
© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

COMP1007
 Using Methods

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

2

Agenda

• Writing programs using methods.

• Good method design.

• Methods, objects and classes.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

3

Using Methods

• Instead of writing a long list of statements and 

executing from start to finish...

• We can now write a collection of methods that call 

each other.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

4

Calling methods

main

M1 M4

M2 M3
M5

• main calls M1
• M1 calls M2 then M3
• main calls M4
• M4 calls M5

Methods can belong to different objects

or could belong to the same object.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

5

Programming Strategy

• Prior to OOP, languages only had procedures/

functions.

• This led to a style of programming known by various 

names:

– Procedural decomposition

– Top-down programming

– Structured programming

– and others

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

6

An approach to problem solving

• Decompose a problem into a sequence of simpler 

methods and then call each method.

• For each simpler method repeat the process.

• Stop when a method becomes trivial to write.

– E.g., doing payroll processing.



© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

7

Methods and OO Programming?

• The same basic decomposition principle applies to 

OO programs,

• BUT we also have to decide which objects provide 

which methods.

– Allocation of behaviour to objects.

– (Actually it’s not that simple…)

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

8

Choosing methods

• A method should focus on doing one thing well:

– Compute and return a value.

– Perform an action.

• Be cohesive.

• If a method becomes more complicated and tries to 

do several things: 

– Split it up into smaller methods!

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

9

Method size

• Keep methods small:

– “Small enough but no smaller.”

• If a method is longer than ~15 lines then always 

consider splitting it.

• Don’t go mad and reduce all methods to one line 

though!

• Develop your feel for what makes a good method.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

10

Method parameters

• Use parameters to make a method more general 

purpose.

– Write f(n), rather than f1(), f2(), f3(), etc.

• Typically, few methods need more than 3 parameters.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

11

Questions?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

12

A Simple One Class Example

• Program specification:

– Read in a sequence of integers, sort them, and output the 

sorted sequence.

• The problem can be simply decomposed into three 

methods: read, sort and output.



© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

13

The main method

public class ReadNSort
{
   // Other methods...

   public static void main(String[] args)
   {
      ReadNSort myObj = new ReadNSort();
      myObj.readIntegers();
      myObj.sortIntegers();
      myObj.outputIntegers();
   }
}

All the methods will be 

declared in this class.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

14

readIntegers

• Use a loop to read in 100 integers.

• What do we do with the integers?

– Choose an appropriate data structure.

• Let’s put them in an array.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

15

readIntegers take 2

public void readIntegers()

{

   int[] myInts = new int[100];

   // … Loop to read in integers

}

• Wait… What happens to the array?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

16

readIntegers take 3

public int[] readIntegers()

{

   int[] myInts = new int[100];

   // … Loop to read in integers

   return myInts;

}

• Change return type and return array.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

17

sortIntegers

• Now needs to take array parameter and return an 

array:

public int[] sortIntegers(int[] myInts)

{

   // Do the sorting

   return myInts;

}

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

18

outputIntegers

• Only needs to have an array parameter:

public void outputIntegers(int[] myInts)

{

   // loop to output integers

}



© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

19

Amend main method:

public static void main(String[] args)

{

   ReadNSort myObj = new ReadNSort ();

   int[] myInts = myObj.readIntegers();

   myInts = myObj.sortIntegers(myInts);

   myObj.outputIntegers(myInts);

}

Local variable used to store array

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

20

A Variant

public static void main(String[] args)

{

    ReadNSort myObj = new ReadNSort ();

    int[] myInts = new int[100];

    myObj.readIntegers(myInts);

    myObj.sortIntegers(myInts);

    myObj.outputIntegers(myInts);

}

• Is this way better?

– Always ask this question!

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

21

Probably...

• readInteger now only does one thing (read in 100 

integers).

• Having to create the array made it a little less general 

purpose, less cohesive.

• Of course, the array size is fixed, so the next variant 

should change that (an exercise for you).

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

22

Questions?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

23

Another solution…

• Our read, sort, output program could be a little more 

object-oriented…

– The object should store the array.

myInts

ReadNSort object

readIntegers
sortIntegers
outputIntegers

Methods:

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

24

Instance Variable

• An instance variable belongs to an object.

• Can be used by any instance method declared in the 

same class.

