimizes an approximation to the F-measure of our clas-
sifier during training, instead of the exponential loss which is commonly minimized by
Boosting. As boundary detectors are evaluated based on their F-measure, it is natural
to expect that training also with the F-measure as a cost function will improve perfor-
mance. We note that this contribution can be of broader interest, as the F-measure is
employed in several other problems, such as retrieval, to deal with the case where the
negative class largely outnumbers the positive one.

Second, we deal with ambiguity in the labelling of points by treating the orientation
of the boundary as a hidden variable, and train our classifier using Multiple-Instance
Learning [12].

Third, we leverage information from the whole dataset during training, instead of
using a small set of points, as is commonly the case in other works. As the whole
set of feature-label pairs cannot fit in memory, we use a stochastic gradient descent
method, inspired from the recent Filterboost work [1]. At each round of boosting a
subset of ‘interesting points’ is chosen and used to construct the weak learner for that
round. This is done in a proper way in the setting of Anyboost, by forming a stochastic
approximation to the functional gradient of the training cost with respect to the classifer.
We can thus train complex classifiers without fear of overfitting, thanks to the huge
number of available training samples (' 200 Images x 150000 Pixels).

A further improvement in performance is provided by discriminative information
extracted from appearance descriptors. As in recent works [13] we compute descriptors
densely on the image, thereby capturing the context of any given point, and provide
this as an input to a classification algorithm. This provides additional information, that
complements the local features used in the Berkeley edge detector.

Our contributions are experimentally evaluated on the Berkeley Segmentation Bench-
mark, demonstrating systematic improvements over the current state-of-the-art. As we
intend to provide the source code for our work, we omit several implementation details;
we focus on the major new ideas, leaving a more detailed presentation of the low-level
processing for a longer version of this work.

2 Previous Work

After decades of edge detection research driven by insight and guesswork, a quantum
jump has been the introduction of ground-truth labeled datasets [3, 4] and the phras-
ing of edge detection as a pattern recognition task. The ‘Berkeley edge detector’ [4]
was shown to outperform most edge detection approaches developed in the previous
decades, by replacing intuitively developed measures, such as the strength of directional
derivatives [14, 15], with statistical measures of texture, color and intensity discontinu-
ity, and leaving their combination to machine learning.

This approach has led to improved detectors based on Boosting [6], topological
properties of the image [7], spectral gradients [8], multiscale processing [9] and sparse
dictionaries [10], among others. The most powerful boundary detectors currently in
use [8, 16, 17] rely on combining different cues for boundary detection, such as texture
gradients, brightness/color gradients, or information extracted from spectral clustering.
Each of these cues is indicative of the presence of an edge, and the task of learning their
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optimal linear combination is typically accomplished with logistic regression. A point
mentioned repeatedly in several works, e.g. [9, 4] is that using more intricate machine
learning tools does not substantially improve performance. However both [6] and our
work indicate that substantial improvements can be obtained by using more sophisti-
cated learning approaches, as we will now present.

3 Learning boundary Detection

We start with a presentation of boosting, where we introduce notation and the Anyboost
technique [11] which is central to the rest of the paper.

Our training data come as sets of input-output pairs, (Xi, yi), Xi ∈ X , yi ∈ Y, i =
1, . . . , N , where N is the size of our training set, typically X = Rd and for classifica-
tion Y = {−1, 1}. Boosting algorithms learn a mapping from the input to the output
space using a linear combination of simpler functions (‘weak learners’):

fT (X) =
T∑

t=1

atht(X). (1)

The weak learners ht are members of a family of simple functions, H but their combi-
nation in fT can result in a complex classifier (‘strong learner’).

Boosting algorithms construct f in a sequential manner, by introducing at each it-
eration t a new component ht ∈ H and a corresponding coefficient at that will most
quickly improve the performance of the classifier. Performance is quantified by a cost
C(f) for the discrepancy between the classifier’s predictions and the labels of the train-
ing set. This is typically a sum of individual costs over the training set, i.e.:

C(f) =
N∑

i=1

c(f(Xi), yi) (2)

For instance c(f(Xi), yi) = exp(−yif(Xi)) gives the exponential loss used in Ad-
aboost training [18], while logistic regression scores have been considered in [19].
Moreover, different algorithms have been proposed to perform the selection steps for
the weak learner and stepsize including Discrete-Adaboost [18], Gentleboost [20], or
Confidence-Rated Boosting among others.

