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Abstract. Current state-of-the-art methods in variational image segmentation using level set methods
are able to robustly segment complex textured images in an unsupervised manner. In recent work, [18,
19] we have explored the potential of AM-FM features for driving the unsupervised segmentation of
a wide variety of textured images. Our first contribution in this work is at the feature extraction level,
where we introduce a regularized approach to the demodulation of the AM-FM -modelled signals. By
replacing the cascade of multiband filtering and subsequent differentiation with analytically derived
equivalent filtering operations, increased noise-robustness can be achieved, while discretization problems
in the implementation of the demodulation algorithm are alleviated. Our second contribution is based
on a generative model we have recently proposed [18, 20] that offers a measure related to the local
prominence of a specific class of features, like edges and textures. The introduction of these measures
as weighting terms in the evolution equations facilitates the fusion of different cues in a simple and
efficient manner. Our systematic evaluation on the Berkeley segmentation benchmark demonstrates that
this fusion method offers improved results when compared to our previous work as well as current state-
of-the-art methods.

1 Introduction

The segmentation of textured images is a long standing problem in computer vision that has been addressed
in the framework of variational methods using both boundary- and region-based techniques. The latter are
commonly held as more appropriate for this specific problem due to the increased robustness offered by
region-based criteria and the difficulty of texture boundary localization.

In the region-based scenario, informative features are used to drive the evolution process; image intensity
on its own is a poor cue, since textured images are inherently of varying intensity. Multiband image filtering
with filterbanks is commonly used as a preprocessing step that facilitates the extraction of texture informa-
tion residing at different frequency channels. Even though the outputs of such a filterbank may accurately
describe the texture signal, their high dimensionality can lead to suboptimal segmentations.

In recent work [18, 19, 37] the potential of modulation features derived using the AM-FM model of Bovik
and coworkers [2, 11, 10, 12] in driving the unsupervised segmentation of textured images has been explored.
The low-dimensional texture representation resulting from Dominant Component Analysis (DCA) [10, 12]
offers information concerning the local contrast, scale and orientation of the texture signal and can be inter-
preted as describing the sinusoidal signal that best models a texture locally [18, 20].
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A problem faced by our algorithm is that at smooth areas texture features like orientation are meaningless
and introduce erroneous information in the feature vector, while at object borders texture features indicate
the presence of a textured region, leading again to suboptimal solutions. Further, the demodulation algorithm
used for feature extraction includes high-order image derivatives, that introduce increased noise sensitivity
and are not uniquely defined for discrete-time signals.

In this work, our contribution is twofold: first we introduce a regularized version of the algorithm used
for feature extraction, involving generalized Gabor filtering and treating errors from inefficient discrete dif-
ferentiations. Second, we propose a modification of the original Region Competition/ Geodesic Active Re-
gions evolution rule that takes into account the locally estimated confidence in any of the low-dimensional
modulation-based features. For this we build upon recent work [18, 20] and provide probabilistic terms quan-
tifying the confidence assigned to the extracted features, relying on a detection theoretic interpretation of the
DCA algorithm.

Section II describes previous work and provides the background for later sections. In Section III the
regularized demodulation algorithm is described, while Section IV presents the cue integration algorithm
proposed. In Section V we demonstrate the merits of using the fused scheme and compare both visually and
quantitatively our method’s results to those obtained using current state-of-the-art features [38].

2 Previous work: AM-FM Models and Unsupervised Segmentation Methods

2.1 AM-FM Texture Modeling

According to the multicomponent AM-FM model [10], a textured image can be modelled as the superposi-
tion of sinusoidal components:

