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Abstract—In this paper, we use concepts and methods from
chaotic systems to model and analyze nonlinear dynamics in
speech signals. The modeling is done not on the scalar speech
signal, but on its reconstructed multidimensional attractor by
embedding the scalar signal into a phase space. We have analyzed
and compared a variety of nonlinear models for approximating
the dynamics of complex systems using a small record of their
observed output. These models include approximations based on
global or local polynomials as well as approximations inspired
from machine learning such as radial basis function networks,
fuzzy-logic systems and support vector machines. Our focus has
been on facilitating the application of the methods of chaotic
signal analysis even when only a short time series is available,
like phonemes in speech utterances. This introduced an increased
degree of difficulty that was dealt with by resorting to sophisti-
cated function approximation models that are appropriate for
short data sets. Using these models enabled us to compute for
short time series of speech sounds useful features like Lyapunov
exponents that are used to assist in the characterization of chaotic
systems. Several experimental insights are reported on the possible
applications of such nonlinear models and features.

Index Terms—Chaos, nonlinear systems, speech analysis.

I. INTRODUCTION

FOR SEVERAL DECADES, the traditional approach to
speech modeling has been the linear (source-filter) model

where the true nonlinear physics of speech production are ap-
proximated via the standard assumptions of linear acoustics and
one-dimensional (1-D) plane wave propagation of the sound
in the vocal tract. The linear model has been applied to speech
coding, synthesis and recognition with limited success; to build
successful applications, deviations from the linear model are
often modeled as second-order effects or error terms. However,
there is strong theoretical and experimental evidence [1]–[7] for
the existence of important nonlinear aerodynamic phenomena
during the speech production that cannot be accounted for by
the linear model. We view the linear model only as a first-order
approximation to the true speech acoustics which also contain
second-order and nonlinear structure. The investigation of
speech nonlinearities can proceed in several directions. In
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our on-going research [7], [8] we focus on a nonlinear signal
processing approach, which consists in developing efficient
computational models for detecting nonlinear phenomena in
speech and extracting related acoustic signal features. One
such important nonlinear phenomenon is turbulence during
speech production. One viewpoint from which turbulence can
be explored is its nonlinear dynamics aspect, which leads us to
the theory of chaos [9], [10]. Previous research in the existence
and analysis of chaotic behavior that the speech production
system can display includes [7], [8], [11]–[21].

Attempting to explore the link between speech turbulence and
chaos, in this paper we use concepts and methods from chaotic
systems to model and analyze nonlinear dynamics in speech
signals. The modeling is done not on the scalar speech signal,
but on its reconstructed multidimensional attractor by embed-
ding the scalar signal into a phase space. Such embeddings are
often used in chaotic systems analysis [8]–[10], [22]. In this
setting, modeling the system dynamics is interpreted as a func-
tion approximation task, using an observed set of input-output
pairs. One of the main problems of a function approximation
task is how to strike a balance between fidelity to the observed
input-output pairs and generalization ability; this is particularly
prominent in our case where we are provided with few data re-
siding in a high-dimensional space. As part of our contributions,
we have analyzed and compared a variety of nonlinear models
for the purpose of approximating the dynamics of the speech
production system on its reconstructed attractor. The models
we have experimented with include approximations based on
global or local polynomials, which are commonly used to model
chaotic systems, as well as nonlinear function approximations
inspired from machine learning such as radial basis function net-
works, fuzzy-logic systems and support vector machines.

Our focus has been on facilitating the application of the
methods of chaotic signal analysis even when a short time
series is available. In most of the previous work [12], [14], [15],
[17], [19] sustained vowels have been used, and the major part
of research in modeling of chaotic systems assumes that a long
time-series is available samples or more. Instead, we
have used relatively short time-series, on average 800 samples,
which introduced an increased degree of difficulty that was
dealt with by resorting to sophisticated function approximation
models that are appropriate when a short data set is available.
Using these models has enabled us to compute useful features
that are used to characterize chaotic systems and the nonlinear
dynamics of speech, like Lyapunov Exponents, even when less
than points are available. Since we are not familiar with
any comparison of the models we have used in the time-series
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Fig. 1. Waveforms and attractors for /aa/ and /s/. (Only the first three dimensions of the multidimensional attractor are plotted).

analysis literature using short data sets, we also present in
this paper our experience gained from working with a wide
repertoire of these models.

Our contributions in this paper are twofold: 1) investigating
the appropriateness of complex nonlinear function approxima-
tion methods for speech modeling and 2) experimentally vali-
dating the feasibility and potential merits of carrying out speech
analysis using methods for chaotic systems.

Organization of the paper: Section II briefly summarizes the
embedding procedure we used, that enables us to reconstruct
the geometric structure of the attractor of a chaotic system. Sec-
tion III presents Lyapunov Exponents and the problems associ-
ated with their computation. In Section IV we review the most
important nonlinear models that we have used, report our con-
clusions concerning their suitability and select the most efficient
model. In Section V we present our experimental results from
applying the previous methods for chaotic systems analysis to
speech signals.

