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Abstract. This paper presents a biologically motivated model for low
and mid-level vision tasks and its interpretation in computer vision terms.
Initially we briefly present the biologically plausible model of image seg-
mentation developed by Stephen Grossberg and his collaborators dur-
ing the last two decades, that has served as the backbone of many re-
searchers’ work. Subsequently we describe a novel version of this model
with a simpler architecture but superior performance to the original sys-
tem using nonlinear recurrent neural dynamics. This model integrates
multi-scale contour, surface and saliency information in an efficient way,
and results in smooth surfaces and thin edge maps, without posterior
edge thinning or some sophisticated thresholding process. When applied
to both synthetic and true images it gives satisfactory results, favorably
comparable to those of classical computer vision algorithms. Analogies
between the functions performed by this system and commonly used
techniques for low- and mid-level computer vision tasks are presented.
Further, by interpreting the network as minimizing a cost functional,
links with the variational approach to computer vision are established.

1 Introduction

A considerable part of the research in the computer vision community has been
devoted to the problems of low and mid level vision; even though these may
seem to be a trivial task for humans, they are intrinsically difficult and the
human visual system still outperforms by far the state-of-the-art. Therefore, its
mechanisms could serve as a pool of ideas for computer vision research.

In this paper we propose a biologically motivated system for edge detection
and image smoothing, apply it to real and synthetic systems, and explain it in
computer vision terms. Our starting point is the system developed by Stephen
Grossberg and his collaborators through a series of papers, which can be seen
as the backbone for many researchers’ models, e.g.[19, 22]. While keeping the
philosophy of the model intact, we propose using less processing stages and re-
current neural dynamics, resulting in a simpler yet more efficient model. Further,
by building upon previous work on the connections between neural networks and
variational techniques, we interpret the network model in variational terms.
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Is section 2 we shall briefly present the architecture proposed by S. Grossberg
and his collaborators for mid-level vision tasks, while in section 3 we shall propose
our model, that uses a simpler and more efficient version of this architecture. In
section 4 the interpretation of our model in computer vision terms is presented.

2 A Review of the Boundary/Feature Contour Systems

The model proposed by Stephen Grossberg and his collaborators in a series of
papers [10–14], known as the FACADE (Form And Colour and DEpth) theory
of vision is a versatile, biologically plausible model accounting for almost the
whole of low- and mid-level vision, starting from edge detection and ending at
segmentation and binocular vision (see references in [31]). Most of the ideas are
intuitively appealing and relatively straightforward; however, as a whole, the
system becomes complicated, in terms of both analysis and functionality. This is
natural, though, for any model of something as complicated as our visual system;
the model’s ability to explain a plethora of psychophysical phenomena [11, 31]
in a unified way offers support for its plausibility and motivation for studying it
in depth, trying to relate and compare it with computer vision techniques.

We have implemented the two essential components of the FACADE model,
namely the Boundary Contour System (B.C.S.) and the Feature Contour System
(F.C.S.). The B.C.S. detects and amplifies the coherent contours in the image,
and sends their locations to the F.C.S.; subsequently, the F.C.S. diffuses its
image-derived input apart from the areas where there is input from the B.C.S.,
signaling the existence of an edge; see Fig. 1(a) for a ‘road map’ of the system.

An Ordinary Differential Equation (ODE) commonly used by S. Grossberg
to determine the inner state V of a neuron as a function of its excitatory (E)
and inhibitory (I) input is:

dV

dt
= −AV + (C − V )E − (D + V )I, E =

N∑
n=1

we
nUn, I =

N∑
n=1

wi
nUn (1)

where A is a passive decay term modeling the leakage conductance of a neuron;
C and −D are the maximal and minimal attainable values of V respectively; Un

are the outputs of neurons 1, . . . , N ; w
{e,i}
n are the excitatory/inhibitory synap-

tic weights between neuron n and the current neuron. The inner state V of the
neuron is related to its output -a mean firing rate- U by a sigmoidal function; a
reasonable choice is U = G(V ) = 1/(1+ exp(−β(V − 1/2)) so that for V = 0 we
have a low output U . Equation (1) is closer to the neural mechanisms of exci-
tation and inhibition than the common ‘weighted sum of inputs’ model and can
account for divisive normalization and contrast invariance [3], which are helpful
in visual processing tasks.
The Boundary Contour System
The outputs of cells in the B.C.S. are calculated as the rectified steady-state
outputs of (1), so that all one needs to define are the excitatory and inhibitory
inputs; the processing stages used in the B.C.S. can be summarized as follows:
Stage I Contrast Detection: This stage models retinal cells, which exist in two
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Fig. 1. (a) A block diagram of the B.C.S./F.C.S. architecture. (b) corresponding areas
in the visual system (c) The shape of the lobes used for saliency detection in the
horizontal direction, at stage VI. The ‘needle’ lengths are proportional to the weight
assigned to each edge element in the corresponding direction and location

