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1. AAM learning
1.1. Derivation of the ‘feature transport’ PDE

Non-trivial deformations result in local contractions and expansions. These naturally capture object scalings but can have
a negative side effect, namely making object features disappear or inflate. For this reason we want the deformation fields to
have zero acceleration in the direction perpendicular to image features; this guarantees that the features are only ‘transported’.

This requirement can be phrased as follows: consider a deformation field h = (hx, hy) = (x + fx, y + fx); fx and fy are
the deformation increments calculated from the linear basis synthesis. Along orientation nx, ny this deformation field has
‘speed’ fxnx + fyny; a constant speed means that the motion of features in this orientation does not distort them, i.e. it is
purely translating them. We can thus enforce our constraint by requiring that the directional derivative of this speed function
equals zero, i.e.
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where in the first line we simplify notation by identifying the coordinates x, y with the indexes 1, 2 and in the second we
interchange the i and j indexes and reorder the summations.

It is convenient that linear expansions are used to synthesize any object deformation: constraining all shape basis elements
to satisfy (2) automatically guarantees that this holds also for any synthesized deformation, since the constraint is also linear
in fx, fy . We thus solve this problem by iteratively projecting the basis elements onto the space of functions satisfying (2) in
alteration with performing gradient descent as in (7) in the paper.

By projecting f = (f1, f2) we mean finding the function g = (g1, g2) that has minimum L2 distance from f , while
satisfying the constraint (2). We therefore consider the following variational problem:
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where λ is a field of Lagrange multipliers, enforcing the inner-product to equal zero.
The E-L equation writes:
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and the terms showing up above for, say, fi are
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By substituting we get, for each i:
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are, for,
Taking the Euler-Lagrange derivative yields:

∂1(λn1ni) + ∂2(λn2ni) = fi − gi, i = 1, 2 (7)

Since g must satisfy
∑

i,j=(1,2) ∂jgininj = 0, we can eliminate the (unknown) g and end up with an equation involving
only f . For this, we build the individual summands by appropriately differentiating (7) w.r.t. xi and multiplying it with ni,
and add up the corresponding left and right hand sides. We thereby obtain the following elliptic PDE:
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from which we estimate λ by solving the corresponding linear equation system. We then use the calculated λ in (7) to
estimate gi from fi.

We locally estimate the orientation n1, n2 of the template domain by averaging the orientation of the (deformed) primal
sketch contours that were used to build up the template at the previous iteration.

We note that in [3] a similar approach was used to derive divergence-free deformation fields. Herein we extend this
approach to the case where we use the local structure of the image is used to dictate the direction in which there should be
no change in scale. Specifically, the spatially varying signals n1, n2 are related to the image orientation and are used to avoid
the contraction/expansion of features along that direction. The idea of [3] stemmed from fluid dynamics, while we are not
aware of work related to the PDE we propose here.

1.2. Enforcing Orthonormality

Herein we derive the update used to enforce the orthonormality of the eigenvectors. The constraint can be enforced by
introducing Lagrange multipliers in the initial criterion used to derive the update rule:
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Specifically, we consider the multiplier µi,j associated with the constraint

Si · Sj = δi(j), where (10)
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The modified criterion writes

C(S, I, s) +
∑

i

∑

j≥i

µi,j(Si · Sj); (12)



taking the partial derivatives of the criterion with respect to Sx,i(x) and Sy,i(x) gives
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Multiplying (13) with Sx,k(x) and (14) with Sy,k(x), summing the resulting equations and then summing over x we get the
system of equations
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Taking the derivative of the criterion with respect to the Lagrange multipliers we get
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which finally gives us the optimal update of S that satisfies the introduced constraints:
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We can see this as a modification of the technique used in [4] to our problem; in their work the orthonormality constraints
were imposed at the pixel level, herein they are imposed on functions defined over the whole image.

2. Details on the estimation of the observation potentials
Due to lack of space in the paper we provided a brief sketch of the method employed to estimate the observation potentials.

Herein we provide some details to clarify the points mentioned in the paper.
Our approach was driven primarily by the need to estimate the terms involved in the observation potentials efficiently.

As described in the paper this can be accomplished using features that are expressed as summations of feature fields over
domains, which can then be efficiently accomplished using curvilinear integrals instead of area summations.

Specifically, each particle used in the NBP inference scheme amounts to a specific estimate of the deformation. After
deforming the template accordingly, we extract the sums of ridge/edge strengths in the interior and exterior of the areas
defined by the template, and treat them as a four-dimensional feature vector that we use to evaluate the observation potentials.
This deviates from the typical MRF formulation, where the observation potentials express the likelihood of the observations
instead of some features; still as in [2] we argue that with good enough features the difference in performance will not be
substantially different.

The expression for the observation potentials is based on the output of a classifier that compares the likelihood of the
features under a foreground and a background model. The foreground model is built based on the previous E-step results,
by extracting the features at the estimated part locations and constructing a nonparametric Gaussian distribution -we use the
methods and code in [1] for efficiency. For the background model the part locations are randomly perturbed, and the process
is repeated. The features used to construct the classifiers for two different parts of cows can be seen in Fig. 1.
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(b) Features for classifier construction

(c) Template for
head
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(d) Features for classifier construction

Figure 1: Features used to construct the fore- and background likelihood terms used for the estimation of the observation
potentials. Blue solid dots correspond to foreground and red to background features.

(a) Input Image (b) Edges and Ridges

Sum of Ridge Strength in Interior Sum of Edge Strength in Interior P(F|node, cluster)

Sum of Ridge Strength in Interior Sum of Edge Strength in Interior P(F|node, cluster)

Figure 2: Observation potentials corresponding to two object parts.
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