II. SPEECH SIGNAL EMBEDDING AND ATTRACTOR

We assume that the speech production system can be viewed
in discrete time as a low-dimensional nonlinear dynamical
system , where the phase space of
is multidimensional. The observed speech signal segment ,

, can be considered as a 1D projection via a vector
function applied to the unknown dynamic variables , i.e.,

. It is possible that the apparent complexity or
randomness in the scalar signal could be due to loss of infor-
mation during the projection. According to a well-established
signal embedding theory (see [9] for a comprehensive presenta-
tion), under mild assumptions about , the vector

formed by samples of the original signal delayed by multiples
of a constant time delay defines a motion in a reconstructed

-dimensional space that has many common aspects with
the original phase space of . Thus, by studying the
constructible dynamical system we can
uncover useful information about the original unknown dynam-
ical system provided that the unfolding of
the dynamics is successful. However, the embedding theorem
does not specify a method to determine the required parameters

; hence, procedures to estimate good values of these
parameters are essential.

is related to the correlation among speech samples: a small
is equivalent to a large correlation between and
; on the other hand a large can result in and

being independent and hence yields no useful part
of the system’s history [9]. In order to achieve a compromise
between these two conflicting arguments, the following measure
of nonlinear correlation is used:

where denotes probability. measures the average mu-
tual information between samples that are positions apart, i.e.,
the amount of information we get on average about
from . As in [8], [9] we choose as the location of the
first minimum of .

After fixing , the next step is to select the embedding
dimension of the reconstructed vectors. Projection of the
system attractor to a lower dimensional space may cause some
of the points on the attractor that were initially far apart to
come close to each other; such pairs of points are called false
neighbors. As in [8], [9], we find the embedding dimension
by increasing its value until the percentage of false neighbors
reaches zero (or is minimized in the presence of noise). A
true vs. false neighbor criterion is formed by comparing the
distance between two points , embedded in successive
increasing dimensions. If their distance in a space
of dimension is significantly different to their distance

in a space of dimension , then they
are considered to be a pair of false neighbors. Alternatively, if

exceeds a threshold
(usually in the range of [10–15]), then the two points are false
neighbors. The dimension after which the percentage of
false neighbors no longer decreases is chosen as . After
choosing and , the task of embedding the speech signal in
a multidimensional phase space and reconstructing its attractor
can be accomplished, as shown in Fig. 1 for a vowel and a
fricative sound from the TIMIT database.

The embedding procedure enables us to reconstruct the ge-
ometrical structure of the original attractor of the system that
produced the observed signal and to recover the determinism of
an apparently random signal, in case this is possible. This allows
us to construct accurate models of the system dynamics and to
compute characteristics of the original system, like Lyapunov
Exponents, which may prove to be useful features for the pur-
pose of speech analysis, since they characterize the behavior of
the system that produced the observed time-series.
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III. LYAPUNOV EXPONENTS

Lyapunov Exponents (LEs) are characteristics of a dynam-
ical system that remain intact by the embedding procedure, and
can be characterized as a measure of the system’s “degree of
chaos.” A chaotic system is characterized by extreme sensitivity
on initial conditions and rapid divergence of nearby orbits on
its phase-space; LEs measure the exponential rate of divergence
or convergence of orbits. A positive LE signifies divergence of
nearby orbits and respectively a negative LE means convergence
of orbits, while a LE equal to 0 is characteristic of a flow. For a
conservative system the sum of LEs has to be negative, so that
the orbits are bounded, while a chaotic system has at least one
positive LE, which is the best known characteristic of chaotic
systems, namely the exponential divergence of nearby orbits
which results in long-term unpredictability.

Let be a discrete-time multidimen-
sional dynamical system. In order to quantify the rates of diver-
gence of its orbits, assume an initial state , which is slightly
perturbed by to a new one . If we
consider two orbits passing through and at
the orbits will differ at the following step by

where is
the Jacobian of at . By iterating for steps we get:

where is the Euclidean norm of a vector. In the limit ,
converges to a matrix known as the

Oseledec matrix

(1)

The logarithms of the eigenvalues of the Oseledec matrix are
equal to the LEs of the system whose dynamics are described
by . Since we usually do not have enough data to calculate
the limit as , we use an approximation of which
involves only the first matrices, from which we compute the
so called local LEs [9].

The computation of LEs using experimental data is a non-
trivial task for which various computational schemes have been
proposed. Even though geometrical approaches to the problem
are intuitively appealing, it turns out that these are extremely
sensitive to noise and research in this direction has not advanced.
The approach we follow is the one advocated in [23] and de-
tailed in [9], which explicitly calculates the eigenvalues of the
Oseledec matrix in (1) using an approximation to the map
in order to calculate ’s Jacobian.

Our main problem is that of data sparsity: contrary to pre-
vious attempts [19] to compute LEs of speech signals, where
sustained vowels have been used (which facilitates the construc-
tion of local linear models), we used models that can learn the
essential part of the system dynamics even when a short data set
is available.

A second problem that arises when calculating the eigen-
values of the Oseledec matrix is its ill-conditioned nature which

causes numerical inaccuracies. As a remedy to this problem,
in [9], [23] the recursive QR decomposition technique has
been applied, which breaks the problem into smaller ones:
The matrix can be viewed as the product of matrices,

, for each of which we can use the recursive
expression: , , ,
where , result from the QR-decomposition of ;

is an orthogonal matrix and is upper diagonal. We can
thus simplify the diagonalization of as follows: We start
with and , which yield

. By iterating we get

tends to the identity matrix as and therefore the
eigenvalues of the LHS matrix shall be equal to the eigenvalues
of the product of the matrices. Since are upper
diagonal, the eigenvalues of their product shall equal the product
of their diagonal elements. Thus, for the LEs we have

(2)
where is the th element of the diagonal of .