I(x, y) =
K∑

k=1

ak(x, y) cos(φk(x, y)), ωk(x, y) = ∇φk(x, y), (1)

where each of theK components is a non-stationary 2-D AM-FM signal, withinstantaneous amplitude
ak(x, y) and instantaneous frequencyωk. The decomposition of an image in terms of this expression is
an ill-posed problem, since one can devise an infinity of AM and FM signals yielding the same image.
A separation into well-behaved individual AM-FM components can be accomplished by filtering with a
multiband Gabor filterbank [1, 7]; the output of each filter can then be represented as a mono-component
AM-FM signal with narrowbandmodulation components, that lend themselves to efficient demodulation
algorithms and are intuitively interpretable. Specifically iff(x, y) is a mono-component 2-D AM-FM signal

f(x, y) = a(x, y) cos(φ(x, y)), (2)

its spatially-varying amplitudea(x, y) can be interpreted as modeling local image contrast while the in-
stantaneous frequency vectorω(x, y) = ∇φ(x, y) describes locally emergent spatial frequencies [2, 12].
Efficient estimation of the modulation components of the 2D AM-FM signals can be accomplished via the
multidimensional energy separation algorithm [24] that uses a multidimensional energy operator [3]: Let
f(x, y) be a twice-differentiable continuous-space real-valued input function. The 2D energy operatorΦ is
defined by

Φ(f)(x, y) , ‖∇f(x, y)‖2 − f(x, y)∇2f(x, y) (3)

Let now f be a 2D spatial AM-FM signal as in (2). Under certain assumptions on the amplitude and fre-
quency variations [24], applyingΦ to f yields the energy product of the squared instantaneous amplitude
and frequency magnitudeΦ[a cos(φ)] ≈ a2||ω||2 with an approximation error bounded within a negligible
range for locally narrowband signals. ApplyingΦ to the partial derivativesfx = ∂f/∂x, fy = ∂f/∂y yields
the 2D continuousEnergy Separation Algorithm (ESA)[24]:

√
Φ(fx)
Φ(f)

≈ |ω1(x, y)|
√

Φ(fy)
Φ(f)

≈ |ω2(x, y)| Φ(f)√
Φ(fx) + Φ(fy)

≈ |a(x, y)| (4)



This algorithm can estimate at each location(x, y) the amplitude and the magnitude of the instantaneous
vertical and horizontal frequencies of the spatially-varying 2-D AM-FM signal. The signs of the frequency
signals are obtained from the signs of the carriers, approximated by the bandpass filter central frequencies.
By replacing the partial derivatives with differences a variety of discrete energy operators emerge. A simple
2D case is:

Φd(f)(i, j) = 2f2(i, j)− f(i− 1, j)f(i + 1, j)− f(i, j − 1)f(i, j + 1) (5)

Applying Φd to a 2D discrete AM-FM signalf [i, j] = a[i, j] cos(φ[i, j]) yields [24] a nonlinear energy
productΦd[a[i, j] cos(φ[i, j])] ≈ a2[i, j](sin2(Ω1[i, j]) + sin2(Ω2[i, j])), whereΩ1, Ω2 are the discrete-
space instantaneous frequencies. The discrete ESA [24], can give estimates of instantaneous amplitude and
frequencies of narrowband image components with an excellent spatial resolution and very low complexity.

2.2 Low-Dimensional AM-FM features via Dominant Component Analysis

The previously described demodulation scheme yields a3K-dimensional feature vector at each point, where
K is the number of filters used in the Gabor filterbank. Even though this descriptor offers rich information
about the texture signal, it cannot be used as is for segmentation purposes, due to its high dimensionality.

A more compact descriptor can be extracted using the Dominant Component Analysis (DCA) [10, 12]
scheme: DCA picks at each image pixel the most active filterbank channel, demodulates its output and uses
the resulting AM-FM features to represent the local texture structure. This offers at each image point a three-
dimensional feature vector that retains essential information about the texture structure, describing its most
prominent characteristics in terms of a sinusoidal signal.

At the heart of the DCA method lies the channel selection criterion used to pick the most active channel
at each point; in the original work on DCA the local estimates of the amplitude envelopesAk for each
channelk were used, which are estimated asAk =

√
=(gk ∗ I)2 + <(gk ∗ I)2, whereI is the image and

gk is the impulse response of thek-th complex 2-D Gabor filter. In [18] we presented a detection theoretic
interpretation of this ‘maximum-amplitude’ channel selection criterion, relating theAk term with the log-
likelihood of the image observations around the neighborhood of each point. Further, it was observed that
using an energy-operator-based instead of an amplitude-based selection criterion offers a viable alternative,
characterized by better localization accuracy and in [20] this alternative channel selection criterion was cast
in a detection-theoretic framework as well.

