
© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

COMP1008
Recursion and

More UML
Examples

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

2

Recursion

• A method can call itself - recursion!
int factorial(int i)
{
 if (i > 0)
 return i * factorial(i-1) ;
 else
 return 1 ;
}
// See text book p199

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Or

public int factorial(int n) {
 if (n == 0)
 return 1;
 else
 return n * factorial(n-1);
}

3

Testing for base
case explicitly

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Tracing recursive calls
6!
(6 * 5!)
(6 * (5 * 4!))
(6 * (5 * (4 * 3!)))
(6 * (5 * (4 * (3 * 2!))))
(6 * (5 * (4 * (3 * (2 * 1!)))))
(6 * (5 * (4 * (3 * (2 * (1 * 0!))))))
(6 * (5 * (4 * (3 * (2 * (1 * 1))))))
(6 * (5 * (4 * (3 * (2 * 1)))))
(6 * (5 * (4 * (3 * 2))))
(6 * (5 * (4 * 6)))
(6 * (5 * 24))
(6 * 120)
720

4

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

A nice demonstration

• Found this at:
• http://www.cs.princeton.edu/introcs/lectures/

5

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

6

Recursion & iteration

• Recursion provides another way of doing iteration.
• Most use of recursion can be re-written using loops

and vice-versa.
• Some algorithms are much easier to express using

recursion.
• Remember all the Prolog...

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

7

Another example
int sum(final int n)
{
 if (n == 0)
 {
 return 0 ;
 }
 else
 {
 return sum(n-1) + n ;
 }
}

Sum the numbers from
1 to n.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

8

Recursive calls made by sum
call sum(5)
sum(5): n != 0, call sum(4)
sum(4): n != 0, call sum(3)
sum(3): n != 0, call sum(2)
sum(2): n != 0, call sum(1)
sum(1): n != 0, call sum(0)
sum(0): n == 0, return 0
sum(1): return 0 + 1 (1)
sum(2): return 1 + 2 (3)
sum(3): return 3 + 3 (6)
sum(4): return 6 + 4 (10)
sum(5): return 10 + 5 (15)

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Linear Search

 int linearSearch(int[] a, int value, int position) {
 if (position >= a.length)
 { return -1; }
 else {
 if (value == (a[position]))
 { return position; }
 }
 else
 { return linearSearch(a, value, position + 1); }
 }

Called with
int n = linearSearch(array, 10, 0);

9

Base case -
value not found

Value found

Recursive
case

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Remove else’s

 int linearSearch(int[] a, int value, int position) {
 if (position >= a.length)
 { return -1; }
 if (value == (a[position]))
 { return position; }
 return linearSearch(a, value, position + 1);
 }

10

Shorter but possibly less readable.
Not as clear that there are 3

options?

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Binary Search
int binarySearch(int[] a, int low, int high, int value) {
 if (low > high) {
 return -1;
 }
 else {
 int middle = (low + high) / 2;
 if (value == a[middle])
 { return middle; }
 else {
 if (value < a[middle])
 { return binarySearch(a, low, middle - 1, value); }
 else
 {return binarySearch(a, middle + 1, high, value); }
 }
 }
 } 11

Base case -
value not found

Value found

Recursive
cases

Array must be
sorted

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Quicksort

void quicksort(double[] a, int left, int right) {
 if (right <= left) return;
 int i = partition(a, left, right);
 quicksort(a, left, i-1);
 quicksort(a, i+1, right);
}

• Algorithm:
• Split array into 2 partitions

• such that all values in left are less than those in right.
• recursively apply to partitions.

• when partition is size one, it is sorted.

12

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Partition
public static int partition(double[] a, int left, int right) {
 int i = left - 1;
 int j = right;
 while(true) {
 while (less(a[++i], a[right])) ;
 while (less(a[right], a[--j]))
 if (j == left) break;
 if (i >= j) break;
 swap(a, i, j);
 }
 swap(a, i, right);
 return i;
}

13

Take two partitions
and swap values
such that all values in
left partition are less
than all values in
right.

Here is a demo...

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

What does this do?

 void f(int a, int b) {
 if (a <= b) {
 int m = (a + b) / 2;
 System.out.print(m + " ");
 f(a, m-1);
 f(m+1, b);
 }
 }

14

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

15

Cost of recursion

• Each recursive call has the ‘cost’ of a method call.
– Recursion is potentially slower than iteration.
– But a recursive algorithm may be more efficient.

• Each recursive call uses up a bit of memory.
• Too many recursive calls will use up all the stack

space and the program will fail.
– But not a reason to ignore recursion.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Recursion Pitfalls

• Infinite recursion.
– fail to test for base cases, so recursion never terminates.

• Program crashes with out of memory error.

• Mutual recursion.
– Two method call each other recursively.

• Directly or indirectly.
• Usually a sign of poor design and can be difficult to spot.

16

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Questions?

17

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

More UML Examples

18

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Composition - Strong Ownership

19

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

20

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

21

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

22

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

23

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Snackbar example

24

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

From a past exam paper...

25

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

UML Sequence Diagrams

26

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

27

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

28

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Summary

• Recursion
– another form of repetition

• More UML diagram examples

29