Another problem we may encounter is due to the fact that the
embedding dimension is not necessarily the intrinsic dimension
of the system, but can be a larger one, namely the one which
guarantees the unfolding of the attractor. As a by-product of
the embedding process, more LEs than the true ones are com-
puted and these are called spurious exponents. One approach
[9], [23] to resolve this problem is to reverse the time sequencing
of the observed data, i.e., to model the dynamics of the system

and compute once more the LEs of the “in-
verse” system. The true LEs should flip sign, since convergence
of nearby orbits now becomes divergence and vice-versa. The
spurious exponents are an artifact of the embedding process and
should stay negative; this observation can be exploited as a val-
idation technique for the LEs that are computed. This process,
however, is prone to noise and care must be taken to determine
the rejection thresholds for a spurious exponent. In addition,
due to numerical problems large negative exponents rarely keep
their magnitude while changing sign, when the time sequencing
is reversed; as a consequence this procedure can be used only to
validate a positive, zero, or small negative exponent.

An alternative approach to the same problem, presented in
[24] and extended to deal with noisy and short time series in
[25] is based on projecting the data in each neighborhood onto
the most densely populated regions of the attractor. This is
achieved using SVD analysis of the neighborhood data, which
helps project out superfluous dimensions that are needed to
globally embed the data.

IV. NONLINEAR MODELING OF SYSTEM DYNAMICS

The task of predicting a chaotic signal that has been pro-
duced by a system whose dynamics are described by a func-
tion defined on the reconstructed phase space can be formu-
lated as that of multivariate function approximation based on the



KOKKINOS AND MARAGOS: NONLINEAR SPEECH ANALYSIS USING MODELS FOR CHAOTIC SYSTEMS 1101

input-output pairs , where
is the number of available input-output pairs on the attractor.

Numerous techniques have been proposed, ranging from simple
extensions of the linear model to complex neural networks [22].
Our focus is on models that can approximate even when sup-
plied with short data-sets, since this is the main problem we are
confronted with when dealing with a speech time series whose
length does not exceed a phoneme’s duration. Henceforth, un-
less otherwise mentioned, the output of the approximating func-
tions is assumed to be multi-dimensional.

A. Global Polynomials

Global polynomials are a straightforward extension of the
linear model. Instead of assuming that the next value of the
state-space vector can be expressed as a linear combination of
the previous values of the signal we can use an expression that
uses higher order terms, i.e., a global polynomial. The parame-
ters of a global polynomial that fits the data in an optimal way
can be calculated using a family of orthonormal mul-
tivariate polynomials

is a 1-1 function
such that: i) , ii)

, iii) . The
expressions for orthogonality involving become com-
plicated when dealing with multivariate polynomials, unless
a principled approach is used, like the one in [26]. Assuming

have been calculated, the normal equations [27] for the
optimal expansion of on the orthonormal basis becomes

Global polynomials are well suited when a crude model of the
dynamics is desired, using a very small number of parameters
and when very few input-output pairs are available; however,
they are inappropriate for accurately capturing the dynamics of
the system.

B. Local Polynomials

Local polynomials constitute the mainstream approach to ap-
proximating the dynamics of a system on its reconstructed at-
tractor. The main idea is to construct for each point on the

attractor a linear model, using information about the behavior
of neighboring points and minimizing

(3)

which results in the normal equations [27]; are the
nearest neighbors of . The phase space is thus broken up
in small neighborhoods, for each of which the system dynamics
are expressed through a local model.

A refinement of this method [24], [25] uses local linear
models in dimensions, where , by projecting the
input and output points on the most densely populated direc-
tions in the two neighborhoods. If is the intrinsic dimension
of the system, only the necessary part of the system dynamics
is modeled, using fewer points and better conditioned matrices
in the normal equations. However, it is hard to determine the
correct when few and noisy points are available, given that
the attractors of the systems are usually curved manifolds. This
results in inaccurate dimension estimates when points from a
relatively large neighborhood are used to determine , since
for its calculation it is assumed that locally the attractor resides
in a linear subspace of the embedding space.

Other refinements that have been proposed, like clustering the
data and then constructing local linear models for each cluster
[9], can be seen as the limiting case of TSK models (presented
later) when the spread of the membership functions tends to
zero, and so they will not be presented here.

C. RBF Networks

RBF networks rank among the most popular approaches to
multivariate function approximation, combining several ap-
pealing and useful properties, like continuity, differentiability
and the ability to locally approximate while minimizing glob-
ally the prediction error. Suppose we have found clusters
of data points on the reconstructed attractor by using, e.g., the
k-means clustering algorithm, and we use the center of each
cluster center as the center of a Radial Basis Function like the
Gaussian. We can then approximate by the function

(4)
In the above equation can be interpreted as a constant model
of the system dynamics around the center of the th cluster. The

’s can be calculated by minimizing the mean square predic-
tion error

which yields again the normal equations. Determining the
number of clusters and their spreads is usually based on heuris-
tics, which can be complemented by statistical methods for
model validation like cross-validation tests.
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D. TSK Models

TSK [28] models constitute the Fuzzy-Logic approach to
function approximation. TSK models, even though relatively
simple and straightforward, can approximate complicated
functions using a small number of parameters. In brief, the idea
is to partition the input space of the function in fuzzy sets,
i.e., sets having no crisp borders, to fit a local model to each
subdivision of the input space and to express the approximation
of the function as a weighted average of local models:

(5)

where measures the degree of membership of in the th
fuzzy set and is the local model of the system dynamics
for the th fuzzy set. If constants are used as local models, i.e.,

, the model is called a TSK-0 model. If we use a
linear expression as a local model, i.e., , the
model is called TSK-1. For the special case of a TSK-0 model
with radial membership functions we obtain a model equiva-
lent with the Normalized Radial Basis Function network pro-
posed in [29] and used for chaotic time series prediction in [30],
[31]. The models proposed in [32] under the names of Weighted
Constant/Local Predictor can be identified with the TSK-0/1
models, respectively. One can also interpret TSK models as a
mixture-of-experts architecture [33] for which efficient Expec-
tation Maximization [34] training algorithms have been pro-
posed.

As with RBF networks the number of membership functions
and their spreads (if they are Gaussians) have to be determined,
as well as , . If the centers and the spreads are known, the
optimal and can be calculated by the normal equations
and if and are considered constant, the centers and the ’s
can be learned using a gradient descent algorithm. Combined
with the widely used SVD-QR [27] technique for elimination
of unnecessary membership functions we have a powerful tech-
nique for function approximation which is very similar to the
ANFIS system [35]. Since this is the model we finally used in
our experiments with speech signals, some implementation de-
tails are given in a following section.

E. Support Vector Machines (SVM)

SVMs for regression [36] are based on novel ideas from
the field of machine learning and have proven to give good
results when applied to chaotic signals [37]. All the previous
approaches are prone to overfitting, that is, instead of learning
the function , the predictor may learn the training data. This
may result in small prediction MSE with the training set, but
unless care is taken our predictors shall fail to capture the
system dynamics. Instead, SVMs are constructed so as to
minimize the expected generalization error, so a fairly accurate
model of the system dynamics that is not biased in favor of the
training data can be made.

Assume can be expressed as
. The method proposed in [36] for approx-

imating suggests minimizing with respect to the cost
functional

(6)

where are the desired outputs and punishes
only deviations of from larger than by

. The first term in the sum punishes pre-
diction error while the second term accounts for the complexity
of the predictor. A small norm of means that fewer terms
will contribute significantly in the expression for , while is a
constant determining the tradeoff between predictor complexity
and accuracy. By using the ’s we can form inner-product
kernels of the type . Then,
it can be shown (see references in [36]) that the function
minimizing is of the form

(7)

where , , . Examples of inner product ker-
nels include the Gaussian function, splines, and the sigmoid
activation function. By substituting the expression for in (7)
in (6) we get an optimization problem, the dual of which is

The nature of this optimization problem leads to using a sparse
set of data points to approximate the function , by pun-
ishing nonzero s and by including only those in
the final expression (7) for which . Those for
which or are different from 0 are called Support Vectors
and are the optimal set of points to express as in (7).

Despite its elegance and successful application to many fields
of machine learning, the SVM model is not a panacea; choosing
, , the kernel used and the kernel-specific parameters are still

done heuristically, while our experience has shown that solving
the optimization problem can become slow, even when using
efficient algorithms.

F. Dealing With Short Time-Series

In all of the previous analysis it is assumed that the dynam-
ical system that produces the observed time series is stationary;
consequently only phonemes can be used to construct models
of the dynamical system that produced them, since utterances
of whole words are inappropriate. Therefore only short time se-
ries are available to approximate high-dimensional functions,
which necessitates resorting to more parsimonious models than
the commonly used local linear models.

For example, suppose the observed time series, , has
been embedded in 6 dimensions and we have 800 pairs
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Fig. 2. Approximation quality of the real part of the Ikeda map using the models presented in the text. For illustration we use the level sets of the original and
approximating functions, namely the sets fX : f(X) = c g, for c = �2:7 + 0:13i i 2 f0 . . . 25g. (a) Level sets of the real part of the Ikeda map (b) 500
data points, lying on the attractor of the system that serve as the training set (c)–(h) level sets of the approximations to the Ikeda dynamics, using the models
described above, trained with 500 points. When a region is left blank (as, e.g., with global polynomials) this means the outputs have surpassed a given threshold.
Accumulation of level sets in a region means that the function has a high gradient there and vice versa.

(a typical reconstructed attractor of a phoneme). Even
if we consider that our data are clean and the system is perfectly
deterministic, at least neighboring data points
are necessary to build a linear approximation of the system dy-
namics around each point, which is 1/20 of the attractor points.
Therefore, in order to construct local models in sparsely popu-
lated areas of the attractor it is necessary to use points that lie
outside the actual neighborhood of which results in inac-
curate local models of the system dynamics. In order to cope
with noise and/or system randomness even more points are nec-
essary, making the problem worse.

As a first step toward choosing an appropriate model for non-
linear speech modeling, we performed extensive experiments to
evaluate the ability of these models to approximate nonlinear
functions using a limited set of input-output pairs. A character-
istic example is depicted in Fig. 2, where 500 input-output pairs
of the complex Ikeda map

have been used to learn the dynamics of the system using the
models presented previously. We observe that SVM networks
and TSK models combine smoothness and fidelity to the ob-
served data. Instead local polynomials and RBF networks are
inaccurate in areas where there are not many data available,
even though the latter are much smoother. Global polynomials
give a smooth, yet inaccurate approximation, especially in areas
where there have been no points available. It is not only the
value of the function at a specific point that we are interested

in approximating correctly, but also its Jacobian at that point,
so a smooth approximation is also needed. We have made sim-
ilar experiments using noisy input-output pairs, larger data sets,
different nonlinear mappings, and the results are qualitatively
similar. The parameter settings used to produce these approxi-
mations have not been chosen manually for every experiment,
but were based on some heuristics that gave reasonable perfor-
mance when used with other test signals and time series of dif-
ferent lengths.