2.3 Unsupervised Variational Textured Image Segmentation

Region-based techniques are commonly considered as more appropriate for textured image segmentation,
since the application of boundary-based techniques and the related variational schemes of Snakes, De-
formable models [15, 6] and Geodesic Active Contours [5, 16] is based on the detection of strong variation
in texture features [22, 31], which is a non-trivial problem.

Some of the first variational region-based textured image segmentation techniques [21, 46] have used
modified versions of the Mumford-Shah functional [28] appropriately modified to incorporate the multi-
dimensional features used for texture description; building upon this work, current state-of-the-art algorithms
in unsupervised variational region-based segmentation [45, 33, 43, 38, 13, 4] rely on the level-set methodol-
ogy [29, 23, 41, 34] which has been established as an elegant and efficient mathematical tool for the solution
of problems involving evolving interfaces, offering robustness and tractability.

A significant precursor of recent work has been the Region Competition [46] method, which has helped
clarify and unify different variational criteria and has introduced a probabilistic flavor in the curve evolution
literature. The core idea of this algorithm is the maximization of the probability of the image observationsI,
using a set ofM regionsRi, within which the observations are assumed to follow a simple region-specific
parametric distributionP (·; ai); an additional term on the length of the region borders,Γi is used to give rise
to the following functional:

J(Γ, {ai}) =
M∑

i=1

µ

2

∫

Γi

ds−
∫∫

Ri

log P (I; ai) (6)



We have omitted the penalty on the number of regions used in [46], since in our case this remains fixed
throughout the segmentation process. Calculus of variations yields the evolution of the region borders as
the motion along the direction that assigns pixel observations to the region that models them better while
maintaining the borders smooth:

∂Γi

∂t
= −µκN + log

P (I; ai)
P (I; aj)

N (7)

whereκ is the curvature andN the outward normal of frontΓi andj is the neighboring region that competes
with i for the observations at the interface position. Parameter estimation for the distributionsP (·; ai) is per-
formed in alternation with curve evolution yielding an adaptive unsupervised image segmentation scheme.

In [33] this evolution algorithm has been brought together with the level set methodology and combined
with edge-based terms, giving rise to the Geodesic Active Regions (GAR) algorithm

∂Γi

∂t
= λ log

P (I; ai)
P (I; aj)

− (1− λ) [g(Pc)κN + (∇g(Pc) · N )N ] (8)

whereg(·) a monotonically decreasing function,Pc the probability of a pixel belonging to a boundary and
λ determines the relative weights assigned to region- and edge-based information. The last term is inspired
from the Geodesic Active Contour Model [16, 5] and forces the region borders to stay close to the locations
where an edge detector responds strongly. Other successful algorithms like [43, 45] can be seen to be of the
same essence with the original Region Competition algorithm; for example the model of [43] is based on the
cartoon approximation to the Mumford-Shah functional [28], which in turn is a special case of the Region
Competition functional for Gaussian distributions with equal variances.

2.4 Texture Features for Unsupervised Variational Segmentation

As mentioned earlier, even though the outputs of a filterbank may provide a rich description of the texture
signal, their high dimensionality can lead to suboptimal segmentations. In the supervised texture segmenta-
tion scenario e.g. [32] this problem is bypassed by choosing the channels that maximally separate different
textures. It is however harder to tackle the unsupervised problem, since choosing the best channels is equiv-
alent to projecting the features onto a subspace where someunknown a-prioriclasses become maximally
separated; this is usually performed using heuristic criteria, as e.g. in [39, 40].

In a recent attempt to alleviate the problem for unsupervised segmentation, Rousson et al. [38] have used
a vector valued diffusion procedure to smooth a low-dimensional image descriptor, derived from local image
derivatives. Combined with image intensity the resulting four-dimensional feature vector offers satisfactory
results for the unsupervised segmentation of textured images. In the information-theoretic approach of [17]
segmentation is accomplished without using a feature extraction stage, using as the sole criterion the max-
imization of the mutual information between region label and image intensity. In [13] distributions tuned
to capture natural image statistics were shown to result in improved results when incorporated in curve
evolution schemes for texture segmentation.