varieties: one that responds to a bright spot surrounded by dark background,
On/Off cells, and another that responds to the a dark spot on a bright back-
ground, Off/On cells. The excitatory input to an On/Off cell is modeled by
convolving the input image F with a Gaussian filter of spread σ1 and the in-
hibitory input is modeled by convolving with a Gaussian filter of spread σ2 < σ1;
the roles of excitatory and inhibitory terms are swapped for Off/On cells.
Stage II Elementary Feature Detection: This is the function accomplished by
simple cells in cortex area V1; their function is modeled by assuming each cell’s
excitatory/inhibitory input equals the convolution of the previous stage’s out-
puts with a spatially offset and elongated Gaussian, with principal axis along
their preferred orientation. Specific values used for the centers and spreads of
this stage can be found in [31, 14]. Given that there can be only positive cells
responses, two varieties of cells are needed at this stage, one responding to in-
crease and another to decrease in activation along their direction.
Stage III Cue Integration: At this stage, the outputs of simple cells responding
to increases and decreases in image intensity are added to model complex cells,
which are known to respond equally well to both changes. If color and/or depth
information is used as well, this is where edge fusion should take place, based on
biological evidence.
Stage IV Spatial Competition: The outputs of the previous stage are ‘thinned’
separately for each feature map, using Gaussian filters of different spreads to
excite and inhibit each cell. The convolution of the complex cells’ outputs with
a Gaussian of large spread (resp. small spread) is used as an inhibitory (resp.
excitatory) input. A novel term that comes into play is the feedback term from
Stage VI, which drives the competition process towards globally salient contours;
this results in a modified version of equation (1), where the constant feedback
term is added to the competition process.
Stage V Orientational Competition: This time the competition takes place
among neurons with the same position but different orientations; the goal is
to derive an unambiguous edge map, where there can be only one tangent di-
rection for a curve passing through a point. The excitatory input to a cell is
the activation of the Stage IV cell at the same location and orientation, while
its inhibitory input comes from Stage IV cells with different orientations; the
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inhibitory weights depend on the angles between the orientations, becoming
maximal for perpendicular orientations and minimal for almost parallel.
Stage VI Edge Linking, Saliency Detection: This is where illusory contours
emerge; each neuron pools evidence from its neighborhood in favor of a curve
passing through it with tangent parallel to its preferred orientation θ, using
connections shown schematically in Fig. 1(c); mathematical expressions can be
found in [14, 31]. The output of a neuron at this stage is positive only when both
of its lobes are activated, which prevents the extension of a line beyond its ac-
tual end. The output is sent to stage IV, thus resulting in a recurrent procedure,
which detects and enhances smooth contours.

The Feature Contour System

This is the complementary system to the B.C.S., where continuous brightness
maps are formed, leading to the perception of surfaces. The image related input
to this system is the output of the On/Off-Off/On cells of stage I; the formation
of continuous percepts is accomplished by a process that diffuses the activities
of the neurons, apart from locations where there is a B.C.S. signal, keeping the
activities of neurons on the sides of an edge distinct. Specifically, the equations
used to determine the activations of neurons s(i, j) corresponding to On/Off or
Off/On input signals, are:

d
dt

s(i, j) = −As(i, j) + X(i, j) +
∑

(p,q)∈N{i,j}

(s(p, q)− s(i, j))P(p,q),(i,j) (2)

where X(i, j) is the steady-state output of Stage I (On/Off-Off/On cells) and
N{i,j} = {(i− 1, j), (i + 1, j), (i, j − 1), (i, j + 1)}. P(p,q),(i,j) is a decreasing func-
tion of the edge strength between pixels (i, j), (p, q), which is computed using the
steady state values of the B.C.S. stage V neurons. Physiological aspects of the
mechanisms underlying the computation performed at this stage are discussed
in [10], ch I, §24-26. Solving this system of ODEs with initial conditions the
values of the On/Off- Off/On cells accomplishes the anisotropic diffusion of the
On/Off cells activations, where the B.C.S. outputs determine where the diffusion
becomes anisotropic; the perceived surfaces are modeled as the differences of the
two steady-state solutions. According to the B.C.S./F.C.S. model, the perceived
edges are at the points of intensity variation of the converged F.C.S. outputs.