A second and more quantitative test we performed was that
we probed our models with synthetic signals, and compared
the Lyapunov Exponents (LEs) that were calculated using each
model. For this purpose we used embeddings of chaotic, sinu-
soidal and random signals and checked the LEs estimated for
a wide range of parameters settings (number of clusters, neigh-
bors, learning iterations etc.). We used time series consisting of
1000 samples from the Lorenz System, the Ikeda System, the
Henon System [9] as well as a two-tone sinusoidal signal and a
gaussian noise signal. We have considered that a model is not
appropriate for LE estimation when it gives ambiguous results,
which means that i) there are no clearly validated exponents,
ii) there are more validated exponents than there should be, or
iii) their estimates are not close to the true values of the expo-
nents. RBF and TSK-0 models worked well when many data
points were available but broke down in more challenging situ-
ations. Local and global polynomials, lying on the two extremes
of model complexity, proved to have the worst performance for
the purpose of computing LEs from a short time series. SVM
networks gave very good results, as long as a cross-validation
procedure was used, that would check the cross-validation error
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of the model, using a separate test set. Since many parameter
settings for SVM networks are ad-hoc, a single heuristic would
not always work. TSK-1 models on the other hand gave good
results with all types of signals, using some heuristics described
in the following section, while taking a relatively short time to
train. This led us to choose them among the previously presented
repertoire of models for the purpose of speech modeling.

V. APPLICATIONS TO SPEECH

From a dynamical systems perspective a speech signal can
be regarded as an observable of the speech production system,
which can be used to uncover and model its dynamics, using
the previously presented techniques. Modeling these dynamics
can be useful for speech prediction/synthesis, while invariants
of the dynamical system, like its Lyapunov Exponents or the
fractal dimension of its reconstructed attractor could be useful
for speech recognition.

A. Dynamics Model Implementation Details

Based on the experiments presented in the previous subsec-
tion, we decided to use TSK-1 models for the purpose of non-
linear speech analysis on the reconstructed attractor, because
they seem to provide the best tradeoff between model com-
plexity and performance.

TSK models are based on building simple models of the
system dynamics around clusters of data, and expressing system
dynamics at each point as a combination of the dynamics cor-
responding to each of the clusters it belongs to. Typically some
simple clustering algorithm like K-means is used to locate the
centers of the clusters, and the subsequent steps of determining
the TSK model parameters are assumed to make up for any
initial inaccuracies of the clustering procedure.

For the case of nonlinear dynamical systems the data occupy
a small portion of the embedding space and their variance de-
pends on their location on the attractor. Some more sophisti-
cated data clustering procedures are therefore necessary, which
can simultaneously assign in a soft way each data point to some
clusters and determine the parameters used to express the mem-
bership functions. A natural framework for dealing with such
problems is the expectation–maximization (EM) algorithm [34],
where at each step the parameters of the membership functions
are used to estimate the membership of the data to each cluster,
and subsequently these parameters are determined so as to max-
imize the likelihood of the data, given their memberships. For
the sake of simplicity we used a single parameter expressing
the spread of the multidimensional Gaussian membership func-
tions, as in (4), even though it is obvious that when expressing
the plane-like distribution of the data around each cluster with
Gaussian distributions one should use a covariance matrix that
is neither diagonal, nor has equal elements. In order to somehow
make up for this inaccuracy, the spreads of the Gaussian filters
we used were set equal to the maximal variance of the data be-
longing to each cluster along all axes; otherwise the fact that
the data lie locally along a plane results in lower spread esti-
mates, systematically causing modeling errors. Finally, if some
cluster centers lie closer to each other than a threshold, fixed
at 0.01 for data normalized to lie in [0, 1], they are merged

into a single one. The “correct” number of clusters is usually
hard to find so we have used a heuristic prescription which fits
well the manually estimated optimal number of clusters, for data
sets of the size we used in our experiments (500–2000 points):

, where is the number of points on the
attractor, so for points we have 30 clusters, for 500 points
20 clusters and so on.

After the initial clustering stage, the design matrix of the
activation signals used in the normal equations is formed, on
which the SVD-QR [27] procedure is used to determine which
columns can be left out in order to render the matrix well-condi-
tioned. The threshold on the singular values of the design matrix
was set equal to 1/100 of the maximal singular value of the ma-
trix. After these initial settings, a gradient-descent algorithm has
been used in order to fine-tune the parameters of the predictor
model; a robust variant of the back-propagation algorithm has
been very helpful, namely Resilient Propagation (RPROP) [38],
which uses only the sign of the error gradient (and not its value)
to update the network parameters. The parameters for this al-
gorithm were set to , and ten iterations of
the RPROP algorithm were used; some readily derivable expres-
sions for the partial derivatives of the error functions w.r.t. the
model parameters can be found in [39]. After updating the cen-
ters and spreads the local linear models are reestimated using
the normal equations, thereby resulting in a loop that decreases
the prediction error, without overfitting thanks to the preceding
SVD-QR procedure that eliminates superfluous activation sig-
nals. In order to avoid numerical problems, after each updating
step the spreads of the Gaussian functions are thresholded by
a lower and upper bound, set to 0.01 and 0.25 respectively, for
data normalized to lie in [0, 1].