The representation of a texture in terms of its DCA features offers a low-dimensional feature vector,
that is expressive enough for the discrimination of a wide variety of textures, encompassing information
about texture strength, scale and orientation. Specifically, the feature vector we consider consists of the
image intensity and the DCA components, namely amplitude, frequency magnitude and orientation. The
distribution of the feature vectorP (·; ai) within regioni is modelled as a product of a multivariate Gaussian
for the first three dimensions and a von-Mises distribution for the orientation featureθ, which is analogous
to the Gaussian distribution for orientational data:

PV M (θ; θ0, κ) ∝ exp(κ cos(θ − θ0)) (9)

The parametersθ0, κ of this distribution are estimated as in [9]. Segmentation results using the DCA feature
vector can be found in Section V as well as in [19].



3 Regularized Demodulation

Let us consider an imageI of K locally narrowband componentsfk(x, y) modelled by AM-FM signals and
corrupted by a WSS zero-mean Gaussian noise fieldw(x, y):

I(x, y) =
K∑

k=1

ak(x, y) cos(ωk0 · (x, y) + φk(x, y))︸ ︷︷ ︸
≈fk(x,y)

+w(x, y)

For each componentfk, assuming a negligible AM-FM modeling error, its instantaneous frequency is given
by ωk = ωk0 +∇φk(x, y), where the carrierωk0 is its mean frequency andφk(x, y) is the nonlinear phase
part. The fundamental problem of demodulating the imageI aims at estimating the instantaneous ampli-
tudesak(x, y) and frequenciesωk(x, y). Unavoidable modeling errors of any demodulation algorithm, the
presence of noise, interference from neighbor spectral components, and space discretization of the signal
derivatives are possible sources that can cause errors in the demodulation of each narrowband component
fk(x, y). Robustness in the AM-FM demodulation problem can be achieved in various ways, e.g. by opti-
mizing any one or some of the following problems: (1) Reduction of the error in modeling each narrowband
componentfk(x, y) by a 2D AM-FM signal while maintaining some smoothness in the estimated amplitude
and frequency modulation signals. (2) Suppression of noise. (3) Suppression of neighbor spectral compo-
nents while estimating one component. (4) Regularization of derivatives. Simultaneously achieving all the
above goals is a complex optimization task, which remains an unsolved problem. We present a regularized
2D energy operator and a related regularized 2D ESA that address some of the above problems in more than
one combinations.

In the 1D case [30], given a narrowband signalf(x) to model bya(x) cos(ω0x + φ(x)), problem (1) has
been given an optimum solution based on the Hilbert transform and analytic signal, which minimizes the
mean-squared energy

∫ |a′(x)|2dx of the amplitude derivative. This yields an optimum carrier frequencyω0

as the center of gravity of the one-sided power spectrum
∫∞
0
|F (ω)|2dω of the given signalf(x). In [36] it

has been shown that, the ESA estimates of instantaneous amplitude and frequency off(x) bare a modeling
error comparable to that of the Hilbert transform. However ESA has a better space-time resolution and much
lower complexity. A simultaneous solution to problems (2) and (3) has been given in [3] by using a filterbank
of bandpass filters, each centered at the spectral mean location of each narrowband component. The band-
pass filtering increases the SNR and reduces the bias and variance of the ESA estimates of instantaneous
amplitude and frequencies.

Given discrete image data, problem (4) immediately arises since the energy operator involves two dif-
ferential operators. As analyzed in [35] for the problem of edge detection, tworegularized solutions, which
minimize the sum of the data approximation error and the energy of the second derivative of the approxi-
mating function, are (i) spline interpolation and (ii) convolution of the image data by a function that can be
closely modelled by a Gaussian. In our problem which deals with narrowband but not necessarily lowpass
signal components the Gaussian filter response must be modulated by a sine with carrier equal to the spectral
mean location of the component. This yields a Gabor filter. In [8], the spline and the Gabor regularization
of the energy operator and of the ESA were compared for 1D signals. This comparison yielded a slight
superiority of the Gabor ESA.

