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State space examples - dynamical system

Motion of a particle (in 1D)
constant (but noisy) acceleration

sk = sk−1 + ṡk−1∆T + 1
2 s̈k−1(∆T )2

+ εk

ṡk = ṡk−1 + s̈k−1∆T

+ ε̇k

s̈k = s̈k−1

+ ε̈ksk

ṡk

s̈k

 =

1 ∆T (∆T )2/2
0 1 ∆T
0 0 1

sk−1

ṡk−1

s̈k−1

 + wk

x k = Fx k−1 + w k

w k ∼ N (w k |0, Q)
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2 s̈k−1(∆T )2 + εk
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2 s̈k−1(∆T )2 + εk
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State space examples - time-series
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The state space model

xk ∈ Rn vector of hidden state variables

zk ∈ Rm vector of observations

uk ∈ Rp vector of control inputs

Linear

Gaussian

xk = Fkxk−1 + Bkuk

+ wk

zk = Hkxk

+ vk

wk ∼ N (wk |0, Qk )

vk ∼ N (vk |0, Rk )

(1)
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How does the KF work?

Recursive (online) updating of current state estimate
and precision (covariance)

1. Using the system model
I Predict the next state
I Estimate the new (reduced) precision

2. Using the new measurement
I Correct the state estimate
I Update the (increased) precision
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How is it derived?

Two equivalent alternatives

1. Classical
I Show form of Kalman gain update is unbiased
I Derive expressions for posterior covariance (MSE)
I Analytically find optimal Kalman gain

2. Bayesian
I Treat previous estimates as prior
I Measurement model gives likelihood
I Derive posterior distribution
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Bayesian updating

A simple example

p(x) = N
(

x |x̂ , σ2
w

)
prior

z = x + v v ∼ N (0, σ2
v )

p(z|x) = N
(

z|x , σ2
v

)
likelihood

p(x |z) ∝ p(z|x) p(x) from Bayes
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Bayesian updating (Information form)

log(p(x |z)) ∝ 1
a

(x − ab)2 + · · ·

⇒ p(x |z) = N (x |ab, a)

where
1
a

=
1
σ2

v
+

1
σ2

w

b =
z
σ2

v
+

x̂
σ2

w

Note
I prior and measurement information add
I the posterior mean is the information-weighted mean
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Bayesian updating (Information form)

Summary

1
a

=
1
σ2

v
+

1
σ2

w

posterior cov = a

posterior mean = a
(

z
σ2

v
+

x̂
σ2

w

) (2)



Bayesian updating (Kalman-gain form)

Now rearrange, for reasons that might become clear later...
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Bayesian updating (Kalman-gain form)

Summary

k =
σ2

w

σ2
w + σ2

v

posterior cov = (1− k)σ2
w

posterior mean = x̂ + k(z − x̂)

(3)
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Derivation outline

The prediction step is straight-forward.
From the model

xk = Fkxk−1 + Bkuk + wk

x̂k |k−1 = Fk x̂k−1|k−1 + Bkuk

Pk |k−1 = FkPk−1|k−1F T
k + Qk

This gives us the time-k prior mean and covariance in terms of
the time-(k − 1) posteriors.
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Derivation outline

The correction step is algebraically tricky, but conceptually
very similar to the simple example of Bayesian updating.

p(xk |x̂k |k−1, zk ) ∝ p(zk |xk , x̂k |k−1) p(xk |x̂k |k−1)

∝ p(zk |xk ) p(xk |x̂k |k−1)

∝ N (zk |Hkxk , Rk ) N
(
xk |x̂k |k−1, Pk |k−1

)
(4)

p(xk |x̂k |k−1, zk ) = N
(
xk |x̂k |k , Pk |k

)

(5)
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Derivation outline

The mean and covariance of the time-k posterior in (5) can be
derived in information form by ‘completing the square’ of the
quadratic form in x that arises from (4).
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Rearranging into Kalman-gain form then requires some fiddly
algebra and the following two matrix inversion identities

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1 (6)

(A + BCD)−1BC = A−1B(C−1 + DA−1B)−1 (7)
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Results (information form)

x̂k |k−1 = Fk x̂k−1|k−1 + Bkuk

Pk |k−1 = FkPk−1|k−1F T
k + Qk

P−1
k |k = P−1

k |k−1 + HT
k R−1

k Hk

x̂k |k = Pk |k

(
P−1
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k R−1
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(Compare (2) from before)



Results (information form)

x̂k |k−1 = Fk x̂k−1|k−1 + Bkuk

Pk |k−1 = FkPk−1|k−1F T
k + Qk

P−1
k |k = P−1

k |k−1 + HT
k R−1

k Hk

x̂k |k = Pk |k

(
P−1

k |k−1x̂k |k−1 + HT
k R−1

k zk

) (8)

(Compare (2) from before)



Results (Kalman-gain form)

x̂k |k−1 = Fk x̂k−1|k−1 + Bkuk

Pk |k−1 = FkPk−1|k−1F T
k + Qk

K = Pk |k−1HT
k

(
Rk + HkPk |k−1HT

k

)−1

Pk |k = (I − KHk )Pk |k−1

x̂k |k = x̂k |k−1 + K
(
zk − Hk x̂k |k−1

) (9)

(Compare (3), and see kalman update.m )



Results (Kalman-gain form)

x̂k |k−1 = Fk x̂k−1|k−1 + Bkuk

Pk |k−1 = FkPk−1|k−1F T
k + Qk

K = Pk |k−1HT
k

(
Rk + HkPk |k−1HT

k

)−1

Pk |k = (I − KHk )Pk |k−1

x̂k |k = x̂k |k−1 + K
(
zk − Hk x̂k |k−1

) (9)

(Compare (3), and see kalman update.m )



Outline

What is the Kalman Filter?

State Space Models

Kalman Filter Overview

Bayesian Updating of Estimates

Kalman Filter Equations

Extensions



Prediction & Smoothing

The model allows us to predict ahead of the measurements, at
each iteration we maintain the optimal estimate of the future
state given the data we have so far.

We can also estimate the state at a point before the current
measurement — known as ‘fixed lag smoothing’.

If we first collect all the data and want to process it offline (‘fixed
interval smoothing’), then a closely related algorithm can be
derived.

The Rauch Tung Striebel Smoother (or Kalman Smoother) uses
a forward-backward algorithm to achieve optimal offline
smoothing with two passes of a Kalman-like recursion. (see
kalman smoother.m ).
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Nonlinearity

For non-linear state space models

xk = fk (xk−1, uk ) + wk

zk = hk (xk ) + vk

I Either, repeatedly linearise about the current point (EKF)
I Or, non-linearly propagate (deterministic) samples and

re-estimate the Gaussian mean and covariance (UKF)
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Non-Gaussianity

If the process or measurement noise isn’t normally distributed,
then for the correction step

p(xk |x̂k |k−1, zk ) ∝ p(zk |xk ) p(xk |x̂k |k−1)

we can sample from the distribution using Markov Chain Monte
Carlo methods.

This is known as Sequential Monte Carlo (SMC) or Particle
Filtering, and is a very powerful technique. See, for example,
the Condensation algorithm in computer vision.
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