A unifying theme for these algorithms has been provided by the Anyboost algorithm
[11], that views boosting as gradient descent in function space; namely each round
of boosting can be seen as moving the function f in the direction that most rapidly
decreases C(f). In specific, consider that the outputs of the classifier ft at iteration t on
the training set are combined in a vector f , s.t. fi = ft(Xi), i = 1, . . . , N . The negative
gradient of the cost function with respect to the classifier’s responses:

gi = −∂C

∂fi
, (3)

provides the update direction for f on the training set that will most rapidly decrease
the cost being optimized. As we can only change our classifier by adding a member
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of the family H, boosting resorts to finding that function h∗ ∈ H that is closest to the
direction pointed by g, i.e. has maximum inner product with g:

h∗ = argmaxh < g, h >= argminhl(h), l(h) =
∑

i

∂C

∂fi
h(Xi). (4)

At each round we thus train a classifier using a reweighted version of the training set;
each sample has a weight |gi|, while the sign of gi determines whether the weak learner
should have a positive response. At each round a weak learner ht ∈ H is chosen so as
to minimize Eq. 4.

Once the ht is chosen, its coefficient at is determined with line search to minimize
C(ft−1 + atht). The Anyboost algorithm is thus summarized as follows:

fT = ANYBOOST(C, {Xi, Yi}, i = 1 . . . N, T )
Set fi = 0, ∀i
for t = 1 to T do

(a) Compute negative Gradient of C at f : gi = −∂C
∂fi

.
(b) Find the weak learner ht which minimizes: l(h) =

∑
i−gih(Xi)

(c) Choose the step size at that minimizes C(ft−1 + atht) using line search.
(d) Set fi = ft(Xi).

end for
Output fT (x) =

∑T
t=1 atht(x).

We can now proceed with the presentation of our contributions in using Boosting
for boundary detection. These are in the following directions:

– Using a cost C that properly measures the performance of our boundary detector
system, by approximating its F-measure, Sec. 3.1.

– Dealing with ambiguity in labeling using Multiple-Instance Learning in conjunc-
tion with Anyboost, Sec. 3.2.

– Exploiting the whole Berkeley training set by forming a stochastic approximation
to the weak-learner training criterion, l, Sec. 3.3 and the cost C used during line-
search, Sec. 3.3.

3.1 F-measure Boosting

Most training criteria in Boosting are defined as summations of a sample-based cost
function over the whole training set, as in Eq. 2. This is the case for instance in the
exponential loss or the log-likelihood score. However, such criteria can lead to poor
classifiers when the training sets are imbalanced, which is the case for boundary detec-
tion: there are two orders of magnitude less boundary points than non-boundary points,
so a classifier that errs in favor of non-boundary decisions can have a lower score than
a more balanced one, when using a summation-based cost.

This is reflected in the F-measure that is used to score boundary detectors, defined
as the geometric mean of the classifier’s precision, p and recall, r:

F =
2pr

p + r
, where p =

TP

TP + FA
, r =

TP

TP + MS
(5)
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In Eq. 5 TP is the number of the true positives, MS the number of misses, and FA the
number of false alarms. Precision gives us the proportion of correct detector responses,
while recall indicates the proportion of the true boundaries that have been detected.
Note that the false negatives do not appear anywhere; therefore the classifier does not
get credit for rejecting negatives, but only pays for false alarms. This allows to deal with
a large negative class during evaluation (and training).

Even though the F-measure is broadly used as an evaluation measure, it is not com-
monly used in training as it is harder to optimize. However, algorithms for optimizing
it have been developed in the context of SVMs [21] and logistic regression [22], while
the authors in [8] mention optimizing the F-measure to training their logistic regression-
based classifier. Here we use the Anyboost framework to apply the ideas developed in
[22] to classifiers trained with boosting.

Following [22], we express the TP, MS, FA terms as sums over the training set:

TP =
N∑

i=1

[ŷi = 1][yi = 1], FA=
N∑

i=1

[ŷi = 1][yi = −1], MS =
N∑

i=1

[ŷi = −1][yi = 1](6)

where ŷi is the label estimated by the classifier (e.g. by thresholding f(Xi) at 0), yi is
the correct label and [·] is indicating the truth of ·.