Motivated by all the above, we propose a2D Gabor ESAalgorithm for simultaneous filtering and demod-
ulation. LetI(x, y) be the continuous image,g(x, y) the impulse of a real1 2D Gabor filter, andf(x, y) =
I(x, y) ∗ g(x, y) the output of the Gabor filter. Since, convolution commutes with differentiation, the contin-
uous 2D energy operator combined with Gabor bandpass filtering becomes

Φ(f) = Φ(I ∗ g) = ‖I ∗ ∇g‖2 − (I ∗ g)(I ∗ ∇2g) (10)

Thus, the differential operators have been replaced by derivatives of the Gabor filter. The final algorithm for
the Gabor energy operator (EO) becomes: (1) Find analytically and store all required differential formulae of

1 If we use a complex Gabor filter, then we can use a 2D energy operator for complex-valued signalsf defined in [24]
by C(f) = Φ[<(f)] + Φ[=(f)], i.e. the sum of the real energy operator applied to the real and imaginary part of the
complex signal.



the Gabor functiong(x, y) evaluated on the pixel locations of a sampling grid(i, j) = (i∆x, j∆y). We need
three differential formulae:gx, gy,∇2g. (2) For estimating the instantaneous energy at the pixel locations
(i, j) use the formula (10) of the combined continuous energy operator and Gabor filtering by using for
each convolution the discrete convolution of the given image dataI[i, j] and the required Gabor derivative
sampled at(i, j).

Similarly, for estimation of the instantaneous amplitude and frequency, the 2D Gabor ESA for demodulat-
ingf = I∗g consists of the following two steps. (1) Use the Gabor EO to compute the instantaneous energies
of three image functions:Φ(f), Φ(fx = I ∗ gx) = ‖I ∗ ∇gx‖2 − (I ∗ gx)(I ∗ ∇2gx) andΦ(fy = I ∗ gy).
For all three energies we need seven Gabor differential formulae:gx, gy, gxx, gyy, gxy,∇2gx,∇2gy. (2) Use
the evaluated energies in the formula of the 2D continuous ESA. The 2D Gabor EO is computationally more
intensive than the corresponding discrete EO, since it needs three convolutions (compared with one for the
discrete case), but adds robustness and improved performance.

One approach to reduce the total complexity of applying the Gabor EO or the ESA to all filter outputs is to
use the following modified procedure: (1) Apply Gabor bandpass filters to obtain all narrowband components
fk = I ∗ gk. (2) To each componentfk(x, y) apply the followingRegularized Energy Operator(REO)

Φσ(fk) = ‖fk ∗ ∇Gσ‖2 − fk(fk ∗ ∇2Gσ)

whereGσ(x, y) = (1/2πσ2) exp[−(x2 + y2)/2σ2] is an isotropic Gaussian at regularization scaleσ,
and∇Gσ and∇2Gσ are the well-known gradient-of-Gaussian and Laplacian-of-Gaussian operators.The
REO needs only 3 convolutions of the narrowband image componentfk with the ∂/∂x, ∂/∂y and∇2

of the Gaussian. For the corresponding regularized ESA, we need the three regularized energiesΦσ(fk),
Φσ(∂fk/∂x) = ‖fk ∗ ∇(∂xGσ)‖2 − fk[fk ∗ ∇2(∂xGσ)] andΦσ(∂fk/∂y). All the Gaussian differential
formulae are common for all filters and need to be computed once.

(a) (b)

Fig. 1. Regularized Features: Dominant Amplitude(a) ESA (b) Gabor ESA.

4 Probabilistic Cue Integration

A problem faced by our algorithm, as well as most feature-based segmentation algorithms, is that at areas
where the model underlying the feature extraction process fails to accurately capture signal behavior the
features may be meaningless and can drive the segmentation to suboptimal solutions. For example, in the
presence of edges the DCA-based amplitude is typically high, describing large oscillations while at smooth
regions the orientation of the frequency vector varies erratically. In this section we introduce a method that
renders the segmentation process immune to such problems by automatically choosing which features the
evolution equations should rely upon.

