
© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

COMP1007
Principles of Programming

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

3

Agenda

• Definitions.

• What is programming?

• What is Java?

• Writing your first program.

• Classes and Objects.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

4

Reading

• You should be reading chapters 1 & 2 of
the text book.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

5

Program

• A sequence of instructions carried out by a computer
(or run, or executed).

• The sequence is typically long and complex.

• Running a program will result in millions or billions of
instructions being executed.

• The instruction sequence has to be correct or the
program will fail.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

6

 Programmer

• Person who writes programs!

• Responsible for identifying the correct
sequence of instructions required and writing
them down.

• Who you want to be :-)

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

7

 Application Program

• A program that does something useful for the
end user.

– Word processor, spreadsheet, web browser, etc.

• A tool to perform tasks to achieve a goal.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

8

 Systems Programming

• An operating system controls and manages a
computer.

– DOS, Unix, GNU/Linux, Mac OS X, Windows XP,
etc.

• Systems programming is the process of
developing operating system software.

– And supporting tools.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

9

Software Engineering

– The process of developing programs.

– Involves:
• Requirements – what is the program meant to do?

• Analysis – how should the program behave?

• Design – how is the program structured?

• Coding – writing the program code.

• Debugging – fixing errors.

• Testing – making sure the program works.

• Deployment – putting the program into use.

• Maintenance – keeping the program working.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

10

 Processor

• Microprocessor, CPU, chip.

• The computer hardware that executes program
instructions (machine code).

• Intel PentiumTM, Sparc, PowerPC

– Each has its own specific instruction set.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

11

Programming Language

• A textual language used to write a program.

– Read/written by programmer.

– English-like appearance (sort of).

• The meaning of what you write has to be
completely and precisely defined.

• Java is a programming language.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

12

Syntax

• Syntax describes the grammatical rules of a
language.

– Valid words.

– Punctuation.

– Sentence construction.

– Rules of use.

• Programs must be syntactically correct.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

13

Semantics

• Semantics give the meaning of what you write
with a language.

• A program must be semantically correct to do
what you expect.

• A programming language must precisely define
the meaning of every statement that can be
written with it.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

14

Syntax v. Semantics

“This sentence is an elephant.”

• Grammatically correct but no sensible
meaning.

“This sentence is false.”

• Grammatically correct but logically
inconsistent.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

15

Nonsense programs...

• A program can be syntactically correct but not do
anything useful or sensible.

• However, what a program does can always be
exactly determined.

Is that actually true?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

16

Determinism v. Non-Determinism

• What a deterministic program does can always be
known.

• The behaviour of non-deterministic programs can’t
(easily) be predicted reliably.

• Your programs should be deterministic!

But non-deterministic programs can
be written with Java.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

17

Communication

• Programming involves a lot of communication.

Most communication occurs
between people (or with
yourself!)

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

18

Communication skills

• Speech, writing, drawing, diagrams, etc.

• To talk about the design of a program with
other people is hard and you need to be quite
precise.

• To describe a program to a computer you
have to be absolutely precise.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

19

Readability

• Programming languages are for people to
describe programs.

• The text of a program should be written for
other people to read.

– Think about what makes a book, newspaper or
website easy to read and understand.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

20

Questions?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

21

Writing a Program

• We want to get you started as soon as possible!

• But at first you will have to take a lot of things on
trust.

• We will return to the details later on.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

22

A Program!

class Welcome

{

 public void sayHello()

 {

 System.out.println("Hello World");

 }

 public static void main(String[] args)

 {

 Welcome welcome = new Welcome();

 welcome.sayHello();

 }

}

Ordinary text written with an editor.
Called Source Code.

Obeys syntax rules & semantics
of Java.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

23

Compilation

• A computer cannot directly understand or run
source code!

• A translation from source code to processor
instructions has to be performed.

• This is known as compilation.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

24

The Compiler

• Fortunately, a tool called a Compiler can do the
text to processor instruction translation.

• The compiler knows and checks all syntax rules
but only some of the semantics.

• The compiler is itself a program.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

25

Writing a Java Program

• Use an editor to type in or edit the program source
code.

• Save the code to a file.

• Compile the file with the Java compiler.

• Run the program and see what happens.

• Remove the bugs!

Fix
syntax
errors

Fix
semantic
errors

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

26

Hello

// Say hello!

class Welcome

{

 public void sayHello()

 {

 System.out.println("Hello World");

 }

 public static void main(String[] args)

 {

 Welcome welcome = new Welcome();

 welcome.sayHello();

 }

}

Save in a file called
Welcome.java

A comment

Our class is
called Welcome.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

27

Which editor?

• There are several choices:

– JEdit

– BlueJ

– Emacs (or XEmacs) + command line

• BlueJ or JEdit are preferred but Emacs is also very
powerful.

• Experiment.

• Take the time to learn to use your editor effectively.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

28

Java Compiler

• The Java compiler is called javac.

– To compile use:
javac Welcome.java

Java source code file
names must always
end with .java

This will create a file
called Welcome.class

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

29

Running a Java Program

• To run a Java program use java.

– java Welcome

This is the Java interpreter
which actually runs the program.

Name the program
you want to run.

Hello World appears in xterm.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

30

Let’s Try This

• Cue the demos...

– JEdit + command line

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

31

Being efficient

• Use one or more xterm windows for typing
commands.

• Don’t close the editor every time you edit a file,
simply save the file.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

32

Remember

• Use JEdit to type and edit source code.

• Compile program via xterm window, or

– Use the JEdit Console.

• Run the program via xterm window, or

– Use the JEdit Console.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

33

Being even more efficient

• Typing !!<return> repeats the previous command.

