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About this paper

• Very mathematical
– Sorry (a little bit)
– But few equations

• No results
– But a lot of novelty

• Many useful concepts/relations to other work
– Principal Geodesic Analysis (M-Reps, etc.)
– Principled (diffusion) tensor analysis (Batchelor)
– Diffeomorphisms



About this talk

• Aim: to help understand paper
– Less focussed on paper’s content, more on ideas
– Less critical evaluation than usual

• Some extra (simpler) maths and examples
• Some stuff glossed over

– Surface deformations



Tensor-based morphometry
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Det(Jn(x,y,z))  gives relative volume 
change from atlas to nth subject at (x,y,z)

Can test statistical significance of e.g. 
group difference at each voxel



Tensor-based morphometry

• Lots of papers on Tensor-based morphometry analyse 
the (scalar) determinant of the Jacobian tensor

• There is more information in the tensor than just 
volume change
– E.g. two reciprocal rescalings can preserve volume

• Woods’ presents a framework for analysis of the 
complete 3x3 Jacobian matrix
– Accounting for the manifold in which Jacobians live...



Some simple (trick) questions

• What is the distance 
between these two 
points?

• Where is their mean?

• What about now?



Lie groups and algebras

• A Lie group is a mathematical group
– also a finite-dimensional smooth manifold
– smooth group operations (multiplication and inversion)

• Can associate a Lie algebra
– whose underlying vector space is the tangent space of 

G at the identity element
– completely captures the local structure of the group
– can think of elements of the Lie algebra as elements of 

the group that are "infinitesimally close" to the identity



The unit circle as a Lie group

• Points on the circle are 
rotated versions of (1,0) 
or 0rad

• Composition of two 
elements gives another

• There is an identity 0rad
• There is an inverse -R

R1

R2

R1·R2 = R2·R1



The unit circle’s Lie algebra

Tangent-plane
at the identity

Tangent-plane 
identified as Im

θ

θ

Curved 
Riemannian 
manifold

Re

Im

Exponential map
Exp(θ) = exp(i θ)

Maps from tangent 
plane to manifold
(smoothly)

1D vector space
(flat/Euclidean)



Lie groups and algebras

• A Lie group is a mathematical group
– also a finite-dimensional smooth manifold
– smooth group operations (multiplication and inversion)

• Can associate a Lie algebra
– whose underlying vector space is the tangent space of 

G at the identity element
– completely captures the local structure of the group
– can think of elements of the Lie algebra as elements of 

the group that are "infinitesimally close" to the identity



From circles to spheres

• In the example of angles around the unit circle 
concepts of distance and average are simple

• Mostly...
– What is the average of 0 and pi?
– When can we be sure of a

unique mean?

• Things aren’t so simple for two angles on a sphere



Distances on a sphere

• Consider two points
– What is the distance between them?
– Where is their average?
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(co)latitude

longitude

small circle
great circle

From circles to spheres (and back)



Distances on a sphere

• Actually, the angle between these points is not pi/2
– This would be the difference in their longitude (aka azimuth) 

regardless of their colatitude
– The correct angle can be found from their scalar product

• acos(v1’*v2) = acos(1/2) = pi/3 = 60 degrees
– Their mean is harder to find, but the vector product gives the 

axis of rotation which describes the geodesic (great circle)
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• A sphere is a 
Riemannian manifold

• Distances need to be 
measured in the surface

• Geodesics are the 
shortest paths

• The “Fréchet mean” 
minimises the sum of 
squared geodesic dists

Manifolds and geodesics



• In a plane, the sum of 
displacement vectors 
from the mean to each 
point is zero

• For a Riemannian 
manifold, the sum of 
velocity vectors in the 
tangent plane is zero
– Defines a Karcher mean

Manifolds and geodesic means



MontrealSeattle

Miami
Quito, Ecuador

The sphere has 
been rotated so 
Montreal (X) is 
closest to you
the tangent-plane 
at X is parallel to 
the page.

Quito
Montreal

Cross-section of A 
along the great 
circle passing 
through X and 
Quito (furthest city)
Illustrates how the
Geodesic between 
these points can be 
“lifted” from the 
manifold of the 
sphere to a unique 
point on tangent-
plane (using Log)

White circles show 
the locations of 
black ones after 
lifting into the 
tangent plane
(a 2D Euclid space)

Euclidean average 
of white circles

The white cross 
can be dropped 
back onto the 
sphere (Exp)

The new estimated 
mean has been 
rotated to the point 
of the sphere 
closest to you

The white X is 
located at the 
tangent point, 
indicating 
convergence





Distance metrics

• Different measurements can require alternative 
concepts of distance. E.g.
– Distances between angles
– Distances within manifolds
– Distances between matrices
– Distances between special types of matrices...

• A metric satisfies

),(),(),(
0),(,0),(

),(),(

zxdzydyxd
yxyxdyxd

xydyxd

≥+
=⇒=≥

=



Distance metrics

• Further (optional) properties may be desirable
– Consider angles again, the distance should not be 

affected by rotating a pair of points by an equal amount
– For rotation matrices we might want invariance to pre-

and post-rotation
– d(PAQ, PBQ) = d(A, B) for rotations A, B, P and Q

• For Jacobians, arbitrary choice of initial atlas and 
invariance to change of coordinates implies same



Matrix
Lie Groups
• Rotation matrices 

are a compact 
group – they have 
a bi-invariant 
metric (Moakher)

• Jacobians are not, 
but are a semi-
simple Lie group, 
with a bi-invariant 
pseudo-metric



Semi-Riemannian manifolds

• A pseudo-metric can be negative
– d(x,y) can be zero for x not equal to y
– The Frechet mean is not well defined

• The Karcher mean (zero net velocity in tangent plane) 
is still well defined, and be found with an iterative proc



Analysis of deviations from mean

• Xi = logm(JiM-1)
– Analogous to vector deviation from mean: j-m
– Analogous to logarithmic deviation of positive scalars 

from geometric mean: log(j/m)
– Deviation in the tangent plane at the mean

• But note ||Xi|| is not a distance
• Recall only a pseudo-metric is available

• Multivariate statistics on Xi
– Hotelling T-square test for comparing two groups
– Wilks Lambda for more general regression models



Further issues

• Existence (Cartan decomposition)
• Analysis of “deviations” from mean

– Not distances: how much of a problem is this?
• Removal of global pose
• Dealing with translations or perspective terms
• Surface deformations



Related work

• Diffusion tensors also on Riemannian manifold
– An affine-invariant metric (and mean) can be found
– Also, computationally trivial log-Euclidean metric

• Diffeomorphisms
– Exp from velocity field to displacement field
– Allows more sensible interpolation or extrapolation
– Applications to e.g. motion models
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