Our method uses a confidence measure assigned to the features used to drive the segmentation process;
this may be hard to obtain generally, but can be naturally accomplished in our case where a specificgenera-
tive model can be devised, i.e. a model that for a specific set of parameters offers a prediction and a related



likelihood expression for its observations. When multiple models are used for feature extraction, a posterior
distribution can be defined using these likelihood expressions based on Bayes’ rule, thereby indicating which
of these most accurately captures the observations.

Below we briefly review our contributions [18, 20] in providing such a framework for the DCA model and
subsequently provide a modification of the Region Competition/GAR algorithm that allows for the fusion of
the extracted features in a simple and efficient manner.

4.1 Generative Models for Features

The generative model we introduce for texture explains the image neighborhood around a specific point in
terms of two sub-models, namely a texture model and a generic background model; the degree to which
these two sub-models contribute to the explanation of an observation depends on its distance from the point
around which the model is defined. In all of the following the treatment will consider the signals as one-
dimensional, for the sake of notational clarity. The synthesized predictionST (x) at pointx of the texture
sub-model defined around point0 can be expressed as the sum of a sinusoidal of fixed frequencyω and
phase offsetφ and a DC componentB: ST (x) = A cos(ωx + φ) + B, while the background sub-model is
considered to be a uniform distribution. The spatial variation of our confidence in these two sub-models can
be phrased as:

P (I(x)|x, 0) = G(x)P (I(x)|ST (x)) + (1−G(x))c, (11)

whereP (I(x)|x, 0) is the likelihood of the observation at pointx, given the model related to the texture
hypothesis that is defined around point0; G(x) accounts for the locality of the modeling process and is
taken to be a Gaussian function normalized so thatG(0) = 1. The corruption of the texture synthesisST (x)
is modelled byP (I(x)|ST (x)) which is a Gaussian distribution with meanST (x) and unknown, constant
variance whilec is the constant term contributed by the uniform background model. Using the quadrature
pairge = cos(ωx)G(x) andgo = sin(ωx)G(x) of Gabor filters centered around frequencyω, in [18, 20] it is
shown that the quantityAk =

√
(ge ∗ I)2 + (gp ∗ I)2 is related to the likelihood of the image observations

under the probabilistic model outlined above. In this sense, picking the channel with the largest amplitude
estimate amounts to choosing the channel that explains the data best.

To apply the same rationale to edge detection, we used the observation that edges arephase congruent
signals [27], i.e. signals of the formA

∑
k ak cos(ωk + φ); for φ = 0 we derive line (triangular) edges

and forφ = π
2 step edges. Again, using an appropriate quadrature filter pair of odd and even filters we can

derive an amplitude estimate related to the likelihood of the observations under this model [20]. A model
that complements these two classes is the smooth signal model, for which we use the locally DC signal,
using again an expression of the form Eq. (11) to account for the locality of the decision made.

Using these three models we are able to estimate the probability of a pixel having been generated by one
of the three hypotheses considered based on Bayes’ rule. Applying this approach on natural images gives
visually appealing results as shown in Fig. 2, since textured areas are correctly discriminated from edges,
matching closely what a human would call a texture or an edge. Given that the previously described models
do not take into account higher order structure or grouping cues, the results are quite satisfactory. A more
extensive presentation of the approach outlined above can be found in [18, 20].

4.2 Cue Integration for Region Competition

In this section we present a modification of the Region Competition algorithm that can exploit the confidence
measures assigned to the feature set used to drive the segmentation process. This fits naturally with the
models used for feature extraction in our work, but its application is not constrained to these.

