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Abstract

We present a probabilistic approach to the discrimina-
tion between textured areas and edges; locally defined prob-
abilistic models are used, which model textured areas as si-
nusoidal and edges as phase-congruent signals. We build
a link with energy-based feature detection and propose a
simple approach to the discrimination between these two
classes. This facilitates the selective use of texture/edge
features for edge detection and image segmentation appli-
cations. Our experimental results demonstrate the applica-
bility of our method on natural images.

1. Introduction

Two of the best studied computer vision problems are
texture analysis and edge detection; their applications to
a broad range of vision areas make them fundamental el-
ements of any front-end vision system. A standard process-
ing stage for both problems is filtering with band-bass fil-
terbanks, which is inspired by the structure of the human
visual system and aims at providing a representation of the
input image that is better suited for these tasks than the raw
intensity values. Specifically, for edge detection one ex-
pects the filtered signal to indicate potential object borders,
while for texture analysis one wishes to derive well behaved
signals, capturing information about local image structure
while lending themselves to other tasks, like shape-from-
texture or segmentation.

The filters used for these two distinct tasks have similar
frequency response characteristics, or are even identical and
can easily confuse textured areas with edges; this results on
the one one hand in false edge positives on textured areas
and strong texture features along edges. Some recent ap-
proaches related to this problem include [5, 13], where it
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is attempted to automatically determine which areas in the
image are textured. Herein we extend our previous work
in [9] and present a common framework for modeling tex-
ture, edge and smooth areas that deals with the problem
in a simple and efficient manner. We use a set of models
that quantize the possible appearance variations of an im-
age neighborhood and use a probabilistic criterion to decide
which of these best describes the image in this neighbor-
hood. Formulating this procedure as an M-ary hypothesis
detection problem [18, 7] results in a soft assignment of a
texture/edge/smooth tag to each image pixel.

The discrimination between texture and edges is evalu-
ated on a small edge detection task using the Berkeley im-
age database; we have also integrated our results with the
Dominant Components Analysis (DCA) [6] algorithm for
texture analysis, that entails a related channel selection pro-
cedure. Segmentation experiments using the fused features
are shown, giving promising results.

2. Quadrature Filter Pairs and Local Energy-
Based Feature Detection

A quadrature pair of filters consists of one even- and one
odd-symmetric filter,he, ho, that have zero mean and have
identical Fourier spectrum magnitude. The use of QFPs is
a popular method in edge detection applications for simul-
taneously detecting and localizing both step- and line- like
edges [15, 16, 1]. Their application relies on the observa-
tion that we perceive edges at areas which can be locally
modelled as a sum ofphase congruent[15] sinusoidals:

O(x) ' IE(x) = A
∑

k

ak cos(ω0kx + φ) + B. (1)

Above and in all of the following, we use the following no-
tation: O is the observed signal,IM is its approximation
using the modelM (in the case above,E for edges),ω0

is the fundamental frequency of the Fourier series,φ is a
phase offset which is common for all harmonic components
andB is a constant term (DC). The approximation holds



around pointx = 0, where the feature related to the model
is perceived. Since we do not deal with 2-D features like
junctions and corners, the following analysis uses the 1-D
profiles of the features along the orientation of their varia-
tion.

The model of Eqn. (1) captures both line- and step- like
edges (φ = 0, π/2 respectively) and we shall use it in what
follows for edges. QFPs fit ideally with it, since they can
provide aphase invariantquantity: thelocal energymea-
surementLE(x) = (he ∗O)2 + (ho ∗O)2, estimated using
any QFP will not depend onφ, so this quantity will respond
in the same manner to all signals of the form of Eqn. (1). We
note that the signal defined by Eqn. (1) is periodic, but the
spatial support of the QFPs is chosen to be small enough
to take into account less than one half of the signal’s pe-
riod, where it behaves like a typical edge signal; examples
of QFPs used for edge detection can be found in [15, 16, 1].