We then replace the quantities in Eq. 6 with probabilistic approximations, by re-
placing [ŷi = 1], [ŷi = 0] with the soft measures P (y = 1|f(Xi)), P (y = −1|f(Xi))
respectively. For instance, we approximate the number of false alarms by FA ' F̂A =∑N

i=1 P (yi = 1|f(Xi))[yi = −1]. We combine the estimates of precision p̂ = T̂P
T̂P+F̂A

and recall r̂ = T̂P
T̂P+M̂S

in an approximation to the classifier’s F-measure:

F̂ =
2p̂r̂

p̂ + r̂
=

ˆTP

ˆTP + (F̂A + M̂S)/2
(7)

We thereby replace the terms showing up in the original F-measure by differentiable
quantities, that smoothly vary as we change the classifier’s output. This allows us to per-
form gradient descent so as to maximize the approximate F-measure. We now present
how to optimize this measure with a classifier trained with Anyboost, using as cost
C(f) = 1− F̂ .

For now, we consider turning the output of a boosting-based classifier into a soft
estimate by setting P (y = l|f(X)) = σl(f(X)) = 1

1+exp(−lf(X)) , where l indicates
the label of the training point. In Sec. 3.2 we will present a more elaborate expression,
that can be directly incorporated in what we now present.

To apply the Anyboost algorithm, we need to measure how changing the response
of the classifier at point i will affect the classifier’s F-measure. This is given by [22]:

gi =
∂C

∂f t
i

=
[
H[yi = 1]− H2

2
ˆTP

]
σ′yi

(f t
i ), H =

(
N∑

i=1

[yi = 1] +
1
2
( ˆTP + F̂A)

)−1

,(8)

while for a sigmoidal σ we have σ′yi
(fi) = dσyi

(fi)

fi
= σyi(fi)(1− σyi(fi)).
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The expression in Eq. 8 determines the weighting of point i for round t, using the
classifier ft−1 from the previous round: The vector −g indicates how the classifier’s
outputs should change so as to most rapidly increase the F-measure; and as already
mentioned, with Anyboost we choose the ht ∈ H that is closest to this direction, by
maximizing

∑
i−gihi(Xi).

We note that the cost function is not defined as a sum of individual costs, but rather
is combining nonlinearly two global measures, the classifier’s precision and recall. But
at each round we compute the partial derivative of the cost w.r.t. the classifier’s output
on the individual points, which is forming a local linear approximation to the cost; this
is then used to drive the fitting of the weak learner. Of course, the optimization cost is
no longer convex so we may end up in local minima of the cost; nevertheless in our
results we observed that the performance of the classifier trained with this criterion is
better than that of the one trained with the convex criterion of standard Adaboost.

3.2 Multiple Instance Learning with Noisy-OR

So far we have been considering that we are provided with feature-label pairs. But
our classifiers use orientation-dependent features, and classify each point based on an
assumed orientation, say j; a point is labeled as positive if the classifier fires along
any orientation. Using manual annotations to determine the orientation is tricky, since
different users may suggest different orientations for the same image location depending
on the granularity of their segmentation (e.g. on texture boundaries). Moreover, for
points such as corners, or junctions, orientation is not properly defined.

To deal with this we use the adaptation of Multiple Instance Learning to Boosting
by [12], and train a classifier in a way that copes with the missing orientation informa-
tion. In specific, we extract features X for our classifier at all N orientations (we use
N = 8), obtaining a ‘bag’ of features Xi = {Xi,1, . . . , Xi,N} at each point i. For each
orientation our classifier provides us with a probability estimate P (yi = 1|Xi,j) =
1/(1 + exp(−f(Xi,j))). The final decision is taken by a Noisy-OR combination:

pi = P (yi = 1|Xi) = 1−
N∏

j=1

(1− P (yi = 1|Xi,j)). (9)

This has a similar behavior with the a maximum-based combination - the left hand side
is large when any of P (yi = 1|φj) is large, and small only when all of them are small -
but is differentiable. We use pi as a shorthand for the result of the noisy-or combination
rule.

This allows us to train this classifier using gradient descent and in specific, with
Anyboost. We now refine our earlier presentation: the probabilistic estimates used in
the approximation of the F-measure in Sec. 3 correspond to the left-hand side of Eq. 9,
namely the combined decision about the point after considering all orientations. How-
ever, the classifier that we train shows up in the the right hand side, and gives the prob-
ability of point i being an edge using the features Xi,j computed for orientation j:
P (y = 1|Xi,j) = (1 + exp(−f(Xi,j)))−1.