• This means you can type:
 javac Hello.java
once.

• And repeat it using !!

• Works for any command.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

34

Being yet more efficient

• The command history will display a numbered list of
the past commands you have used.

• !5 will repeat command 5, !10 command 10 and so
on.

• !ji will repeat the last command starting with the
letters ji

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

35

Questions?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

36

Drawing Shapes and Pictures

• A number of exercise questions ask you to write
programs that draw pictures.

• You are given the source code of a complete
program to copy and edit.

– Another class.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

37

An Example Dawing

Made up of lines and
rectangles.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

38

Let’s see the program

• OK, another demo

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

39

How do you draw?

 // This part of the program does the actual drawing.

 public void doDrawing(Graphics g)

 {

 // You add/change the statements here to draw

 // the picture you want.

 // For example, draw a diagonal line.

 g.drawLine(0,0,300,300);

 } Make changes
here. See the

notes.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

40

A Drawing Object?

• What does g.drawLine() mean? What is g?

• g is a reference to an object.

• The object knows how to draw.

• You tell it what to draw.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

41

Your own drawings

• Select a new class name.

– The name of your drawing.

• Copy the template file and save as <yourname>.java

• Make the changes described next.

• Compile, run.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

42

Changes

• Change the name of the class.

• See the line that says:

• class Drawing extends JFrame

• Don’t forget: save the class to a new .java file.

Here’s the name. Change it!

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

43

Yet more to change?

• Yes.

• Wherever you see the name Drawing in the
program, replace it with the new name.

• Drawing drawing = new Drawing(“MyDrawing”);

Change these as well.

I wonder if the editor does search and
replace?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

44

Drawing something different

 // This part of the program does the actual drawing.

 public void doDrawing(Graphics g)

 {

 // You add/change the statements here to draw

 // the picture you want.

 g.drawRect(150,150,50,50);

 g.fillRect(20,20,50,50) ;

 }

New lines of code.

The order of the lines give the
sequence by which the picture is

drawn.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

45

What else can you draw?

• g.drawArc(x, y, width, height, startAngle, arcAngle);

• g.drawLine(x1,y1,x2,y2);

• g.drawOval(x,y,width,height);

• g.drawRect(x,y,width,height);

• g.drawString(text, x,y);

A String is a line of text
(sequence of
characters).

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

46

Drawing a more complicated picture

• Work out how to draw a complicated picture by using
a series of simpler shapes.

• Problem decomposition.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

47

Questions?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

48

A Closer Look

class Welcome

{

 public void sayHello()

 {

 System.out.println("Hello World");

 }

 public static void main(String[] args)

 {

 Welcome welcome = new Welcome();

 welcome.sayHello();

 }

}

Infrastructure

Statement we want to
execute.

Infrastructure

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

49

Infrastructure

• Necessary to support the code we actually want to
run.

• Its full purpose will become clear as the course
proceeds.

• For now “cut and paste” job.

• But will elaborate a bit…

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

50

What happened?

• The program created an object.

• The object was asked to say Hello.

Welcome
Object

sayHello()

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

51

Class and Object?

• Our program actually consisted of a single class
declaration.

• The class is a “template” that describes what a
Welcome object is and does.

• Running the program creates the object and asks it
to sayHello.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

52

Objects

• Have responsibilities

– to carry out actions (e.g., say Hello)

– to know things (e.g., what to actually say)

• Can collaborate with other objects to perform more
complex tasks.

– Our Welcome object actually uses another object,
System.out, which has the responsibility of directing text
to the screen.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

53

Objects with BlueJ

• BlueJ is another programming tool you will be using.

• It allows you to directly manipulate objects.

• Here is the demo…

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

54

Questions?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

55

Huh?

• These programs seem more complicated than
necessary!

• Why not just a simple statement on its own?

– print(“Hello World”);

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

56

Because…

• The programming language works this way.

• Any non-trivial program needs structure to have any
chance of being manageable.

• Classes and objects provide that structure.

• You need to learn to do things properly from the
start!

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

57

And…

• Classes and objects provide the components, or
building blocks, to construct a program from.

• Program statements provide the detail describing
how objects perform operations.

– Like saying Hello.

• Think about levels of detail, or abstraction.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

58

But!

The program could have been written like this:

class Welcome

{

 public static void main(String[] args)

 {

 System.out.println("Hello World");

 }

}

Why not?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

59

Well…

• We want to emphasise objects from the start.

• The simpler program form is only of any use for very
small examples.

– Chap. 2 of the text book uses the simple form but you
should use objects from the start!

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

60

Before we finish…

• If the compiler translates to processor instructions,
then what is the java interpreter doing?

• You need to ask: which processor?

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

61

The Java Virtual Machine (JVM)

• Java programs are compiled to bytecodes for a
virtual processor.

• The command java runs the JVM which simulates
the virtual processor.

• So your program is run by the JVM that is, in turn,
run by the real processor.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

62

Why?

• A Java program can run on any real processor that
can run the JVM.

• “Compile once, run everywhere”.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

63

So, where did Java come from?

• Designed by a group at Sun Microsystems Inc.

• Originally called Oak - a language for programming
consumer devices (Talkie Toaster!).

• Renamed to Java and moved to the web.

• Developed into a full scale application programming
language.

• Continues to evolve.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

64

James Gosling and the Duke Mascot

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

65

Find out more

• Visit the official Sun Java web site:

• java.sun.com

or

• www.java.net

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

66

Summary

• Defined some basic terms.

• Introduced the ideas of a programming language
and compilation.

• Seen how to write, compile and run small programs.

• First look at classes and objects.