The odd and even parts of complex Gabor wavelets,
which are ubiquitous in texture analysis algorithms [2, 3, 6]
act like a QFP, with the sole difference that the even fil-
ter has a non-zero DC component; references to methods
facing this problem can be found in [1]. In a manner anal-
ogous to edge detection, the energy of this QFP offers a
phase-invariant quantity that can be used as a local measure
of the signal spectrum energy around the peak frequency of
the Gabor filters. A simple model for texture (T ) that we
have shown in [9] to underlie the use of Gabor filters is that
of a locally sinusoidal signal:

O(x) ' IT (x) = A cos(ω0x + φ) + B. (2)

This is among the simplest and most tractable texture mod-
els; it lies at the heart of more complicated ones, like the
multicomponent AM-FM models [6] that can accurately re-
produce complex texture patterns. Contrary to Eqn. (1),
Eqn. (2) models signals that are better localized in fre-
quency, i.e. smoothly varying sinusoidals; another differ-
ence is that the support of the related Gabor QFP typically
allows for several oscillations of the harmonic component,
thereby rendering their outputs better tuned to periodic sig-
nals than isolated intensity variations.

Smooth (S) regions are modelled as constant signals:

O(x) ' IS(x) = B. (3)

This model complements the previous two and reduces the
credibility of texture features at smooth image areas.

3 Detection Theoretic Formulation of Local
Energy Feature Detection

In what follows we assume that images can belocally
described adequately in terms of one of the models of Eqns.
(1)-(3), and derive expressions for their probabilities using
local energies estimated by corresponding QFPs.

3.1 Generative Model

Our approach is based on the use of generative mod-
els, i.e. probabilistic models with a small set of pa-
rameters which can be used to reproduce the image ob-
servations: each modelM uses aK dimensional basis
BM to approximate the appearance of the observationsO
around the pointx = 0, giving the model-based predic-
tion IM (x;AM ) =

∑K
i=1 AiBM,i(x); the expansion co-

efficientsAM = {A1, . . . , AK} constitute the parameter
set of the model, while differences between the synthesized
and observed signals are accounted for by a noise process.
When a set of hypothesesH = {H1, H2, . . . HN} com-
pete to explain the same observations in terms of alternative
generative models, the decision among one of them can be
formulated as a Generalized Likelihood Ratio Test (GLRT)
decision process [18, 7]: the ML parameter set estimateÂi

for each hypothesisi is inserted into the likelihood expres-
sions, giving rise to posterior expressions using Bayes’ rule:

P (Hi|O) =
P (O|Âi,Hi)∑

Hj∈H P (O|Âj ,Hj)
. (4)

Probability expressions related to the models of Eqns.
(1)-(3) can be derived using the generative model intro-
duced in [9], where it was used to label image pixels as
being either textured or smooth; herein we show that this
approach carries over directly to edge features. The model
we use incorporates the locality of the decision process us-
ing a confidence value,G(x) associated with the predic-
tions at pointx. The quantityG(x) decreases with the dis-
tance from the pointx = 0, and a background hypothesis
is introduced to account for the appearance variation away
from it. This can be formalized by the introduction of a
binary random variablezx which indicates whether the ob-
servation at pointx is due to the fore- or background hy-
pothesis; what we previously described amounts to setting
P (zx = 1|x) = G(x). Assuming independent noise and
taking the background model to be a uniform distribution,
the likelihood of the observationO(x) at pointx under hy-
pothesisi writes:

P (O(x)|x, i) =
∑

zx={0,1}
P (O(x), zx|x, i)

=
∑

zx={0,1}
P (O(x)|zx, x, i)P (zx|x, i)

= G(x)
∫

A
Pi(O(x)|Ii(x;Ai))dP (Ai)

︸ ︷︷ ︸
zx=1

+(1−G(x))c︸ ︷︷ ︸
zx=0

. (5)