3 A Simple and Efficient Biologically Plausible Model

In our implementations of the above stages we faced many problems: because
so many parameters and interdependent stages are involved, the whole system
becomes hard to tame; despite all our efforts, it was not possible to achieve a
consistent behavior even for a limited variety of images. Since our first goal was
to compare this system with some commonly used techniques for computer vi-
sion, and to see whether we can achieve an improved performance, we decided
to simplify some of its stages, while keeping as close as possible to the original
architecture. Apart from the complexity and efficiency problems, most of our
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Fig. 2. (a) The architecture of the new model (b) Relative positions of neurons and
(c) Shape of lateral connections between neurons of the same orientation

changes were inspired by the research experience accumulated among the com-
puter vision community, which can be summarized as follows: (i) Edge thinning
(stages IV-V) is an inherently recurrent process and not a feedforward one. The
recurrent feedback term used in stage IV does not significantly help thin edges,
even though it does help create new ones; recurrence should be used within each
layer, using lateral connections among the neurons.(ii) The F.C.S. should be let
to interact with the B.C.S., since the finally perceived edges are derived from
the F.C.S.; therefore, it should play a role in the contour formation process, en-
hancing the more visible contours and exploiting region-based information. (iii)
Results from coarse scales should be used to drive the edge detection process
at finer scales. In the original B.C.S./F.C.S. architecture multiple scale results
were simply added after convergence.

The model we propose, shown schematically in Fig. 2(a), is similar to the
model of vision proposed by S. Grossberg, but is simpler and more efficient from
a computational point of view. The architecture is similar to that proposed in
[19], which, however, did not include a high level edge grouping process and a
bottom up edge detection process, while the system was focused on texture seg-
mentation. Our model performs both contour detection and image smoothing so
it is different from other biologically plausible models like [22, 20, 16] that deal
exclusively with boundary processing. We now describe in detail our model:
Stage I’: Feature Extraction, Normalization. The first two stages (contrast &
feature detection) of the B.C.S. are merged into one, using the biologically plau-
sible Gabor filterbank [6] described in [19]; this filterbank includes zero-mean
odd-symmetric filters while the parameters of the filters are chosen to comply
with measurements of simple cell receptive fields. If we ignore the normalization
and rectification introduced by (1), the cascade of the first two stages of the
B.C.S. can be shown to be similar to filtering with a Gabor filterbank [31]. To
account for divisive normalization, we used the mechanism of shunting inhibi-
tion, as in [3], where the feedforward input to each cell is determined from the
beginning using a convolution with a Gabor filter, while the shunting term is
dynamically changing, based on the activations of neighboring cells. The terms
contributing to the shunting inhibition of neuron (i, j) are weighted with a Gaus-
sian filter with spread equal to that of the Gabor filters; contributions from dif-
ferent orientations than θ are given equal weights, so that the equation driving
the activity of a simple cell becomes:
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dV θ,σ
{o,e}
dt

= −AV θ,σ
{o,e} + (C − V θ,σ

{o,e})[F ∗ Ψθ,σ
{o,e}]− V θ,σ

{o,e}
∑

θ,o,e

Gσ ∗ Uθ,σ
{o,e} (3)

where Ψθ,σ
{o,e} are odd/even symmetric filters, with orientation preference θ at

scale σ as in [19], while Uθ,σ
{o,e} = max(V θ,σ

{o,e}, 0) are the time varying outputs
of odd/even cells. For biological plausibility, we separate positive and negative
simple cell responses, and perform the normalization process in parallel for each
‘half’, with the other half contributing to the shunting term; none of this appears
in the above equations, for the sake of notational clarity.
Stage II’: Edge Thinning, Contour Formation. At the next stage, an orienta-
tional energy-like term [1, 25] is used as feedforward input:

Eθ,σ =
√

(Uθ,σ
o )2 + (Uθ,σ

e )2 . (4)
The difference lies in that simple cell outputs have already been normalized
before, which results in a contrast invariant edge detector.