The rationale underlying the Region Competition evolution equations is to assign to each region the ob-
servations that it can most accurately explain in terms of its distribution. This is implemented using a proba-
bilistic balloon force [6], that pushes the front of regioni along its outward normal with a force proportional
to:

OI = log
Pi(I; ai)
Pj(I; aj)

,



(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 2. From [20]: Textured areas can be successfully discriminated from edges, using simple generative models. Top
row: (a) Input image, (b) texture and (c) edge model amplitude estimates, respectively and model-based probabilities of
(d) smooth, (e) textured and (f) edge regions respectively. Bottom row: (g)/(j) Input images and posterior probabilities
of (h)/(k) texture and (i)/(l) edge models respectively.

wherej is the competing neighboring region. This quantity, termedlog−odds quantifies the degree to which
the observationI is more likely under hypothesisi than under hypothesisj. Supra - Bayesian fusion methods
[14] consider this quantityOI as a random variable, which follows a Gaussian distribution conditioned on
the actual class of the dataI:

P (OI |i) ∝ N(µi, σ
2), P (OI |j) ∝ N(µj , σ

2)

This quantifies the certainty associated with any decision made based onOI : a largeσ, i.e. a low confidence
in log-odd accuracy can diminish the effect of a large value ofOI . From a good classifier we would generally
expect thatµi >> µj with a low σ, which means that if the dataI are due to hypothesisi, then it is very
probable thatOI will take a high value and vice versa.

Based on the above approach, the results ofN classifiers using different features or different classification
methods can be easily integrated [14]: their log-oddsO = [O1, . . . ,ON ] are viewed as a multidimensional
random variable that follows a Gaussian distribution conditioned on the class of the data i.e.

P (O|i) ∝ N(µi, Σ), P (O|j) ∝ N(µj ,Σ)

The posterior log-likelihood ratio given all the expert odds is then:

log
P (i|O)
P (j|O)

= (O − µi + µj

2
)T Σ−1(µi − µj)

We thereby build a decision using as features the outputs of classifiers, instead of the actual features. For the
special case where the classifier outputs are uncorrelated, we have a diagonal covariance matrix; further, by
appropriately scaling and shifting the classifier outputs we can guarantee thatµi = −µj and all the elements
of theµi vector equal unity, so that we have

log
P (i|O)
P (j|O)

=
∑

c

Oc

σ2
c

This formula expresses a straightforward idea: when a classifier gives noisy results, i.e. has a largeσ, a lower
weight should be assigned to his decision and vice versa. The use of log-odds is particularly convenient, in
that we express this weighting operation in terms of a summation.

In our case, we consider that the assignment of an observation to regioni or regionj is a decision taken
by fusing the assessments of two experts, where the decision of the first is based on the texture features and
that of the second on the intensity values. Using the previous notation we have

OT = log
PT (FT ; aT

i )
PT (FT ; aT

j )
, OS = log

PS(FS ; aS
i )

PS(FS ; aS
j )



where byPM (FM ; aM
i ) we denote the likelihood of the feature-setFM extracted based on hypothesisM

(texture-T or smooth-S) under the hypothesis-specific distributionPM of region i, whose parameters are
aT

i . For the final decision, each expert’s opinion is weighted by the probability of each hypothesis, estimated
as described in the previous subsection; this way for textured areas the texture features have a larger impact
on the evolution of the curve than the intensity features, and vice versa for smooth regions. Equation 6 thus
becomes:

∂Γi

∂t
=


 ∑

c∈T,S

wc log
P c(Ic;αi)
P c(Ic; αj)

− µκ


N (12)

where the indexc ranges over the cues that are being fused andwc is the related cue weight. Further, as in
[33] one can introduce edge based information, but now exploiting the model-based probability of edge in
which case the evolution equation becomes:

∂Γi

∂t
=


 ∑

c∈T,S

wc log
P c(Ic; αi)
P c(Ic; αj)


N − we [gκN + (∇g · N )N ] (13)

with we being the probability of the edge hypothesis. This does not interfere with the edge detection pro-
cedure used to estimate∇g, since it simply provides an indication of how important the edge information
should be deemed.

We note here that the weights entering the fusion equations do not have to be estimated using the specific
models described previously; as an alternative that we intend to explore in future work, the celebrated U+V
decomposition [44] could be used to indicate regions with a strong texture component, and subsequently
provide weights for a fusion algorithm.