Pi expresses how likely observationO(x) is given the syn-
thesis of hypothesisi, Ii(x;Ai) at point x, while c is a
constant likelihood term assigned to any observation from



the background distribution. We have usedP (zx|x, i) =
P (zx|x) = G(x) since we assume that the spatial decay
of our confidence in the hypothesis prediction is common
for all three models. Using the independence of the noise
process we can write:

log P (O|i) =
∑

x

log P (O(x)|x, i). (6)

To obtain tractable expressions we bring the summation
used forP (O(x)|x, i) in Eqn. (5) outside the logarithm; we
use the concavity of thelog function and apply Jensen’s in-
equality to derive the following lower bound onlog P :

LB(O|i) =
∑

x

G(x) log Pi(O(x)|x, i)+
∑

x

(1−G(x)) log c,

where for brevity we have replaced the integral in Eqn. (5)
with the expressionPi(O(x)|x, i). In what follows we shall
use this lower bound instead of the original expression for
the data likelihood; even though it is not guaranteed to be-
have in the same manner aslog P , it is indicative of its be-
havior. Another approximation is that we consider the in-
tegral overA as approximately equal to the value of the
integrated function at the ML estimate,̂A:

∑
x

G(x) log Pi(O(x)|x, i) '
∑

x

G(x) log Pi(O(x)|Ii(x; Âi))

whereÂ is now chosen to maximize the lower bound in-
stead of the original likelihood expression.

This model is different from those used by other authors
[12, 5], in that there is a built-in ‘mixture modeling’ aspect
in Eqn. (5) accounting for the locality of the modeling pro-
cess. In [12, 5] all the reconstruction errors are given equal
weight, soLB(O|i) =

∑
x log P (O(x)|x, i); the goal in

that case is to accurately reconstruct the whole image using
local features, while in our case it is to model the image in
the neighborhood around point0.

In the case of independent Gaussian noise with devia-
tion σ, the expression forlog Pi(O(x)|Ii(x;Ai)) becomes

− (Ii(x;Ai)−O(x))2

2σ2 − log
√

2πσ so that we can write for a
fixed set of parametersA

LB(O|i;A) = −
∑

x

G(x)
(Ii(x;A)−O(x))2

2σ2

−
∑

x

G(x) log
√

2πσ + c′, (7)

wherec′ =
∑

x(1−G(x)) log c. Given that the confidence
functionG(x) has the same shape for all three models, the
lower bound expressions are commensurate for different hy-
potheses.

Our feature models fit naturally in this framework; for
example expanding Eqn. (1) gives

I(x;AE) = AeBE,e(x) + AoBE,o(x) + AdBE,d(x) (8)

which expresses the synthesis of the edge model as an
expansion on a linear basis formed from an even, an
odd and a DC signal; in the expression aboveAe =
A cos(φ), Ao = −A sin(φ), Ad = B and the basis
elements are the signalsBE,e(x) =

∑N
k=1 ak cos(ω0kx),

BE,o(x) =
∑N

k=1 ak sin(ω0kx) andBE,d(x) = 1. Sim-
ilarly we get a 3-D basis for the sinusoidal case while for
the smooth case we have a 1-D basis; apart from the spa-
tially varying confidence measureG(x) this is the typical
linear model used in detection theory [7]. In the following
we drop the model index from the basis expressions, un-
less necessary, since the treatment is common for all three
models.

3.2 Local Energy & Observation Likelihood

Using Eqn. (8) the maximization of Eqn. (7) with re-
spect to {A,φ, B} can be interpreted as theweighted
least squares projectionof O onto a linear basis
Be(x),Bo(x),Bd(x), with weights equal toG(x); A,φ can
then be expressed asA =

√
A2

e + A2
o, φ = tan−1−Ae

Ao
.