Edge sharpening in space and orientation is accomplished simultaneously
with lateral connections among neurons of this stage. Specifically, the form of
the lateral interactions among cells of the same orientation is modeled as the dif-
ference between an isotropic Gaussian and an elongated Gaussian whose longer
axis is along the preferred orientation of the cells; this way fat edges are avoided,
allowing a single neuron to be active in its vertical neighborhood, while collinear
neurons support the formation of a contour. For example, for an horizontally ori-
ented neuron located at [i, j] the inhibitory connection strengths with neurons
of the same orientation are (see also Fig.2(c)):

W 0,0
[i,j][k, l] = exp

(
−

{
(i− k)2 + (j − l)2

2σ2
1

})
−b exp

(
−

{
(i− k)2

2σ2
1

+
(j − l)2

2σ2
2

})

(5)
where σ1 > σ2. We use W θ,φ

[i,j][k, l] to express the strength with which the neuron
at [k, l] with orientation φ inhibits the one at [i, j] with orientation θ. The lateral
inhibitory connections among complex cells of different orientational preferences
are determined not only by the spatial but also by the orientational relationship
between two neurons: almost collinear neurons inhibit each other, so that a
single orientation dominates at each point, while perpendicular neurons do not
interact, so that at corners the edge map does not break up. Such interactions
among a neuron located at [i, j] with horizontal orientation and a neuron located
at [k, l] with orientation θ can be expressed as:

W 0,θ
[i,j][k, l] = | cos(θ)| exp

(
−

{
(i− k)2

2σ2
1

+
(j − l)2

2σ2
2

})
(6)

Given that this time the competition process aims at cleaning the edge map,
and not thinning it, we do not choose a specific direction for the Gaussian, so
we set σ1 = σ2. Choosing this particular type of connection weights was based
on simplicity, convenience and performance considerations [31].

Apart from the coarsest scale, the steady state outputs of the immediately
coarser scale, Uθ,σ+1, are used as a constant term that favors the creation of edges
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at specific locations. The feedback term, denoted by T (t), that is calculated at the
following stage, is used throughout the evolution process, facilitating the timely
integration of high-level information. Otherwise, if the system is let to converge
before using the feedback term, it may be driven to a local minimum, so that it
may be hard to drive it out of it. In addition to that, we coupled the evolution of
the curve process with the evolution of the surface process, S; the magnitude of
the directional derivative |∇Sθ⊥ | of the surface process perpendicular to θ helps
the formation of sharp edges at places where the brightness gradient is highest.
If the output of a neuron with potential V θ,σ is Uθ,σ = g(V θ,σ) the evolution
equation for the activation of neuron [i, j] at this stage is written as:

dV θ,σ

dt
= −AV θ,σ + (C − V θ,σ)I − (V θ,σ + D)

∑

θ′

∑

k,l

W θ,θ′

[i,j] [k, l]Uθ′,σ[k, l](7)

where I(t) = [c1E + c2U
θ,σ+1 + c3T (t) + c4|∇Sθ⊥(t)|2] .

The cues determining the excitatory input to the neuron, I, are bottom up - E,
region based - |∇Sθ⊥(t)|, coarse scale -Uθ,σ+1 and top-down -T . The weights,
c1, c2, c3, c4, have been determined empirically [31] so as to strike a balance be-
tween the desire of being able to produce an edge in the absence of bottom-up
input (E) and of keeping close to available bottom-up input.
Stage III’: Salience Computation. This layer’s outputs are calculated as the
product of the two lobes’ responses, which are continuously updated, resulting
in a process that is parallel and continuously cooperating with Stage-II. Even
though it is not clear how multiplication can be performed in a single cell, there
is strong evidence in favor of multiplication being used in mechanisms as gain
modulation; see also [22] for a neural ‘implementation’ of multiplication.
F.C.S. In our model surface formation interacts with boundary formation, keep-
ing the boundaries close to places of high brightness gradient, thereby avoiding
the occasional shifting of edges due to higher level (stage III’) cues, or the break-
ing up of corners, due to orientational competition. The brightness values of the
image were used, instead of the On/Off- Off/On outputs, in order to compare
our algorithm to others. A less important architectural, but significant practi-
cal modification we introduced was that we considered the B.C.S. neurons as
being located between F.C.S. neurons, as in [30], shown also in Fig. 2(b). This
facilitates the exploitation of the oriented line-process neurons by blocking the
diffusion among two pixels only when there is an edge (close to) perpendicular
to the line joining them. More formally, this can be written as