An interesting alternative procedure to train a TSK model re-
lies on the EM algorithm described in [33] since, as already
mentioned, TSK models are equivalent with Mixture-of-Experts
architectures [33] for which the EM algorithm applies. We note
that for this specific architecture an on-line EM algorithm has
been proposed in [40], thereby offering the possibility to con-
tinuously update the model of the system dynamics which could
facilitate the nonlinear prediction and analysis of continuous
signals.

B. Experiments With Lyapunov Exponents

In order to guarantee the time invariance of the time series
representing the observable of the system we wish to model, we
applied our methods to isolated phonemes from the TIMIT data-
base, that is short time series corresponding to the same sound so
that one can assume the underlying dynamics are time-invariant.
Even though in previous work, like [13], [19] much more strin-
gent criteria have been used in order to guarantee the station-
arity of the analyzed signal, in our case we tried to reconcile
the fact that we had to model naturally uttered speech sounds
with the desire to have stationary signals, so there are still some
transients, like at the beginnings or endings of vowels. In that
case we expect the estimated values of the LEs to be close to
the ones that would be estimated using the stationary part of
the signal, based on the fact that most of the terms involved in
the averaging in (2) are estimated at points with stationary dy-
namics. In practice, manually cutting off the transient parts of
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TABLE I
THREE FIRST VALIDATED LYAPUNOV EXPONENTS FOR SPEECH PHONEMES

Next to each phoneme is given the number of time series from which the statistics have been calculated; for robustness the median and the mean
absolute deviation from the median are used instead of the mean and the standard deviation. The phonemes have been uttered by 11 speakers.
For all phonemes, approximately the same number of pronunciations is used from every speaker. For all the vowels/semivowels in this table the
exponents have been validated using the LEs of the inverse time series. For fricatives and unvoiced stops these are not validated, but used merely
as features for classification; no conclusions should be drawn from these. One should note the increase in the variation of the LEs for the latter
classes.

Fig. 3. Direct and inverse Lyapunov exponents of a vowel, an unvoiced stop sound, a voiced and an unvoiced fricative. Please note that the only validated Lyapunov
exponents are the ones close to zero, where a negative LE validates a positive LE.

vowels resulted in qualitatively the same estimated LEs. The re-
sults of our methods for inherently nonstationary phonemes like
stop sounds should be treated with care to ensure we can exploit
the results for the rest of the phonemes where our approach is
expected to work well.

The time-series data have been normalized to lie in the in-
terval [0, 1] and have been embedded using the procedure de-
scribed in Section II, resulting in typically low-dimensional at-
tractors, with dimensions lying in the range [4–8]. Specifically
we used at least 35 pronunciations of each phoneme belonging
to the following classes:

• Vowels: /aa/, /ae/, /ao/, /er/, /eh/, /ow/, /oy/, /ih/, /ix/
• Fricatives: /f/, /s/, /sh/, /th/, /z/, /dh/, /v/
• Stops: /p/, /k/, /t/, /b/, /d/, /g/
• Semivowels: /r/, /l/, /w/, /j/
• Nasals: /m/, /n/

by the following speakers:

• Male: “dab,” “jsw,” “reb,” “rjo,” “sjs,” “stk,” “wbt.”
• Female: “aks,” “dac,” “elc,” “jem.”

from dialect 1 in the TIMIT database. For all phonemes, approx-
imately the same number of pronunciations is used from every
speaker. The length of the time series ranges from 500 samples
to 2000 or more, with a typical sample size being around 800
points. We discarded shorter time series, since they typically
gave erroneous results when using synthetic data.

1) Lyapunov Exponents of Speech Signals: We computed
the Lyapunov Exponents for different phonemes using TSK-1
models, in order to draw some meaningful and useful conclu-

sions about their values. The main results are the following (see
also Table I and Fig. 3):

• Vowels typically have a small positive exponent, one
equal to zero and one or more negative exponents.

• Unvoiced fricatives give no validated exponents; in
particular, we observed a phenomenon that happens
with noise signals: all the direct and inverse exponents
are negative (hence no exponents are validated). This
may be a consequence of the highly noisy nature of
unvoiced fricatives that causes the methods of chaotic
analysis to break down. Even though more data and
higher embedding dimensions could lead to accurate
models of the system dynamics that would potentially
give some validated exponents, it was not possible
using the short time series available.

• Validated exponents of voiced fricatives are usually
higher than those of vowels; this is somehow expected
since fricatives are less predictable than vowels. How-
ever, it seems that a strong noise component in the
signal usually causes none of its exponents to be
validated.

• Stop sounds were found to be vaguely separated in
two clusters: the first consisted of {/p/, /k/, /t/} (un-
voiced stops) and the second was formed by {/b/, /d/,
/g/}(voiced stops). For the first group it was impos-
sible to find any validated exponents, while the ex-
ponents of the second group were validated occasion-
ally. Really short and nonstationary time series cor-
respond to stop sounds and it is therefore not safe to
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Fig. 4. One excellent, one good, one average, and one bad class separation using only LEs. The axes represent the two principal components of the LE data.

draw any conclusions about the dynamics of the system
based on the LEs; they still can be useful, however for
classification.