For the case where
∑

x G(x)Be(x) = 0, the maximum
likelihood condition for each expansion coefficientAb does
not involve the rest and we have:

∂LB

∂Ab

∣∣∣∣
Ab=Âb

= 0 → Âb =
GBb ·O
GBb · Bb

. (9)

The notationGB·O stands for
∑

x G(x)B(x)O(x); The es-
timation ofÂb can thus be implemented using filtering with
G(x)Bb(x), followed by normalization; in general we can
show that filtering operations with QFPs can be used to de-
rive the parameter set̂A that maximizes Eqn. (7) for each of
the three models. Specifically, whenGBi · Bj 6= 0 for some
i 6= j, the estimates can be derived by adopting to our case
the technique of normalized differential convolution [8, 19],
which is used for projecting data with unknown certainty on
bases with varying applicability. In our scenario the basis
elements are the even/odd and DC signals of the generative
models, the data certainty is equal to 1 wherever we have
an observation, and the basis applicability is equal toG(x).
The equivalence with weighted least squares projection is
detailed in [19].

Before proceeding, we clarify what these expressions
imply, using the texture model as example:IT (x) =
A cos(ω0x + φ) + B. In this caseBT,e and BT,o con-
stitute a sine/cosine pair, and modelingO(x) in terms of
IT (x) amounts to estimating the values ofA, φ for which
Eqn. (2) best fitsO(x) locally. AssumingG has the form
of a Gaussian and ignoring any DC term, estimatingÂe and
Âo as in Eqn. (9) amounts to convolving the signal with
even and odd Gabor filters. We can thus interpret convolv-
ing with a Gabor filter as calculatingthe optimal weighted
projection of an image neighborhood onto a sinusoidal ba-
sis. Along the same line, we can view filtering with QFPs



for edge detection as estimating the optimal weighted pro-
jection of the image neighborhood onto the edge-function
basis,BE,e,BE,o; at last, the output of convolving with a
Gaussian function can be seen as an optimal weighted pro-
jection of the observed image data on the basis element1.

If
∑

x G(x)Be(x) = 0, one can show that:

−
∑

x

G(x)

(
O(x)−

∑

b

ÂbBb

)2

=

−
∑

x

G(x)O(x)2 +
∑

b

Âb
2 ∑

x

G(x)Bb(x)2.

Normalizing the basis elements so that
∑

x G(x)Bb(x)2 =∑
x G(x) and considering all other terms in Eqn. (7) as con-

stant, the lower bound can be written as a function linearly

increasing with
∑

b Âb
2
:

LB =
∑

x G(x)
2σ2

∑

b

Â2
b + c′′. (10)

The quantity c′′ is determined by
∑

x G(x)I(x)2,∑
x G(x), σ and c′, which are the same for all

three models. For both the texture and edge mod-
els, in the case of zero mean signals the quan-
tity LBi =

∑
x G(x)/2σ2

∑
b∈{e,o}A2

i,b, i ∈ {T,E} is
a scaled version of the local energy derived from filtering
with the QFPs used for estimating the ML estimates. For
the sinusoidal case these are Gabor filters and for the edge
detection case these are equal with the basis elements mul-
tiplied byG(x). This establishes the link between the local
energy measurements and the log-likelihood of the data us-
ing the generative models presented in the beginning of this
section.

Using the expression in Eqn. (10) instead of the log-
likelihoods the posterior probability of hypothesisi writes:

P (i|O) =
exp(cM

∑
b Â2

i,b)∑
j∈E,T,S exp(cM

∑
b Â2

j,b)
, cM =

∑
x G(x)
2σ2

An intricacy concerns the smooth hypothesis model, which
uses less parameters and is therefore bound to perform
worse than the other two models. We therefore introduce
an MDL-like term in Eqn. (10), which favors it in the ab-
sence of strong variations in the image, soexp(LBS) =
cMDL exp(cMA2

S,d); cMDL is allowed to vary according to
how easily we want to label a pixel as non-smooth.