d
dt

S(i, j) =
∑

θ

∇θ⊥S(1− (Uθ)) (8)

where, as in [25] S(i, j) is always the subtracted quantity in∇θ⊥S. The equations
we used were modified to account for the discrete nature of the neighborhoods
and the relative positions of the F.C.S./B.C.S. nodes, but the idea used is the
same: block diffusion only across edges and not along them.
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Experimental Results & Model Evaluation
The results of our model are shown at the finest scale in Fig. 3; for all the
images the same set of parameters has been used, while modifying these by 10%
did not result in significant changes in the system’s performance. We used a small
fraction of the parameters used e.g. in [14]; we did not manage to achieve the
same results using the original B.C.S./F.C.S. model , even when optimising its
parameters for every single image; extensive results and implementation details
can be found in [31]. It should be noted that our model operates at specific
scales, so it may not respond in the same way to stimuli of arbitrary size.

Even though our model compares favorably to Canny edge detection on these
test images, we do not claim that it is superior to the state-of-the-art [4, 7, 25,
27] in edge detection. We consider it more important that the modifications we
introduced resulted in a simpler and efficient biologically plausible model, that
does not largely deviate from the original B.C.S./F.C.S. architecture.

4 Interpreting the Model in Computer Vision Terms

The B.C.S./F.C.S architecture clearly parallels the usage of line and surface
processes by computer vision researchers, see e.g. [2, 9, 30]; it is therefore of in-
terest to interpret the previously described network in computer vision terms.
We start with the line process-related functions of the network and continue
with the function of the network as a whole.
Non-maximum Suppression: Non-maximum suppression is commonly used
for the purpose of deriving a clean and coherent edge map from fuzzy inputs like
the outputs of spatially extended filters. A common technique for nonmaximum
suppression is to take the local maximum of the filter responses in the gradient
direction and set the others to zero, like in [4, 7, 24]; in [2, 9] a penalty term pun-
ishes spatial configurations of broad edges, while in [27] fitting the surface with a
parabola and using the curvature and distance to the peak was proposed. Keep-
ing to biological plausibility, our system implements non-maximum suppression
by an analog winner-take-all type network (7), that continuously suppresses the
activations of less active neurons, allowing the stronger ones to stand out (see
[31] for details).
Perceptual Grouping and the Elastica Prior on Shapes: For the goal of
enhancing perceptually salient contours various techniques have been developed
by computer vision researchers; a similar pattern of pixel interactions as that
shown in Fig. 1(c) is used in the voting technique of [15], in the probabilistic for-
mulations used in [27, 28] edge saliency is propagated among processing nodes,
while in [26] a criterion including the squared integral of the curvature is used for
edge linking. The popular and simple hysteresis thresholding technique used in
[4] can be seen as performing some sort of edge grouping, as well as the penalty
term for line endings used in [2, 9].

In our model the contour linking process is cooperating with the contour
formation process, driving the latter to the more salient edges, while avoiding
using initial hard decisions from an edge detector output. The shape of the
lobes used to perform perceptual grouping, shown in Fig. 1(c) was introduced
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Fig. 3. Results of the proposed model: (a) input (b) orientation energy (c) normalized
energy (d) line process at finest scale (e) thresholded results (f) Canny results with
same number of pixels, σ = 1, T2 = .3, T1 = .03. (g) FCS outputs (h)-(l) same as
(a),(g),(d)-(f) respectively, σ = 3, T2 = .1, T1 = .01 (m)-(o) results for ‘Kanisza figures’.
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by S. Grossberg and is now popular among researchers both in computer vision
and biological vision [8, 15, 20, 22, 23]; this is natural since their shape, which
favors low curvature contours, that occur frequently in our visual environment,
enforces a reasonable prior on the contour formation process.