• Semivowels typically had one positive LE, another al-
most equal to zero and one or more negative LEs.
Nasals have similar features, with a typically smaller
maximal LE.

More sophisticated methods such as cleaning a signal on its
reconstructed attractor or cutting off the silent part before a
stop-sound could possibly be applied in order to obtain validated
LEs from stop sounds and unvoiced fricatives, but using any of
them would insert some bias into the recognition process un-
less we could apply these methods to all the phonemes without
affecting the derived results for the rest. Even when none of
these methods is applied, the fact that no LEs are validated
may prove to be useful information since this distinguishes stop
sounds and unvoiced fricatives from vowels and occasionally
from voiced fricatives. One can conjecture that the absence of
validated LEs for a signal is indicative of its randomness and/or
non-stationarity.

Separation of the phoneme classes is possible in some cases
using the first three Lyapynov Exponents of phonemes, as can be
seen in Fig. 4. The separation is almost perfect for vowels/un-
voiced fricatives, but is not that successful for all of the class
pairs. In this figure and the classification experiments described
below, in case no validated exponents can be found, they are re-
placed by the largest nonvalidated direct exponents.

It should be mentioned that even though in most of the pre-
vious work clean and sustained signals have been used, there is
little agreement about the values of LEs of speech signals. In
[13], [19] vowels are reported as having their Maximum Lya-
punov Exponent (MLE) almost equal to zero, while in [14], [15],
[41] their MLE was found positive. Also, in [13], [14] the MLE
of fricative sounds was found positive, while in most of our
experiments we did not manage to validate any of them using
models that are robust to noise. Apart from the quality of the data
on its own, which may strongly influence the quality of the LE
estimation [10], we believe this controversy is partly due to the
inherent difficulty of calculating LEs, and partly due to the large
variety of embedding, modeling and LE estimation procedures
that exist which may influence the quality of the results. For
example, in a systematic previous examination of nonlinear dy-
namics in speech signals [19] where a different embedding and
modeling technique was used, the computation of LEs led to no
significantly positive LEs for all of the tested vowels. One could

assume that this is due to the SVD embedding procedure that
acts as a low-pass filter or due to the algorithm used for LE cal-
culation, which involves various parameter tuning steps. How-
ever, according to the authors the embedding procedure does not
significantly influence their results, while the algorithm used to
calculate LEs has been experimentally validated in another pub-
lication [25] by the same authors. The question which signal
embedding procedure is the most appropriate has concerned re-
searchers in the field of nonlinear dynamics modeling and to the
best of our knowledge there is no general consensus about which
method is the “best.” On an empirical basis we would argue that
for speech signals which have an inherent amount of noise it is
better to avoid prematurely filtering the signal, and to rely on the
function approximation part for the purpose of distinguishing
the true underlying dynamics of the signal from the observa-
tion or system noise. In the field of machine learning/function
approximation, regularization techniques or the SVD-QR pro-
cedure are employed to avoid overfitting, thereby learning only
the consistent aspects of the system dynamics.

What we want to point out by the above comparison is that
calculating the LEs of a time series is not something straightfor-
ward that can be accomplished using an off-the-shelf procedure,
but depends on the assumptions one makes about the data and
on every single component used in the procedure one employs.
Since from the very start our main focus has been on models
that can tolerate noise in the signals, without resulting in spu-
rious exponents, we can be confident in our results, at least for
the data set we examined which consists of short and naturally
uttered phonemes.

We should note that the estimation of a positive Lyapunov
Exponent, which is characteristic of a chaotic dynamical system
cannot be used as a proof for the existence of chaos. Before one
can decisively conclude that the speech signal is chaotic, one
should use surrogate data sets and perform more principled tests
[10].

2) Classification Experiments: In order to somehow quan-
tify the meaningfulness of the calculated LEs, we examined
whether they can be used to classify a phoneme into one of

large phoneme classes like “fricatives,” or “/a/-like vowels.”
We constructed a directed acyclic graph (DAG) multiple-class
classifier that uses a voting strategy to aggregate the classifica-
tion results of binary classifiers, that separate phoneme
classes. This classifier works by assigning a vote to the winning
class for every comparison being made and classifying the input
datum as belonging to the class that gets the most votes- in case
of ties each class gets half a vote.
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TABLE II
CLASSIFICATION RATES FOR VARIOUS CLASS COMBINATIONS

The classifier used to perform binary comparisons was an Ad-
aBoost classifier [42] using a linear threshold unit as a weak
classifier; AdaBoost classifiers are characterized by their sim-
plicity and good performance, which has made them very pop-
ular in the pattern recognition community. We used 50 itera-
tions of the boosting procedure, using as a training set 80% of
the available data, chose the classifier based on a validation set
equal to 10% of the data and the performance of the classifier
was evaluated on the rest 10% of the data. This was repeated for
30 permutations of the data to ensure the validity of the results.