3.3 Multiple Scales

Up to now we have implicitly assumed that all three
models attempt to explain a neighborhood of the image at a
fixed scale; as we pass from one scale to another the deci-
sion made may change. For example the neighborhood of a

point on the crest of a slowly varying sinusoid may be con-
sidered smooth at a fine scale, and as texture at a larger one;
at the large scale the data have a larger amount of energy,
which is explained by the texture hypothesis, while at the
small scale the MDL criterion forces a simpler explanation.

A problem that emerges is that the likelihood terms in-
clude a summation over a varying number of observations,
so the model-based likelihood terms as well as the residual
quantitiesc′′ render the expressions at multiple scales in-
commensurate. We therefore apply the scale normalization
principle of [11] and derive an expression that is invariant
to a scaling operation on the data domain, by dividing the
expressions with a quantity proportional to

∑
x G(x). The

proportionality factor can be adjusted in order to determine
the crispness of the decision.

3.4 Brownian Noise & Teager Energy

Another assumption made throughout the previous anal-
ysis was that the error between the model prediction and
the observed signal can be modelled as white Gaussian
noise (WGN). For correlated noise the parameter estima-
tion formulae involve diagonalizing the noise covariance
matrix and become fairly complicated [18, 7]; for the spe-
cial case of Brownian motion, however, one can work on
the derivative of the observations which can be modelled in
terms of the derivatives of the basis elements plus WGN.
Specifically, for modelIT which includes a single sinu-
soid of frequencyω0, this amounts to projecting the dif-
ferentiated signalO′ on the differentiated basis elements,
B′T,o = ω0BT,e(x) andB′T,e = −ω0BT,o; normalization
leads to the omission of the multiplicativeω0 factors, so the
estimated amplitudeA′ for the differentiated signal equals

A′ =
√

(O′ ∗GBT,e)2 + (O′ ∗GBT,o)2

=
√

(O ∗GB′T,e)2 + (O ∗GB′T,o)2

= ω0

√
(O ∗GBT,o)2 + (O ∗GBT,e)2 = ω0A.

Iterating the previous analysis, the data likelihood under the
textured signal hypothesis can be expressed in terms of the
quantity (A′)2 = ω2

0A2, whereA is the amplitude esti-
mate for the non-differentiated signal. The quantityω2

0A2

equals theTeager Energyof the sinusoidal, which we have
found empirically in [9] to give better results for DCA [6]
in the channel selection procedure than the typically used
amplitude-based criterion. The above approach justifies its
use in a probabilistic setting, and has allowed its integra-
tion with the pure amplitude-based selection criterion; de-
tails will be given in a larger version of this paper.
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(g) (h) (i) (j) (k) (l)
Figure 1. Discrimination of textured areas from edges. Top row: (a) Input image, (b) texture and (c) edge model amplitude
estimates, respectively and model-based probabilities of (d) smooth, (e) textured and (f) edge regions respectively. Bottom row:
(g)/(j) Input images and posterior probabilities of (h)/(k) texture and (i)/(l) edge models respectively.

4 Experimental Results

For all the results presented in this section, we have used
a Gabor filterbank consisting of 40 isotropical filters at 10
orientations and 4 scales logarithmically placed on the fre-
quency domain; the spread of the Gaussian is set equal to
the half of the modulating sinusoid’s period. For each Gabor
filter a corresponding edge detection QFP has been used,
detecting a phase congruent signal of the form of Eqn. (1).
The Fourier series coefficients in Eqn. (1) have been set
equal to those of a periodic square wave, whose period is
four times that of the sinusoid used for the texture model.
The confidence functionG(x) for the edge-detection QFP
and the DC model is taken to be equal to the Gaussian of the
Gabor filter, thereby rendering the energy measurements di-
rectly comparable.

The proposed approach has been applied on a variety of
natural images like those of Fig. 1 giving plausible results.
In these images the probability of an edge is typically higher
along the borders of objects, while at textured regions the
probability of an edge is lower than what would be indicated
by a direct application of an edge detection filter. We also
observe that along the borders of objects there is a decrease
in the probability of texture, since the edge model explains
away the intensity variation.