Using Anyboost we consider the classifier responses fi,j on all possible orienta-
tions, and stack the derivative of the cost with respect to them in a vector n. With a
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slight abuse of notation we use two indexes for the elements of this vector and denote
its elements by ni,j = ∂C

∂fi,j
. The partial derivatives can be computed using the chain

law:

∂C

∂fi,j
=

∂C

∂pi

∂pi

∂gi,j
=

[
H[yi = 1]− H2

2
ˆTP

]
(1− pi)pi,jyi. (10)

The bracket on the left comes from Eq. 8 while the right hand side can be derived using
the property of the sigmoidal σ′ = σ(1− σ).

The weak learner is thus trained by maximizing
∑

i,j ni,jh(Xi,j). An inspection
of Eq. 10 reveals that this assigns higher weights to the orientations which give higher
responses, and can thus drive more quickly the change in the cost function.

3.3 Filtering via Stochastic Gradient Descent

Up to now we have considered that at each round a weak learner is trained by optimizing
a quantity obtained by summing over the whole training set as dictated by the Anyboost
algorithm; e.g. for noisy-or we considered minimizing

∑
i,j ni,jh(Xi,j) where i ranges

over all pixels in all images and j ranges over 8 possible orientations.
In practice this can be infeasible, due to both time and memory constraints. It is

therefore common practice to pick at random a subset of the training set initially and
then use it throughout training. This can lead however to overfitting, in particular if
a small training set is given and a complex classifier is trained, while an unfortunate
choice of a subset for training can also result in poor performance. We would like in-
stead to maintain the whole training set throughout training, and use a proper portion of
it at each round.

For this we propose a solution inspired from the recent Filterboost work [1], that
adapts Boosting to the filtering problem; the filtering problem amounts to iteratively
training a classifier with a subset of the training set at a time, while guaranteeing its
good performance over the whole training set.

The adaptation of this idea is straightforward, once the Anyboost interpretation
of Boosting is developed: we replace the criterion l(h) =

∑
i gih(Xi) used in Ad-

aboost with a stochastic approximation, l̂(h) obtained by using a subset of the train-
ing data. In specific, we first normalize g so that

∑
i |gi| = 1. This does not affect

the choice of h. We then construct a distribution pg(i) = |gi| on the training set
and interpret l(h) as the expectation of sgn(gi)h(Xi) with respect to this distribution:
l(h) = Epg(sgn(g)h(X)).

We can then form a Monte Carlo approximation to this expectation, by drawing
samples from the training set according to pg, and averaging the value of sgn(gi)H(Xi)
on those samples:

l(h) = Epg(sgn(g)h(X))' 1
K

K∑

k=1

sgn(gk)h(Xk) ≡ l̂(h) (11)

where Xk, k = 1 . . . K are samples drawn from pg. We thus replace the original prob-
lem of optimizing l(h) by the optimization of its approximation l̂(h), formed using K
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instead of N samples. In practice, while our training set contains N ' 3 · 107 points,
we use K = 5 · 105 samples at each iteration.

Using this scheme the points are chosen adaptively at each iteration: they are drawn
from pg, which is quantifying their usefulness for decreasing the cost at the current
round. This allows our training algorithm to make the best use of the training data,
and focus on the harder ones from the whole training set. Contrary, if one works with
a fixed subset of the training set throughout, boosting fine tunes the performance of
the classifier over a small set of points which leads to diminishing returns, or even
overfitting for larger rounds of boosting.

We note that the proposed technique may seem similar to the stochastic Boosting
method of [23]; however in our case the choice of points is driven by the cost gradient at
the current round, instead of being a random sampling of the training set. Moreover, the
same approach can be used to optimize any other training cost, and is not constrained
to the F-measure used here. We therefore believe it can prove useful for a broader range
of problems apart from feature detection.