Some classification results for various combinations of
classes are shown in Table II for: (a) The first three LEs, esti-
mated using a TSK-1 model, (b) The 16 first Mel-Frequency
Cepstrum coefficients (MFCCs) (c) The combination of the
two. We first observe that in almost all cases, the results are
significantly better than where is the number of classes,
which would correspond to the random choice of one class.
However, there can be no distinction, e.g., between vowels,
considered as a unique class and semi-vowels based on their
LEs, since as mentioned previously they are very similar.
Using a nonparametric statistical test (Wilcoxon Matched-Pairs
Signed-Ranks) the hypothesis was rejected with
a significance level for all of the class comparisons
presented here, except for the comparison vowels/semi-vowels.
The MFCC results are better than those achieved using solely
LEs, however by combining both we sometimes achieve an
increase in the correct classification rate. In this case, however,
the upward trend of the means cannot lead to clear conclu-
sions, due to the relatively high variance in the estimates. The
significance tests reject the hypothesis with a significance
level higher than .4 in all cases. Adding LEs to MFCCs for
class comparisons where LEs do not have good performance
on their own results in a decrease in the correct classification
rate, as, e.g., for the comparison between vowels and unvoiced
stops. It is worth noting finally that when no validation with the
inverse exponents was used at a preprocessing stage, the results
deteriorated.

Even though the results presented here are somehow limited
(e.g., no speaker dependency of the results is examined), they
testify first of all that the LEs estimated by our model are mean-
ingful and correlated with the class of the phoneme they came
from. Further, they offer a promising research direction, toward
the incorporation of LEs in speech recognition tasks [41], [43].

C. Prediction of Speech Signals

The LPC model, which is most commonly used for
speech prediction and coding, can be seen as a very spe-
cial case of a global polynomial: the LPC-model equation,

can be considered as a linear

approximation of the system dynamics , where the data have
been embedded in a -dimensional phase-space with ,
by default. Increasing the complexity of the LPC predictor

can be interpreted as embedding the data in
a higher dimensional space; when is still small this results
in fewer false neighbors (see Section II) and hence more pre-
dictable dynamics, but after a certain embedding dimension,
when the percentage of false neighbors no longer decreases,
there is no actual contribution to the predictability of the system
dynamics.

On the other hand, the approach of approximating the system
dynamics on the attractor is more adaptive to the available
data: we first determine the embedding dimension where all
(or most) false neighbors are eliminated in combination with
a more proper choice of and then construct models that
attempt to approximate with increasing complexity of the pre-
dictor meaning more parameters involved in the approximation
of (rather than embedding the data in higher dimensions).

It could be therefore assumed that by reconstructing the at-
tractor of the system one could learn all of the deterministic
nature of the underlying system and thereby get a lower pre-
diction error than the one attained by the linear model. In the
experiments we performed we observed that this is true, but at
the cost of a larger number of parameters: most of the predictors
presented previously include many parameters, and it is there-
fore expected that they achieve a lower prediction error. In ad-
dition, for the reconstructed state vector

we do not use at all the samples be-
tween and which are usually among
the most informative about . This makes it possible
to embed the system in a low dimensional attractor, but throws
away the most useful points for the prediction of . On
the contrary, the LPC model uses first of all the nearest points
which are the most informative and this results in a very low
MSE with a small number of parameters. It has to be added that
when is the time series of a vowel or a voiced fricative, a
scatter plot of shows that most of the
points lie approximately on a plane, i.e., is approximately
a linear function of and , which is indicative
of the appropriateness of the LPC model for speech coding.

However, when estimating the cross validation error, where
data that have not been presented at the training stage are used
to estimate the performance of the model, nonlinear predictors
like TSK-1 models give consistently better prediction results,
while the LPC model gives large prediction errors whenever a
spike is present. Therefore, our approach could be more appro-
priate than the linear model for tasks demanding an accurate
model of the speech signal, that would not use an error signal to
make up for the prediction error. TSK, RBF and SVM models
allow techniques of machine learning like cross-validation and
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regularization to be applied (see, e.g., work in [18], [20] for reg-
ularization and RBF networks), which allow the construction of
models that are neither susceptible to over-fitting nor too simple
like LPC.

Work in the direction of speech synthesis using nonlinear
models [16]–[21] is based mainly on radial basis function net-
works and local polynomial models, which are used to predict
the future state of the speech production system using the pre-
vious observations. Interesting results have been obtained and
we believe that using some more sophisticated models like the
TSK even better results could be achieved. Our preliminary ex-
periments in this direction are promising and we seek to further
continue research in this direction.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper nonlinear models of the speech production
system have been presented, that are constructed on the re-
constructed attractor of speech signals. These models have
been used for the extraction of features that can help with
the characterization of chaotic systems, namely Lyapunov
Exponents. Experiments with Lyapunov Exponents of various
phoneme classes have shown that they can be useful features
for speech sound classification, proposing a promising area of
future research.

Even though we cannot conclude whether the speech produc-
tion system is chaotic or not using as sole evidence the values
of Lyapunov Exponents, we believe it is promising that in most
of the experiments run the Lyapunov Exponents of most of the
voiced phonemes we experimented with (vowels, glides and
nasals) were estimated to be above zero. Even if the speech pro-
duction system is not chaotic, nonlinear function approximation
models can be useful for the analysis of speech signals and de-
serve further attention.

An interesting future research direction seems to us the in-
troduction of a continuous adaptation procedure to the TSK
models, using the on-line EM algorithm proposed in [40], so
as to facilitate the modeling and analysis of continuous speech
signals. This would allow their incorporation in speech coding,
synthesis or recognition systems, since only small incremental
changes would be necessary for new frames, allowing an effi-
cient computation and transmission of model parameters.
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