4.1 Edge Detection

Using our model we can provide an edge detection al-
gorithm with a confidence measure in any measured edge
characteristic. In order to verify this we performed a small-
scale test on the benchmark of [14], where ground-truth data
are available. The output of the QFP used for edge detection
was multiplied with the posterior probability of an edge,
calculated according to our model; as can be seen in Fig. 2,
this helps suppress edges at textured areas, while keeping
most true edges intact. Quantitative results on the test set

(100 images) are also provided, showing a systematic im-
provement in detection performance.
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Figure 2. Edge detection results using oriented energy
(top row) and after gating with the probability of edge (bot-
tom row). In the last column comparative results on the
Berkeley test set [14] are shown: False alarms are system-
atically eliminated, yielding higher precision values at the
same recall rates.

4.2 Texture Segmentation

We can combine these ideas with the Dominant Compo-
nents Analysis (DCA) [6] model for texture analysis which
provides useful features for the segmentation of textured
images [17, 10, 4]. This model picks at each image pixel
the output of the strongest amongst a set of narrow-band
filters, demodulates its output and uses the estimated AM-
FM signals as texture features; we can view this as initially
modeling the image in terms of Eqn. (2), and subsequently
refining the estimated amplitude and frequency measure-
ments. This model can capture a large part of the image



variation of textured images; due to lack of space, the inter-
ested reader is referred to [6, 9] for details on the feature ex-
traction algorithms related to this model and [17, 10, 4] for
results in unsupervised texture image segmentation. Even
though this model gives informative features on textured ar-
eas, on smooth regions they are meaningless: for example
the texture orientation signal used in [17, 10] is an infor-
mative texture cue but behaves erratically on smooth re-
gions. Further, the amplitude estimates are high wherever
edges appear, preventing the segmentation process from ac-
curately detecting the object borders.

The posterior probabilities assigned to each hypothesis
can be used to improve feature-based segmentation algo-
rithms, by taking into account the confidence associated
with each feature. In our case we have modified the Re-
gion Competition [20] curve evolution algorithm we used
in [9] as follows: in the original algorithm, the boundary of
regioni evolves according to equation

∂Ci

∂t
= Ni log

Pi(F )
Pj(F )

−Niκi, (11)

whereF is the set of features used to drive the segmenta-
tion process,κi is the front’s curvature,Ni is the front’s
outward normal vector,Pi is the probability distribution for
the features inside regioni andPj is that of the competing
neighboring region,j. This evolution equation drives each
regioni to the data that it can best model, according to its
distribution,Pi. Using the model posterior probabilities, we
modify this evolution law by taking into account the confi-
dence in the features of each hypothesisi as follows [4]:

∂Ci

∂t
= Ni

∑

h∈H

wh log
Ph,i(Fh)
Ph,j(Fh)

−Niκi, (12)

wherewh is weight associated with hypothesisi. Accord-
ing to this evolution law, each region entertains simultane-
ously two distributions, one for the textured and one for the
non-textured (e.g. intensity) features. Whenever the tex-
ture hypothesis prevails, its features can be used to drive the
region competition process and vice versa. This modified
evolution equation is extensively presented and justified in
[4], where further results and a quantitative evaluation of its
merits can be found. In Fig. 3 we show indicative results
comparing the original and the modified evolution equa-
tions; in all cases, the fused features give better segmen-
tations, with the segment borders accurately locating the
object borders, where the texture features are suppressed.

5 Conclusion

In this work we have presented how simple generative
models can discriminate between broad types of features,
texture and edges. Our experimental results demonstrate
its applicability to a wide variety of natural images, where

Figure 3. Segmentation results using the original (left)
and the modified (right) evolution equation.

it can be used to offer a confidence estimate on the fea-
tures used for subsequent tasks, like texture segmentation
and edge detection.
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