5 Experimental Evaluation

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Top Row: Features used for Segmentation.(a) Intensity,(b) Amplitude,(c) Freq. Magnitude,(d) Freq. Orien-
tation vectors, Bottom Row: Segmentation results, using(e) the original evolution equations [46, 32] as in [19],(f) the
fusion evolution equations, excluding the orientation channel and(g) including the orientation channel,(h) Diffusion-
based features [38] and the original evolution equations. Please see text for details.

As described in [19], curve evolution is implemented using level-set methods [41, 42] along the lines of
[33]. As in [40, 38, 45] the distribution of the data inside each region is learned in parallel with the evolution
process, resulting in an adaptive scheme. For all the results presented in this work the regions have been
initialized so as to partition the whole image in interleaved thin parallel strips, while we have observed that
the results do not depend substantially on the initialization.



In Fig. 3 (a)-(d) we present the modulation features extracted via DCA and segmentation results using four
alternative schemes: In Fig. 3(e) the results of curve evolution along the lines of [19] are shown, using the
3-dimensional DCA-based texture descriptor while in (f) we show results using the cue integration scheme
described in this work. In (g) the orientation channel is added to the feature vector, with no performance
degradation on smooth areas, contrary to (e), and improved boundary localization. In the fused cases, (f)
and (g), the region boundaries tend to accurately capture the object borders, while in (e) the erroneously
estimated texture features prevent them from doing so. Further results are provided in Fig. 4, where we
generally observe that the fused features give better segmentations results, with the region borders accurately
locating the object borders. The effect of the orientation features which behave erratically at smooth areas is
diminished, due to the smaller weight assigned to the texture hypothesis at these regions.

(a) (b) (c) (d)

Fig. 4. Segmentation Comparisons:(a) original evolution equations,(b) the fusion evolution equations, excluding the
orientation channel and(c) including the orientation channel,(d) Diffusion-based features [38].

In order to obtain quantitative results, segmentation results for an increasing numbers of fronts were de-
rived for the whole Berkeley test set and compared to human segmentations based on the Bidirectional Con-
sistency Error (BCE) measure introduced in [25]. This measure quantifies in a smooth manner the overlap
between a machine generated segmentation and a set of manual segmentations, and is minimized when for
every machine-generated segment there is at least one human-generated segmentation wherein the segment
is contained as a whole and vice versa.

Initially we compared the performance of the raw AM-FM features used in [19] to that of the nonlinear
diffusion-based feature set [38]; in all the related results presented herein some uncertainty is retained due
to potential inaccuracies in the implementation of the algorithms in [38]. For this comparison, the orienta-
tion features were omitted, in order to avoid spoiling the feature vector at smooth regions. Comparing the
histograms in Fig.s. 5(a)(b) the BCE can be seen to be lower for the AM-FM features, indicating their po-
tential to accurately describe a textured region in terms of a low-dimensional feature vector. As already
mentioned, the introduction of the orientation channel in the feature vector typically results in segmentation
performance degradation in the cases of smoothly varying areas and edges; a point that we make in this
paper is that using a fusion algorithm counteracts these defects and allows the orientation channel to be in-
corporated in a manner that is immune to its behavior on smooth regions. This can be seen by a comparison
between Fig.s 5(b)(c), where the BCE is seen to have almost the same distribution; that the introduction of
the orientation vector does not lead to a systematic improvement in the results can be due the fact that the
data set provided in [26] does not contain many heavily textured images, where the information carried by
the orientation channel is most valuable.
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Fig. 5. Berkeley Benchmark evaluation: Histogram of Bidirectional Consistency Error [25] over 100 test images for
varying number of fronts (2-5) for:(a) Diffusion-based features(b) Unfused data, without orientation(c) Fused data
with orientation. Please see text for details.

6 Conclusions

Multicomponent AM-FM models propose a powerful approach to the representation, analysis and segmen-
tation of textured images. Our contributions presented herein lie in (1) the introduction of a regularized
demodulation algorithm that can alleviate discretization problems and introduce increased noise robustness
and (2) the probabilistic integration of features related to different image models, based on a modification of
the region competition evolution equations. Systematic comparisons have demonstrated that the derived fea-
tures compare favorably to those used by the current state-of-the-art methods, indicating the appropriateness
of modulation features for unsupervised textured image segmentation.
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