A very interesting link with the Elastica model of curves [21] is established
in [28] where the shape of the lobes shown in Fig. 1(c) is related to the Elastica
energy function E(Γ ) =

∫
Γ

1 + aκ2(s)ds, where κ is the curvature of the curve
Γ . If a particle starts at [0, 0] with orientation 0 and the probability of its tra-
jectory Γ is P (Γ ) ∼ exp (−E(Γ )), then the probability P (x, y, θ) of the particle
passing through x, y, θ is very similar to the lobes in Fig. 1(c). Loosely speaking,
one could say that the high-level feedback term calculated using the lobes shown
in Fig. 1(a) is related to the posterior probability of a contour passing through
a point, conditioned on its surroundings, using the prior model of Elastica on
curves.
A Variational Perspective: The link between recurrent networks and Lya-
punov functions [5, 17] has been exploited previously [18, 19, 29, 30] to devise
neural networks that could solve variational problems in computer vision; we
take the other direction, searching for a variational interpretation of the model
we propose. Even though based on [5] one can find a Lyapunov function for the
recurrent network described in the previous section, the integrals become messy
and do not help intuition; we therefore consider the simplified version of (7):

dV θ,σ

dt
[i, j] = −AV θ,σ + CI −D

∑

φ

∑

k,l

W θ,φ
[i,j][k, l]Uφ,σ[k, l] (9)

where instead of the synaptic interaction among neurons we use the common
sum-of-inputs model. The main difference is that the absence of the multiplica-
tive terms in the evolution equations leads faster to sharp decisions and hence
more probably to local minima. For simplicity of notation we drop the scale
index, considering every scale separately and treat temporarily the excitatory
input I as constant; a Lyapunov energy of the network is then [31]:

E =
∑

i,j,θ

[A
∫ U

1/2

g−1(u)du− CIU ] + D/2
∑

i,j,θ


Uθ[i, j]

∑

φ,k,l

W θ,φ
[i,j][k, l]Uφ[k, l]




(10)
In the above expression,

∫ U

1/2
g−1(u)du evaluates to [U ln(U) + (1 − U) ln(1 −

U)]/β + 1/2U − 1/4 which consists of an entropy-like term, punishing 0/1 re-
sponses and 1/2U that generally punishes high responses; the first term is due
to using a sigmoid transfer function and the second is due to shifting it by 1/2
to the right. The term −IU lowers the cost of a high value of U , facilitating the
emergence of an edge; among all U of fixed magnitude (

∑
i U(i)2) the one that

minimizes −∑
i UiIi is the one that minimizes

∑
i(U − I)2, thus explaining the

product terms in (10) as enforcing the closeness of U with I, without necessarily
increasing U . The rightmost term in (10) can be expressed as [31]:

C(U) =
∑

i,j,θ

[G∗Uθ]2− b
∑

i,j,θ

[Gθ ∗Uθ(i, j)]2 +
1
2

∑

i,j,φ,θ 6=φ

[
Gφ,θ ∗ Uθ

] [
Gθ,φ ∗ Uφ

]
.



A Biologically Motivated and Computationally Tractable Model 11

The first two terms account for spatial sharpening of the edge map: G is an
elongated Gaussian which is a scaled by

√
2 in space version of the first term in

(5) and can be interpreted as disfavoring broad features like G ∗ Uθ. Gθ is an
elongated Gaussian that is a scaled by

√
2 in space version of the second filter in

(5), so this term guarantees that an isolated in both space and orientation edge
will not get inhibited, due to the other two terms. C(U) thus consists of both a
diffusive term, namely a penalty on G∗Uθ that wipes away broad structures and
a reactive term −Gθ ∗ Uθ that acts in favor of the emergence of isolated edges.
The last term accounts for orientational sharpening and is expressed in terms of
scaled in space copies of the Gaussian filters used for orientational competition.

Putting everything together requires incorporating the interaction with the
surface process; using equation (8) and assuming T θ constant, the expression

E =
∑

i,j,θ

c4(1−Uθ(i, j))|∇θ⊥S|2− Uθ[c1I
θ+ c2T

θ+ c3U
θ
σ+1] +A

∫ U

1/2

g−1(u)du + C(U)

can be shown to be [31] a Lyapunov function of the system, since by differen-
tiating w.r.t S and Uθ we get the evolution equations (8),(9) respectively. This
functional can be seen as a more complex version of that introduced in [2], where
a simple penalty term was used to enforce nonmaximum suppression and contour
continuity to the anisotropic diffusion-derived line process.

5 Discussion

In this paper, motivated by ideas from biological vision, we proposed a simple
and efficient model for low- and mid- level vision tasks which compares favor-
ably to classical computer vision algorithms, using solely neural mechanisms. Its
performance was demonstrated on both synthetical and real images, while its in-
terpretation in computer vision terms has been presented, making the link with
variational techniques. Extending our analysis to the whole FACADE model [11]
of vision seems to be a promising future goal, which could result in a unified,
biologically plausible model of computational mid-level vision.
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