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About this paper

* Very mathematical
— Sorry (a little bit)
— But few equations
* No results
— But a lot of novelty

« Many useful concepts/relations to other work
— Principal Geodesic Analysis (M-Reps, etc.)
— Principled (diffusion) tensor analysis (Batchelor)
— Diffeomorphisms



About this talk

* Aim: to help understand paper
— Less focussed on paper’s content, more on ideas
— Less critical evaluation than usual

* Some extra (simpler) maths and examples

« Some stuff glossed over
— Surface deformations



Tensor-based morphometry
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change from atlas to nth subject at (x,y,z)
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Tensor-based morphometry

« Lots of papers on Tensor-based morphometry analyse
the (scalar) determinant of the Jacobian tensor

* There is more information in the tensor than just
volume change
— E.g. two reciprocal rescalings can preserve volume

« Woods’ presents a framework for analysis of the
complete 3x3 Jacobian matrix

— Accounting for the manifold in which Jacobians live...



Some simple (trick) questions

 What is the distance
between these two
points?

* Where is their mean?

« What about now?



Lie groups and algebras

* A Lie group is a mathematical group
— also a finite-dimensional smooth manifold
— smooth group operations (multiplication and inversion)

« Can associate a Lie algebra

— whose underlying vector space is the tangent space of
G at the identity element

— completely captures the local structure of the group

— can think of elements of the Lie algebra as elements of
the group that are "infinitesimally close" to the identity



The unit circle as a Lie group
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The unit circle’s Lie algebra
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Lie groups and algebras

* A Lie group is a mathematical group
— also a finite-dimensional smooth manifold
— smooth group operations (multiplication and inversion)

« Can associate a Lie algebra

— whose underlying vector space is the tangent space of
G at the identity element

— completely captures the local structure of the group

— can think of elements of the Lie algebra as elements of
the group that are "infinitesimally close" to the identity



From circles to spheres

 In the example of angles around the unit circle
concepts of distance and average are simple
* Mostly...
— What is the average of 0 and pi?

— When can we be sure of a
unique mean?

« Things aren’t so simple for two angles on a sphere



Distances on a sphere

« Consider two points
— What is the distance between them?
— Where is their average?
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From circles to spheres (and back)

great circle

small circle




Distances on a sphere

1//2 0
l4 w4
0 :L O] 142 :( /zj
1/+/2 1/42] V"

* Actually, the angle between these points is not pi/2

— This would be the difference in their longitude (aka azimuth)
regardless of their colatitude

— The correct angle can be found from their scalar product
« acos(v1”v2) = acos(1/2) = pi/3 = 60 degrees
— Their mean is harder to find, but the vector product gives the
axis of rotation which describes the geodesic (great circle)



Manifolds and geodesics

« Asphereis a
Riemannian manifold

 Distances need to be
measured in the surface

 (Geodesics are the
shortest paths

* The “Fréchet mean”
minimises the sum of
squared geodesic dists




Manifolds and geodesic means

* |In a plane, the sum of
displacement vectors
from the mean to each
point Is zero

* For a Riemannian
manifold, the sum of
velocity vectors in the
tangent plane is zero

— Defines a Karcher mean




The sphere has Cross-section of A
been rotated so A along the great
I\/Ilontrete;I (X) is circle passing
closest to you through X and
the tangent-plane Quito (furthest city)
J.(ar: X is parallel to lllustrates how the
e page. Geodesic between
these points can be
“lifted” from the
manifold of the
sphere to a unique
point on tangent-
plane (using Log)

White circles show
the locations of
black ones after
lifting into the
tangent plane

(a 2D Euclid space)

The white cross
can be dropped
back onto the
sphere (Exp)
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The new estimated
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rotated to the point
of the sphere
closest to you

The white X is
located at the
tangent point,
indicating
convergence






Distance metrics

 Different measurements can require alternative
concepts of distance. E.qg.

— Distances between angles

— Distances within manifolds

— Distances between matrices

— Distances between special types of matrices...

* A metric satisfies

d(x,y)=d(y,x)

d(x,y)=0, d(x,y)=0=x=y
d(x,y)+d(y,z)>d(x,z)




Distance metrics

* Further (optional) properties may be desirable

— Consider angles again, the distance should not be
affected by rotating a pair of points by an equal amount

— For rotation matrices we might want invariance to pre-
and post-rotation

— d(PAQ, PBQ) = d(A, B) for rotations A, B, P and Q

« For Jacobians, arbitrary choice of initial atlas and
invariance to change of coordinates implies same



Matrix
Lie Groups

* Rotation matrices
are a compact
group — they have
a bi-invariant
metric (Moakher)

« Jacobians are not,
but are a semi-
simple Lie group,
with a bi-invariant
pseudo-metric

Table 1

Some three dimensional geometric constramts, their associated Lie

groups and tangent space parameterizations
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Semi-Riemannian manifolds

* A pseudo-metric can be negative
— d(x,y) can be zero for x not equal to y
— The Frechet mean is not well defined

« The Karcher mean (zero net velocity in tangent plane)
s still well defined, and be found with an iterative proc
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Analysis of deviations from mean

« X =logm(JMT)
— Analogous to vector deviation from mean: j-m

— Analogous to logarithmic deviation of positive scalars
from geometric mean: log(j/m)

— Deviation in the tangent plane at the mean
 But note ||Xi|| is not a distance
« Recall only a pseudo-metric is available
* Multivariate statistics on Xi
— Hotelling T-square test for comparing two groups
— Wilks Lambda for more general regression models



Further 1ssues

Existence (Cartan decomposition)

Analysis of “deviations” from mean
— Not distances: how much of a problem is this?

Removal of global pose
Dealing with translations or perspective terms
Surface deformations



Related work

 Diffusion tensors also on Riemannian manifold
— An affine-invariant metric (and mean) can be found
— Also, computationally trivial log-Euclidean metric

» Diffeomorphisms
— Exp from velocity field to displacement field
— Allows more sensible interpolation or extrapolation
— Applications to e.g. motion models
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