• Doesn’t need to be passed as a parameter to 

methods in the class

– Or declared in main.

myInts



© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

25

Declaring instance variable

public class ReadNSort

{

   private int[] myInts = new int[100];

   // Methods …

   public static void main(String[] args)

   {

      ReadNSort myObj = new ReadNSort (); 

      myObj.readIntegers();

      myObj.sortIntegers();

      myObj.outputIntegers();      

   }

}

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

26

Private …

• private int[] myInts = new int[100];

• The instance variable is created with the object (by 

new expression).

• Is private to the object

– Only accessible to the instance methods
• Not to main

• Declared in class scope.

• Lifetime is the same as the object.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

27

Simpler methods

public void readIntegers()

{

   // … Loop to read in integers

}

• Array myInts is in scope and accessible to method.

• No parameter, no return statement, no array creation, 

void method.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

28

Simpler methods (2)…

public void sortIntegers()

{

   // Do the sorting

}

public void outputIntegers()

{

   // loop to output integers

}

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

29

Responsibilities

• The object is responsible for holding the array.

• The object provides the services of reading, sorting 

and displaying data to other objects.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

30

Questions?



© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

31

But…

• In some other class:

public void f()

{

    ReadNSort obj = new ReadNSort();

    obj.outputIntegers();

    obj.sortIntegers();

    obj.readIntegers();   // Whoops…..

}

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

32

Contract

• The object supports its responsibilities,

• But also needs a contract with the client so that its 

responsibilities are used correctly.

– Use the object according to its specification.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

33

Specifying a Contract

• The order of method call can be specified using 

a comment.

– Or other documentation, such as Javadoc.

• Unfortunately, can’t be enforced via language 

syntax.

• Design and programming issue.

– Programmer must get it right!

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

34

Specifying a Contract (2)

• Might include code to check and report errors at 

runtime:

boolean inputDone = false; 

…

public void sortIntegers()

{

  if (!inputDone)

  {

     System.out.println(“no input done”) ;

     return;

  }

}        But messy and needs extra code.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

35

Rethink interface

• Why are read, sort and display methods 

public?

• Make them private!

• Provide a single public method to use object…

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

36

Public/Private

private void readIntegers() { … }    // Can only be used by

private void sortIntegers() { …}      // other methods in

private void outputIntegers() { … } // same class.

public void readSortOutput()  // new control method

{

   readIntegers();         // Enforce correct order.

   sortIntegers();

   outputIntegers();

}



© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

37

The client

• Can now call only readSortOutput.

public static void main(String[] args)

{

   ReadNSort obj = new ReadNSort();

   obj.readSortOutput();

   // obj.readIntegers(); // Error, method is private

}

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

38

Public v. Private

• Collection of small, cohesive methods for private 

implementation.

• Minimal public interface

– Control method public, supporting methods private.

– Thin interface (as opposed to fat interface).

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

39

So,

• Use methods to decompose code into small, 

cohesive units.

• But make minimum number of methods public.

– Provide control and/or access methods.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

40

Insides v. Outsides

• Distinguish structure needed for implementation 

of object,

• From structure made public to users (clients) of 

object.

• Think Abstraction.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

41

Parameters v. instance variables?

• In this 1-class example parameters were eliminated.

– Nature of the problem.

• Parameters still essential:

– Function-like methods.

– Generic methods.

– Passing information from one object to another.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

42

Questions?



© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

43

Top-down programming?

• Long history, still widely used for non-OO languages.

• It is still relevant?

• Do we want to design and write programs in this way?

• Yes and No!

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

44

Yes...

• Top-down decomposition is useful for solving 

small-scale problems,

– Private methods providing services to an object’s public 

methods.

• and, in some cases, for solving sub-parts of a 

larger problem.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

45

No...

• Top-down decomposition is a poor way for 

solving larger problems and for designing 

larger programs.

• In fact, it’s often a complete disaster!
• The approach simply does not scale-up.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

46

A better way

• Object-oriented design and programming 

provides much better solutions to the 

construction of larger programs.

• As the year continues we will examine why in 

detail.

• But also read the text book now.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

47

For now…

• Let’s consider route planning…

• Top-down solution is rigid, inflexible and fragile.

• OO solution is general purpose, flexible and robust.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

48

Summary

• Programs can be decomposed into a collection of 

methods that call one another.

• Methods should be small and cohesive.

• Method based decomposition is suitable for 

solving small scale problems or sub-problems 

only.

• But methods are an essential building block of 

classes in object-oriented programs.