Step size selection The scheme described above allows us to find the approximately
optimal weak learner ht at round t; a similar scheme can be used to estimate the optimal
step size at using a stochastic approximation to the cost function. As is known from
Monte Carlo integration, forming a good stochastic approximation of a quantity requires
sampling it more densely where it is larger in magnitude. We therefore use a different
set of samples to estimate the step-size, by sampling more densely points that contribute
to the ˆTP , F̂A, M̂S quantities used to estimate the F-measure. For this, we form the
function di = yi + pi that adds the two quantities which indicate whether the response
pi at point i, can affect the F -measure: being a true positive/false negative, in which
case yi = 1 or being a false positive, in which case pi is large. We normalize di so that
it sums to one, and we see it as a distribution on lthe training set, denoted by pd.

We then express ˆTP , F̂A, M̂S as expectations with respect to this distribution, and
form Monte Carlo approximations to these; for instance for ˆTP we have:

ˆTP =
N∑

i=1

p(y = 1|Xi) =
N∑

i=1

di
p(y = 1|Xi)

di,j
= Epd

(
p(y = 1|Xi)

di,j

)
, (12)

so ˆTP ' ∑K
k=1 p(y = 1|Xk)/dk where Xk are samples drawn from pd. A sample here

amounts to the whole bag X = {Xi,1, . . . , Xi,N} at point i.
Summarizing, the optimal step at is found at each round t using line search, based

on the stochastic approximation to C(ft−1 +atht). When estimating the value of C for
a candidate step at we perform the following steps:

– Compute the classifier’s response f(Xi,j) = ft−1(Xi,j) + atht(Xi,j) for all sam-
ples i = 1 . . . K and all instances j = 1, . . . 8, within each bag.

– For each sample i, combine these responses using the noisy-or combination rule, to
provide pi = p(y = 1|Xi).

– Form the Monte-Carlo approximations to ˆTP , M̂S, F̂A as in Eq. 12 and combine
them to provide an estimate f̂ .
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4 Discriminative Features from Descriptors

In our earlier work [24] we have observed that a substantial improvement in perfor-
mance can be gained by extracting discriminative information from descriptors. A sim-
ilar result was preliminarily observed in [25] for the figure-ground assignment task,
where geometric blur descriptors were used to leverage mid-level information.

Here we develop this idea further, and demonstrate the gain obtained by integrating
descriptors with the other cues used during boosting. Specifically, in [24] we extract
SIFT descriptors at multiple scales around candidate edgels to form a high-dimensional
feature vector describing the context in which each edgel appears. We extend this
idea by densely computing descriptors over the image; we can thus use their low-
dimensional projections as regular features during both training and testing. Instead,
in our earlier work we needed to do boundary detection and non-maximum suppression
at the very beginning to extract descriptors around candidate edges. We thus replace our
original two-tiered detection with an integrated version. More importantly, we experi-
mentally demonstrate that even when using a highly optimized detector, using descrip-
tor information yields an additional gain in performance.

We use a log-polar sampling scheme as in [13, 26], using a sampling grid with 5
scales and 12 angles. Compared to SIFT, the log-polar sampling allows us to re-use the
same descriptor for multiple orientations, simply by permuting its indexes, while also
taking into account the context from a larger part of the image.

As in the Daisy descriptor [13], at each sampling point we compute derivative-
of-Gaussians along eight orientations; the scales of the Gaussians are set proportional
to scale of the point, and we compute such descriptors for all three channels of the
Lab space. We also use Gabor filters for the L-component to capture texture informa-
tion. Both Gabor and Gaussian filters are implemented using recursive (IIR) filtering to
speedup descriptor computation. In all, we have 4 channels (3 for Lab and 1 for Gabor-
texture), with 6 scales, 12 radii, and 6 orientations each, giving us a high-dimensional
descriptor of the context around a point.

As in [24] we use a pre-processing step that discriminatively compresses descriptors
into a low-dimensional space, and then use the coordinates in this space as inputs to our
classifier. In specific, we use the Spliced Average Variance Estimation technique of [27]
to find such a projection; this provides us with a set of orthogonal projection directions
that can be easily computed in test-time.

In Fig. 1 we visualize the first two projection directions for descriptors extracted
around a presumably horizontal edge. We show two different projections (vertical di-
rection) for three cues (horizontal direction). Each projection is computed by summing
the products of the descriptor values with the corresponding projection elements. Each
needle shows the matrix entry for the corresponding location and orientation of the de-
scriptor: red/blue denotes sign while the length indicates magnitude. Even though not
as easily interpretable as the projections we would obtain from PCA, we observe that
the projection dimensions correspond to geometrically meaningful patterns.
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Fig. 1: Discriminative projections computed for (left) intensity (middle) color and
(right) texture descriptors. The color of the needles indicates the sign, and their length
indicates the magnitude of the projection coefficient for the corresponding descriptor
dimension.

5 Application to Boundary Detection

We now focus on the problem of boundary detection. We first describe an adaptation
of F-measure boosting that proved beneficial in tuning our detector, and then provide
experimental results.

5.1 Calibrating the F-measure for boundary detection

So far we have considered training a classifier with F-measure boosting in a general
setting. For the boundary detection task in specific, we have realized that the reported
F-measure in the evaluations is affected by two additional factors: First, images in the
Berkeley benchmark are labeled by multiple persons, so certain points receive a ‘bound-
ary’ label multiple times. We therefore take into account the number of times Ni that
each training point i was labelled as positive in the expressions for TP and TM :

TP =
N∑

i=1

Ni[ŷi = 1] ' NiP (yi = 1|f(Xi)) = ˆTP (13)

MS =
N∑

i=1

Ni[ŷi = −1] '
N∑

i=1

NiP (yi = −1|f(Xi)) = M̂S (14)

The expressions for TP and MS are the ones that are computed during the evaluation,
according to the code of [4], while the expressions for ˆTP and M̂S are used for train-
ing. These expressions emphasize points that are consistently labeled by more users as
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boundaries. This improves the F-measure of the detector on both the training and test
sets.

Second, the boundaries used for evaluating the detector are obtained after non-
maximum suppression. Only a fraction of false positives will thus survive suppression,
and give a false alarm. Scaling the estimate of F̂A in Eq. 14 by a fraction of 1/10 there-
fore yields an estimate of false alarms that is much closer to the one reported by the
evaluation software.

5.2 Experimental Results

In order to systematically evaluate our approach we have conducted systematic experi-
ments on the Berkeley Benchmark.

As mentioned in the introduction, our contributions are in both the learning, and
the feature extraction direction. To validate our contribution in learning, we first train a
classifier using exactly the same features as in [8], namely multi-scale color and texture
gradients, as well as ‘spectral gradients’, obtained from the directional derivatives of the
eigenvectors found from normalized cuts. The difference is in the learning algorithm
(Adaboost) and the fact that we use the whole training set for training. Both we and [8]
use the F-measure for training, so we are optimizing essentially the same cost. In [17] a
combination of the gPb detector with a segmentation algorithm results in a improvement
of the gPb detector’s F-measure from .7 to .71. Our detector achieves an F-measure of
.712 while not using additional information from segmentation. The performance of the
classifier trained using our earlier setup [24] of using a sparse set of training data, with
fixed orientation decreases the performance to F = .7. This demonstrates the merit of
using MIL for orientations and Filterboost.

To validate our contribution in feature extraction we perform the training procedure,
but now introducing the new features obtained from the appearance descriptors by dis-
criminative dimensionality reduction. It becomes clear that the descriptors provide an
additional boost in performance, which increases to .717.

Regarding testing time, extracting the features of [8] takes 80s on a 3Gh machine,
while [16] cut it down to 1s on a GPU. Computing dense descriptors requires 50s in
Matlab, but is also easily parallelizable on GPUs. Once features are extracted, evaluat-
ing our detector takes 20s in Matlab.

6 Conclusions

In this work we have pushed further the machine learning approach to one of the most
basic problems in computer vision, boundary detection. We have obtained state-of-the-
art results in the setting of boosting by (i) using a proper training criterion, based on
the F-measure (b) exploiting the whole training set during training and (iii) introducing
new discriminative features using context information captured by descriptors. In future
work we intend to extend the application of these ideas to the detection of other types
of low-level features, while also pursuing the exploitation of these better boundaries for
object recognition.
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Fig. 2: Benchmarking results. Our method achieves an F-measure of 0.712, while to-
gether with descriptors the performance increases to 0.717. This compares favorably to
the global-Pb detector, whose reported F-measure is .70. Please see text for details.

Fig. 3: Sample results from the Berkeley benchmark: the ground truth is shown on
the middle and on the right we show our detector’s estimate for the probability of a
boundary.
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Fig. 4: Comparisons of the Global PB detector (left) with our results (right). Both detec-
tors are thresholded at the value giving the best global F-measure. Overall, we observer
that our detector responds less to textured, or cluttered image areas.
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